Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Nature ; 615(7951): 349-357, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702157

RESUMEN

Chloroplasts rely on the translocon complexes in the outer and inner envelope membranes (the TOC and TIC complexes, respectively) to import thousands of different nuclear-encoded proteins from the cytosol1-4. Although previous studies indicated that the TOC and TIC complexes may assemble into larger supercomplexes5-7, the overall architectures of the TOC-TIC supercomplexes and the mechanism of preprotein translocation are unclear. Here we report the cryo-electron microscopy structure of the TOC-TIC supercomplex from Chlamydomonas reinhardtii. The major subunits of the TOC complex (Toc75, Toc90 and Toc34) and TIC complex (Tic214, Tic20, Tic100 and Tic56), three chloroplast translocon-associated proteins (Ctap3, Ctap4 and Ctap5) and three newly identified small inner-membrane proteins (Simp1-3) have been located in the supercomplex. As the largest protein, Tic214 traverses the inner membrane, the intermembrane space and the outer membrane, connecting the TOC complex with the TIC proteins. An inositol hexaphosphate molecule is located at the Tic214-Toc90 interface and stabilizes their assembly. Four lipid molecules are located within or above an inner-membrane funnel formed by Tic214, Tic20, Simp1 and Ctap5. Multiple potential pathways found in the TOC-TIC supercomplex may support translocation of different substrate preproteins into chloroplasts.


Asunto(s)
Chlamydomonas reinhardtii , Cloroplastos , Microscopía por Crioelectrón , Complejos Multiproteicos , Transporte de Proteínas , Cloroplastos/química , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Ácido Fítico/metabolismo , Estabilidad Proteica , Especificidad por Sustrato
2.
Nature ; 561(7724): 561-564, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30224749

RESUMEN

Eukaryotic cells traffic proteins and lipids between different compartments using protein-coated vesicles and tubules. The retromer complex is required to generate cargo-selective tubulovesicular carriers from endosomal membranes1-3. Conserved in eukaryotes, retromer controls the cellular localization and homeostasis of hundreds of transmembrane proteins, and its disruption is associated with major neurodegenerative disorders4-7. How retromer is assembled and how it is recruited to form coated tubules is not known. Here we describe the structure of the retromer complex (Vps26-Vps29-Vps35) assembled on membrane tubules with the bin/amphiphysin/rvs-domain-containing sorting nexin protein Vps5, using cryo-electron tomography and subtomogram averaging. This reveals a membrane-associated Vps5 array, from which arches of retromer extend away from the membrane surface. Vps35 forms the 'legs' of these arches, and Vps29 resides at the apex where it is free to interact with regulatory factors. The bases of the arches connect to each other and to Vps5 through Vps26, and the presence of the same arches on coated tubules within cells confirms their functional importance. Vps5 binds to Vps26 at a position analogous to the previously described cargo- and Snx3-binding site, which suggests the existence of distinct retromer-sorting nexin assemblies. The structure provides insight into the architecture of the coat and its mechanism of assembly, and suggests that retromer promotes tubule formation by directing the distribution of sorting nexin proteins on the membrane surface while providing a scaffold for regulatory-protein interactions.


Asunto(s)
Chaetomium/química , Chaetomium/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/ultraestructura , Chaetomium/metabolismo , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Transporte de Proteínas , Nexinas de Clasificación/química , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/ultraestructura , Proteínas de Transporte Vesicular/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34740967

RESUMEN

Photosynthetic microorganisms including the green alga Chlamydomonas reinhardtii are essential to terrestrial habitats as they start the carbon cycle by conversion of CO2 to energy-rich organic carbohydrates. Terrestrial habitats are densely populated, and hence, microbial interactions mediated by natural products are inevitable. We previously discovered such an interaction between Streptomyces iranensis releasing the marginolactone azalomycin F in the presence of C. reinhardtii Whether the alga senses and reacts to azalomycin F remained unknown. Here, we report that sublethal concentrations of azalomycin F trigger the formation of a protective multicellular structure by C. reinhardtii, which we named gloeocapsoid. Gloeocapsoids contain several cells which share multiple cell membranes and cell walls and are surrounded by a spacious matrix consisting of acidic polysaccharides. After azalomycin F removal, gloeocapsoid aggregates readily disassemble, and single cells are released. The presence of marginolactone biosynthesis gene clusters in numerous streptomycetes, their ubiquity in soil, and our observation that other marginolactones such as desertomycin A and monazomycin also trigger the formation of gloeocapsoids suggests a cross-kingdom competition with ecological relevance. Furthermore, gloeocapsoids allow for the survival of C. reinhardtii at alkaline pH and otherwise lethal concentrations of azalomycin F. Their structure and polysaccharide matrix may be ancestral to the complex mucilage formed by multicellular members of the Chlamydomonadales such as Eudorina and Volvox Our finding suggests that multicellularity may have evolved to endure the presence of harmful competing bacteria. Additionally, it underlines the importance of natural products as microbial cues, which initiate interesting ecological scenarios of attack and counter defense.


