Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Environ Microbiol ; 26(2): e16591, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38387883

RESUMEN

The ecological success of purple sulfur bacteria (PSB) is linked to their ability to collect near-infrared solar energy by membrane-integrated, pigment-protein photocomplexes. These include a Core complex containing both light-harvesting 1 (LH1) and reaction centre (RC) components (called the LH1-RC photocomplex) present in all PSB and a peripheral light-harvesting complex present in most but not all PSB. In research to explain the unusual absorption properties of the thermophilic purple sulfur bacterium Thermochromatium tepidum, Ca2+ was discovered bound to LH1 polypeptides in its LH1-RC; further work showed that calcium controls both the thermostability and unusual spectrum of the Core complex. Since then, Ca2+ has been found in the LH1-RC photocomplexes of several other PSB, including mesophilic species, but not in the LH1-RC of purple non-sulfur bacteria. Here we focus on four species of PSB-two thermophilic and two mesophilic-and describe how Ca2+ is integrated into and affects their photosynthetic machinery and why this previously overlooked divalent metal is a key nutrient for their ecological success.


Asunto(s)
Calcio , Chromatiaceae , Calcio/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Péptidos/metabolismo , Chromatiaceae/genética , Chromatiaceae/metabolismo
2.
Nature ; 556(7700): 209-213, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618814

RESUMEN

Light-harvesting complex 1 (LH1) and the reaction centre (RC) form a membrane-protein supercomplex that performs the primary reactions of photosynthesis in purple photosynthetic bacteria. The structure of the LH1-RC complex can provide information on the arrangement of protein subunits and cofactors; however, so far it has been resolved only at a relatively low resolution. Here we report the crystal structure of the calcium-ion-bound LH1-RC supercomplex of Thermochromatium tepidum at a resolution of 1.9 Å. This atomic-resolution structure revealed several new features about the organization of protein subunits and cofactors. We describe the loop regions of RC in their intact states, the interaction of these loop regions with the LH1 subunits, the exchange route for the bound quinone QB with free quinone molecules, the transport of free quinones between the inside and outside of the LH1 ring structure, and the detailed calcium-ion-binding environment. This structure provides a solid basis for the detailed examination of the light reactions that occur during bacterial photosynthesis.


Asunto(s)
Chromatiaceae/química , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Benzoquinonas/metabolismo , Sitios de Unión , Calcio/metabolismo , Chromatiaceae/metabolismo , Cristalografía por Rayos X , Lípidos , Modelos Moleculares , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34272281

RESUMEN

Aromatic carotenoid-derived hydrocarbon biomarkers are ubiquitous in ancient sediments and oils and are typically attributed to anoxygenic phototrophic green sulfur bacteria (GSB) and purple sulfur bacteria (PSB). These biomarkers serve as proxies for the environmental growth requirements of PSB and GSB, namely euxinic waters extending into the photic zone. Until now, prevailing models for environments supporting anoxygenic phototrophs include microbial mats, restricted basins and fjords with deep chemoclines, and meromictic lakes with shallow chemoclines. However, carotenoids have been reported in ancient open marine settings for which there currently are no known modern analogs that host GSB and PSB. The Benguela Upwelling System offshore Namibia, known for exceptionally high primary productivity, is prone to recurrent toxic gas eruptions whereupon hydrogen sulfide emanates from sediments into the overlying water column. These events, visible in satellite imagery as water masses clouded with elemental sulfur, suggest that the Benguela Upwelling System may be capable of supporting GSB and PSB. Here, we compare distributions of biomarkers in the free and sulfur-bound organic matter of Namibian shelf sediments. Numerous compounds-including acyclic isoprenoids, steranes, triterpanes, and carotenoids-were released from the polar lipid fractions upon Raney nickel desulfurization. The prevalence of isorenieratane and ß-isorenieratane in sampling stations along the shelf verified anoxygenic photosynthesis by low-light-adapted, brown-colored GSB in this open marine setting. Renierapurpurane was also present in the sulfur-bound carotenoids and was typically accompanied by lower abundances of renieratane and ß-renierapurpurane, thereby identifying cyanobacteria as an additional aromatic carotenoid source.


Asunto(s)
Carotenoides/metabolismo , Chlorobi/metabolismo , Chromatiaceae/metabolismo , Sedimentos Geológicos/análisis , Sulfuros/análisis , Biomarcadores/análisis , Biomarcadores/metabolismo , Carotenoides/análisis , Ecosistema , Sedimentos Geológicos/microbiología , Namibia , Fotosíntesis , Agua de Mar/análisis , Agua de Mar/microbiología , Sulfuros/metabolismo
4.
Photosynth Res ; 157(1): 13-20, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36930432

RESUMEN

Structural information on the circular arrangements of repeating pigment-polypeptide subunits in antenna proteins of purple photosynthetic bacteria is a clue to a better understanding of molecular mechanisms for the ring-structure formation and efficient light harvesting of such antennas. Here, we have analyzed the ring structure of light-harvesting complex 2 (LH2) from the thermophilic purple bacterium Thermochromatium tepidum (tepidum-LH2) by atomic force microscopy. The circular arrangement of the tepidum-LH2 subunits was successfully visualized in a lipid bilayer. The average top-to-top distance of the ring structure, which is correlated with the ring size, was 4.8 ± 0.3 nm. This value was close to the top-to-top distance of the octameric LH2 from Phaeospirillum molischianum (molischianum-LH2) by the previous analysis. Gaussian distribution of the angles of the segments consisting of neighboring subunits in the ring structures of tepidum-LH2 yielded a median of 44°, which corresponds to the angle for the octameric circular arrangement (45°). These results indicate that tepidum-LH2 has a ring structure consisting of eight repeating subunits. The coincidence of an octameric ring structure of tepidum-LH2 with that of molischianum-LH2 is consistent with the homology of amino acid sequences of the polypeptides between tepidum-LH2 and molischianum-LH2.