Asunto(s)
Agregación Celular , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/ultraestructura , Macrólidos/metabolismo , Interacciones Microbianas , Streptomyces/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(2): 1069-1080, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31882451

RESUMEN

To promote the biochemical reactions of life, cells can compartmentalize molecular interaction partners together within separated non-membrane-bound regions. It is unknown whether this strategy is used to facilitate protein degradation at specific locations within the cell. Leveraging in situ cryo-electron tomography to image the native molecular landscape of the unicellular alga Chlamydomonas reinhardtii, we discovered that the cytosolic protein degradation machinery is concentrated within ∼200-nm foci that contact specialized patches of endoplasmic reticulum (ER) membrane away from the ER-Golgi interface. These non-membrane-bound microcompartments exclude ribosomes and consist of a core of densely clustered 26S proteasomes surrounded by a loose cloud of Cdc48. Active proteasomes in the microcompartments directly engage with putative substrate at the ER membrane, a function canonically assigned to Cdc48. Live-cell fluorescence microscopy revealed that the proteasome clusters are dynamic, with frequent assembly and fusion events. We propose that the microcompartments perform ER-associated degradation, colocalizing the degradation machinery at specific ER hot spots to enable efficient protein quality control.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Proteolisis , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Microscopía por Crioelectrón , Citosol/metabolismo , Endopeptidasas , Imagen Óptica , Complejo de la Endopetidasa Proteasomal/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Proteína que Contiene Valosina/metabolismo
5.
J Biol Chem ; 296: 100156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33273011

RESUMEN

Determination of cellular ATP levels, a key indicator of metabolic status, is essential for the quantitative analysis of metabolism. The biciliate green alga Chlamydomonas reinhardtii is an excellent experimental organism to study ATP production pathways, including photosynthesis and respiration, particularly because it can be cultured either photoautotrophically or heterotrophically. Additionally, its cellular ATP concentration, [ATP], is reflected in the beating of its cilia. However, the methods currently used for quantifying the cellular ATP levels are time consuming or invasive. In this study, we established a rapid method for estimating cytosolic [ATP] from the ciliary beating frequency in C. reinhardtii. Using an improved method of motility reactivation in demembranated cell models, we obtained calibration curves for [ATP]-ciliary beating frequency over a physiological range of ATP concentrations. These curves allowed rapid estimation of the cytosolic [ATP] in live wild-type cells to be ∼2.0 mM in the light and ∼1.5 mM in the dark: values comparable to those obtained by other methods. Furthermore, we used this method to assess the effects of genetic mutations or inhibitors of photosynthesis or respiration quantitatively and noninvasively. This sensor-free method is a convenient tool for quickly estimating cytosolic [ATP] and studying the mechanism of ATP production in C. reinhardtii or other ciliated organisms.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Axonema/metabolismo , Bioensayo , Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/análisis , Axonema/efectos de los fármacos , Axonema/ultraestructura , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/ultraestructura , Cilios/efectos de los fármacos , Cilios/ultraestructura , Luz , Mediciones Luminiscentes , Magnesio/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Fosforilación Oxidativa/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Rotenona/farmacología
6.
J Cell Sci ; 132(3)2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30659111

RESUMEN

Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Algáceas/genética , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/genética , Cilios/metabolismo , Flagelos/metabolismo , Proteínas Ligadas a Lípidos/genética , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Axonema/metabolismo , Axonema/ultraestructura , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/ultraestructura , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Cilios/ultraestructura , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patología , Flagelos/ultraestructura , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Ligadas a Lípidos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Organismos Modificados Genéticamente , Transporte de Proteínas , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Transducción de Señal , Proteína Fluorescente Roja
7.
Plant Physiol ; 184(4): 2040-2051, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33051267

RESUMEN

PSI is an essential component of the photosynthetic apparatus of oxygenic photosynthesis. While most of its subunits are conserved, recent data have shown that the arrangement of the light-harvesting complexes I (LHCIs) differs substantially in different organisms. Here we studied the PSI-LHCI supercomplex of Botryococccus braunii, a colonial green alga with potential for lipid and sugar production, using functional analysis and single-particle electron microscopy of the isolated PSI-LHCI supercomplexes complemented by time-resolved fluorescence spectroscopy in vivo. We established that the largest purified PSI-LHCI supercomplex contains 10 LHCIs (∼240 chlorophylls). However, electron microscopy showed heterogeneity in the particles and a total of 13 unique binding sites for the LHCIs around the PSI core. Time-resolved fluorescence spectroscopy indicated that the PSI antenna size in vivo is even larger than that of the purified complex. Based on the comparison of the known PSI structures, we propose that PSI in B. braunii can bind LHCIs at all known positions surrounding the core. This organization maximizes the antenna size while maintaining fast excitation energy transfer, and thus high trapping efficiency, within the complex.


Asunto(s)
Arabidopsis/química , Arabidopsis/ultraestructura , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/ultraestructura , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/ultraestructura , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína
8.
Plant Physiol ; 180(3): 1291-1309, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31019005

RESUMEN

The Antarctic psychrophile Chlamydomonas sp. UWO241 evolved in a permanently ice-covered lake whose aquatic environment is characterized not only by constant low temperature and high salt but also by low light during the austral summer coupled with 6 months of complete darkness during the austral winter. Since the UWO241 genome indicated the presence of Stt7 and Stl1 protein kinases, we examined protein phosphorylation and the state transition phenomenon in this psychrophile. Light-dependent [γ-33P]ATP labeling of thylakoid membranes from Chlamydomonas sp. UWO241 exhibited a distinct low temperature-dependent phosphorylation pattern compared to Chlamydomonas reinhardtii despite comparable levels of the Stt7 protein kinase. The sequence and structure of the UWO241 Stt7 kinase domain exhibits substantial alterations, which we suggest predisposes it to be more active at low temperature. Comparative purification of PSII and PSI combined with digitonin fractionation of thylakoid membranes indicated that UWO241 altered its thylakoid membrane architecture and reorganized the distribution of PSI and PSII units between granal and stromal lamellae. Although UWO241 grown at low salt and low temperature exhibited comparable thylakoid membrane appression to that of C. reinhardtii at its optimal growth condition, UWO241 grown under its natural condition of high salt resulted in swelling of the thylakoid lumen. This was associated with an upregulation of PSI cyclic electron flow by 50% compared to growth at low salt. Due to the unique 77K fluorescence emission spectra of intact UWO241 cells, deconvolution was necessary to detect enhancement in energy distribution between PSII and PSI, which was sensitive to the redox state of the plastoquinone pool and to the NaCl concentrations of the growth medium. We conclude that a reorganization of PSII and PSI in UWO241 results in a unique state transition phenomenon that is associated with altered protein phosphorylation and enhanced PSI cyclic electron flow. These data are discussed with respect to a possible PSII-PSI energy spillover mechanism that regulates photosystem energy partitioning and quenching.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Frío , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas Quinasas/metabolismo , Tilacoides/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Regiones Antárticas , Chlamydomonas/clasificación , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , Clorofila/química , Clorofila/metabolismo , Luz , Microscopía Electrónica de Transmisión , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Dominios Proteicos , Proteínas Quinasas/química , Proteínas Quinasas/genética , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Espectrometría de Fluorescencia , Tilacoides/genética , Tilacoides/ultraestructura
9.
Plant Cell Environ ; 43(5): 1212-1229, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31994740