Asunto(s)
Chromatiaceae , Complejos de Proteína Captadores de Luz , Microscopía de Fuerza Atómica , Complejos de Proteína Captadores de Luz/metabolismo , Chromatiaceae/metabolismo , Proteobacteria/metabolismo , Péptidos/metabolismo , Proteínas Bacterianas/metabolismo
5.
Mar Drugs ; 20(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35200615

RESUMEN

Quorum sensing (QS) can regulate the pathogenicity of bacteria and the production of some virulence factors. It is a promising target for screening to find anti-virulence agents in the coming post-antibiotics era. Cyclo (L-Trp-L-Ser), one variety of cyclic dipeptides (CDPs), isolated from a marine bacterium Rheinheimera aquimaris, exhibited anti-QS activity against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Unlike the CDPs composed of phenylalanine or tyrosine, the anti-QS activity has been widely studied; however, cyclo (L-Trp-L-Ser) and derivatives, containing one tryptophan unit and one non-aromatic amino acid, have not been systematically explored. Herein, the cyclo (L-Trp-L-Ser) and seven derivatives were synthesized and evaluated. All tryptophane-contained CDPs were able to decrease the production of violacein in C.violaceum CV026 and predicted as binding within the same pocket of receptor protein CviR, but in lower binding energy compared with the natural ligand C6HSL. As for P. aeruginosa PAO1, owning more complicated QS systems, these CDPs also exhibited inhibitory effects on pyocyanin production, swimming motility, biofilm formation, and adhesion. These investigations suggested a promising way to keep the tryptophan untouched and make modifications on the non-aromatic unit to increase the anti-QS activity and decrease the cytotoxicity, thus developing a novel CDP-based anti-virulence agent.


Asunto(s)
Antibacterianos/farmacología , Dipéptidos/farmacología , Percepción de Quorum/efectos de los fármacos , Triptófano/química , Células A549 , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Biopelículas/efectos de los fármacos , Chromatiaceae/metabolismo , Chromobacterium/efectos de los fármacos , Dipéptidos/química , Dipéptidos/aislamiento & purificación , Humanos , Ratones , Células 3T3 NIH , Pseudomonas aeruginosa/efectos de los fármacos , Virulencia/efectos de los fármacos
6.
Biochemistry ; 60(36): 2685-2690, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34448581

RESUMEN

Light-harvesting complex 1 (LH1) of the thermophilic purple sulfur bacterium Thermochromatium tepidum can be expressed in the purple non-sulfur bacterium Rhodobacter sphaeroides and forms a functional RC-LH1 complex with the native Rba. sphaeroides reaction center (Nagashima, K. V. P., et al. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10906-10911). Although there is a large uphill energy gap between Tch. tepidum LH1 and the Rba. sphaeroides RC in this chimeric complex, it has been shown that light energy can be transferred, consistent with that seen in the native Rba. sphaeroides RC-LH1 complex. In this study, the contribution of this chimeric complex to growth and photosynthetic energy conversion in the hybrid organism was quantified. The mutant synthesizing this chimeric complex was grown phototrophically under 940 nm light-emitting diode (LED) light preferentially absorbed by Tch. tepidum LH1 and showed faster growth at low intensities of this wavelength than both a mutant strain of Rba. sphaeroides lacking LH2 and a mutant lacking all light-harvesting complexes. When grown with 850 nm LED light, the strain containing the native Rba. sphaeroides LH1-RC grew faster than the chimeric strain. Electron transfer from the RC to the membrane-integrated cytochrome bc1 complex was also estimated by flash-induced absorption changes in heme b. The rate of ubiquinone transport through the LH1 ring structure in the chimeric strain was virtually the same as that in native Rba. sphaeroides. We conclude that Tch. tepidum LH1 can perform the physiological functions of native LH1 in Rba. sphaeroides.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chromatiaceae/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Sitios de Unión , Transporte de Electrón , Metabolismo Energético , Ingeniería Genética/métodos , Fotosíntesis
7.
Proteins ; 88(2): 251-259, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31365157

RESUMEN

Perdeuteration in neutron crystallography is an effective method for determining the positions of hydrogen atoms in proteins. However, there is shortage of evidence that the high-resolution details of perdeuterated proteins are consistent with those of the nondeuterated proteins. In this study, we determined the X-ray structure of perdeuterated high-potential iron-sulfur protein (HiPIP) at a high resolution of 0.85 å resolution. The comparison of the nondeuterated and perdeuterated structures of HiPIP revealed slight differences between the two structures. The spectroscopic and spectroelectrochemical studies also showed that perdeuterated HiPIP has approximately the same characteristics as nondeuterated HiPIP. These results further emphasize the suitability of using perdeuterated proteins in the high-resolution neutron crystallography.


Asunto(s)
Proteínas Bacterianas/química , Chromatiaceae/metabolismo , Deuterio/química , Proteínas Hierro-Azufre/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Conformación Proteica , Dicroismo Circular , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Neutrones
8.
Environ Microbiol ; 22(2): 783-795, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31854015

RESUMEN

Dissimilatory sulphite reductase DsrAB occurs in sulphate/sulphite-reducing prokaryotes, in sulphur disproportionators and also