RESUMEN

VIPP proteins aid thylakoid biogenesis and membrane maintenance in cyanobacteria, algae, and plants. Some members of the Chlorophyceae contain two VIPP paralogs termed VIPP1 and VIPP2, which originate from an early gene duplication event during the evolution of green algae. VIPP2 is barely expressed under nonstress conditions but accumulates in cells exposed to high light intensities or H2 O2 , during recovery from heat stress, and in mutants with defective integration (alb3.1) or translocation (secA) of thylakoid membrane proteins. Recombinant VIPP2 forms rod-like structures in vitro and shows a strong affinity for phosphatidylinositol phosphate. Under stress conditions, >70% of VIPP2 is present in membrane fractions and localizes to chloroplast membranes. A vipp2 knock-out mutant displays no growth phenotypes and no defects in the biogenesis or repair of photosystem II. However, after exposure to high light intensities, the vipp2 mutant accumulates less HSP22E/F and more LHCSR3 protein and transcript. This suggests that VIPP2 modulates a retrograde signal for the expression of nuclear genes HSP22E/F and LHCSR3. Immunoprecipitation of VIPP2 from solubilized cells and membrane-enriched fractions revealed major interactions with VIPP1 and minor interactions with HSP22E/F. Our data support a distinct role of VIPP2 in sensing and coping with chloroplast membrane stress.


Asunto(s)
Chlorophyceae/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/fisiología , Proteínas de Plantas/fisiología , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/ultraestructura , Chlorophyceae/genética , Chlorophyceae/fisiología , Chlorophyceae/ultraestructura , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Clonación Molecular , Inmunoprecipitación , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Tilacoides/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(52): 13726-13731, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229809

RESUMEN

The partitioning of cellular components between the nucleus and cytoplasm is the defining feature of eukaryotic life. The nuclear pore complex (NPC) selectively gates the transport of macromolecules between these compartments, but it is unknown whether surveillance mechanisms exist to reinforce this function. By leveraging in situ cryo-electron tomography to image the native cellular environment of Chlamydomonas reinhardtii, we observed that nuclear 26S proteasomes crowd around NPCs. Through a combination of subtomogram averaging and nanometer-precision localization, we identified two classes of proteasomes tethered via their Rpn9 subunits to two specific NPC locations: binding sites on the NPC basket that reflect its eightfold symmetry and more abundant binding sites at the inner nuclear membrane that encircle the NPC. These basket-tethered and membrane-tethered proteasomes, which have similar substrate-processing state frequencies as proteasomes elsewhere in the cell, are ideally positioned to regulate transcription and perform quality control of both soluble and membrane proteins transiting the NPC.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Poro Nuclear/metabolismo , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Microscopía por Crioelectrón , Poro Nuclear/ultraestructura , Complejo de la Endopetidasa Proteasomal/ultraestructura
11.
Plant J ; 96(1): 233-243, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29982996

RESUMEN

The chloroplast is the chlorophyll-containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live-cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three-dimensional structured illumination microscopy (3D-SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D-SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild-type and mutant strains. Using 3D-SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D-SIM. This study demonstrates that 3D-SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.


Asunto(s)
Microscopía Intravital/métodos , Tilacoides/ultraestructura , Bryopsida/ultraestructura , Chlamydomonas reinhardtii/ultraestructura , Chlorophyta/ultraestructura , Imagenología Tridimensional/métodos , Microscopía Electrónica , Difracción de Rayos X
12.
Plant Physiol ; 178(3): 1112-1129, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30181343

RESUMEN

Fatty acids are synthesized in the stroma of plant and algal chloroplasts by the fatty acid synthase complex. Newly synthesized fatty acids are then used to generate plastidial lipids that are essential for chloroplast structure and function. Here, we show that inhibition of fatty acid synthesis in the model alga Chlamydomonas reinhardtii activates autophagy, a highly conserved catabolic process by which cells degrade intracellular material under adverse conditions to maintain cell homeostasis. Treatment of Chlamydomonas cells with cerulenin, a specific fatty acid synthase inhibitor, stimulated lipidation of the autophagosome protein ATG8 and enhanced autophagic flux. We found that inhibition of fatty acid synthesis decreased monogalactosyldiacylglycerol abundance, increased lutein content, down-regulated photosynthesis, and increased the production of reactive oxygen species. Electron microscopy revealed a high degree of thylakoid membrane stacking in cerulenin-treated cells. Moreover, global transcriptomic analysis of these cells showed an up-regulation of genes encoding chloroplast proteins involved in protein folding and oxidative stress and the induction of major catabolic processes, including autophagy and proteasome pathways. Thus, our results uncovered a link between lipid metabolism, chloroplast integrity, and autophagy through a mechanism that involves the activation of a chloroplast quality control system.


Asunto(s)
Autofagia/efectos de los fármacos , Chlamydomonas reinhardtii/fisiología , Ácido Graso Sintasas/antagonistas & inhibidores , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Cerulenina/farmacología , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , Cloroplastos/efectos de los fármacos , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Retículo Endoplásmico/metabolismo , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Oxidativo , Fotosíntesis , Proteínas de Plantas/antagonistas & inhibidores , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
13.
J Cell Sci ; 129(5): 943-56, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26787743

RESUMEN

Ciliary axonemes and basal bodies were present in the last eukaryotic common ancestor and play crucial roles in sensing and responding to environmental cues. Peptidergic signaling, generally considered a metazoan innovation, is essential for organismal development and homeostasis. Peptidylglycine α-amidating monooxygenase (PAM) is crucial for the last step of bioactive peptide biosynthesis. However, identification of a complete PAM-like gene in green algal genomes suggests ancient evolutionary roots for bioactive peptide signaling. We demonstrate that the Chlamydomonas reinhardtii PAM gene encodes an active peptide-amidating enzyme (CrPAM) that shares key structural and functional features with the mammalian enzyme, indicating that components of the peptide biosynthetic pathway predate multicellularity. In addition to its secretory pathway localization, CrPAM localizes to cilia and tightly associates with the axonemal superstructure, revealing a new axonemal enzyme activity. This localization pattern is conserved in mammals, with PAM present in both motile and immotile sensory cilia. The conserved ciliary localization of PAM adds to the known signaling capabilities of the eukaryotic cilium and provides a potential mechanistic link between peptidergic signaling and endocrine abnormalities commonly observed in ciliopathies.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Cilios/enzimología , Transferasas de Grupos Nitrogenados/genética , Proteínas de Plantas/genética , Animales , Chlamydomonas reinhardtii/ultraestructura , Evolución Molecular , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Transferasas de Grupos Nitrogenados/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
14.
Proc Natl Acad Sci U S A ; 112(36): 11264-9, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26311849

RESUMEN

We acquired molecular-resolution structures of the Golgi within its native cellular environment. Vitreous Chlamydomonas cells were thinned by cryo-focused ion beam milling and then visualized by cryo-electron tomography. These tomograms revealed structures within the Golgi cisternae that have not been seen before. Narrow trans-Golgi lumina were spanned by asymmetric membrane-associated protein arrays that had ∼6-nm lateral periodicity. Subtomogram averaging showed that the arrays may determine the narrow central spacing of the trans-Golgi cisternae through zipper-like interactions, thereby forcing cargo to the trans-Golgi periphery. Additionally, we observed dense granular aggregates within cisternae and intracisternal filament bundles associated with trans-Golgi buds. These native in situ structures provide new molecular insights into Golgi architecture and function.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Algáceas/ultraestructura , Chlamydomonas reinhardtii/ultraestructura , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Aparato de Golgi/ultraestructura , Proteínas de la Membrana/ultraestructura , Modelos Anatómicos , Modelos Biológicos , Transporte de Proteínas , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
15.
Ecotoxicol Environ Saf ; 156: 75-86, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29533210

RESUMEN

Nanoparticles (NPs) are inevitably released into the aquatic environment for being widely used and may affect the toxicity of other contaminants already present in the environment, such as trace metals. However, the effects of NPs on the ecotoxicity of cadmium (Cd), a common environmental trace metal pollutant, are not well explored. In this study, effects of four widely used NPs TiO2 (n-TiO2), SiO2 (n-SiO2), Ag (n-Ag) and CdTe/CdS core/shell quantum dots (QD) on the toxicity of Cd to the freshwater algae Chlamydomonas reinhardtii were assessed respectively. Cd reduced the algae biomass, impaired the photosynthetic activities, and led to intracellular oxidative stress of algae. At non-toxic concentrations, both n-TiO2 (100 mg L-1) and n-SiO2 (400 mg L-1) attenuated the toxicity of Cd towards the algae for reducing the intracellular Cd contents, and the former was more pronounced. QD (0.5 mg L-1) increased the toxicity of Cd to algae, but n-Ag (0.2 mg L-1) had no significant influence on the Cd toxicity to algae. The microscopic observations on the ultrastructure of algae cells presented the same phenomena and n-TiO2, n-SiO2 aggregations were clearly observed outside the cell wall. Furthermore, the regulation of NPs to the Cd toxicity towards algae was related to the intracellular nitric oxide (NO), an important signaling molecule, rather than the phototaxis of algae. Above all, this study provided a basic understanding about the difference in joint toxicity of different kinds of NPs and Cd to aquatic organisms.


Asunto(s)
Cadmio/toxicidad , Chlamydomonas reinhardtii/efectos de los fármacos , Metales/farmacología , Puntos Cuánticos , Contaminantes del Agua/toxicidad , Compuestos de Cadmio/farmacología , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Interacciones Farmacológicas , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Dióxido de Silicio/farmacología , Plata/farmacología , Sulfuros/farmacología , Telurio/farmacología , Titanio/farmacología
16.
J Proteome Res ; 16(7): 2410-2418, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28534617

RESUMEN

Primary cilia are assembled and disassembled during cell cycle progression. During ciliary disassembly, ciliary axonemal microtubules (MTs) are depolymerized accompanied by extensive posttranslational protein modifications of ciliary proteins including protein phosphorylation, methylation, and ubiquitination. These events are hypothesized to involve transport of effectors or regulators into cilia at the time of ciliary disassembly from the cell body. To prove this hypothesis and identify new proteins involved in ciliary disassembly, we analyzed disassembling flagella in Chlamydomonas using comparative proteomics with TMT labeling. Ninety-one proteins were found to increase more than 1.4-fold in four replicates. The proteins of the IFT machinery not only increase but also exhibit stoichiometric changes. The other proteins that increase include signaling molecules, chaperones, and proteins involved in microtubule dynamics or stability. In particular, we have identified a ciliopathy protein C21orf2, the AAA-ATPase CDC48, that is involved in segregating polypeptides from large assemblies or cellular structures, FAP203 and FAP236, which are homologous to stabilizers of axonemal microtubules. Our data demonstrate that ciliary transport of effectors or regulators is one of the mechanisms underlying ciliary disassembly. Further characterization of the proteins identified will provide new insights into our understanding of ciliary disassembly and likely ciliopathy.


Asunto(s)
Proteínas Algáceas/genética , Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Flagelos/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Algáceas/metabolismo , Transporte Biológico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , Cilios/genética , Cilios/ultraestructura , Flagelos/genética , Flagelos/ultraestructura , Microscopía de Interferencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/ultraestructura , Proteómica/métodos , Transducción de Señal
17.
Biochim Biophys Acta Bioenerg ; 1858(5): 379-385, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28257778

RESUMEN

Photosynthetic organisms can thermally dissipate excess of absorbed energy in high-light conditions in a process known as non-photochemical quenching (NPQ). In the green alga Chlamydomonas reinhardtii this process depends on the presence of the light-harvesting protein LHCSR3, which is only expressed in high light. LHCSR3 has been shown to act as a quencher when associated with the Photosystem II supercomplex and to respond to pH changes, but the mechanism of quenching has not been elucidated yet. In this work we have studied the interaction between LHCSR3 and Photosystem II C2S2 supercomplexes by single particle electron microscopy. It was found that LHCSR3 predominantly binds at three different positions and that the CP26 subunit and the LHCII trimer of C2S2 supercomplexes are involved in binding, while we could not find evidences for a direct association of LHCSR3 with the PSII core. At all three locations LHCSR3 is present almost exclusively as a dimer.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Sitios de Unión , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , Transferencia de Energía , Luz , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/ultraestructura , Microscopía Electrónica/métodos , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/ultraestructura , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad
18.
Plant Physiol ; 170(2): 821-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26644506

RESUMEN

The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de la radiación , Chlamydomonas reinhardtii/ultraestructura , Luz , Modelos Biológicos , Complejo de Proteína del Fotosistema II/genética , Tilacoides/metabolismo , Tilacoides/efectos de la radiación , Tilacoides/ultraestructura
19.
Plant Physiol ; 170(3): 1216-34, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26704642

RESUMEN

Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Genes de Plantas , Prueba de Complementación Genética , Metabolismo de los Lípidos/genética , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Almidón/metabolismo
20.
Plant Physiol ; 172(3): 1494-1505, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27637747

RESUMEN

Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability.


Asunto(s)
Aclimatación/efectos de la radiación , Carbono/farmacología , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/efectos de la radiación , Luz , Aclimatación/efectos de los fármacos , Proteínas Algáceas/metabolismo , Carotenoides/metabolismo , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/ultraestructura , Modelos Biológicos , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Pigmentos Biológicos/metabolismo , Tilacoides/efectos de los fármacos , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA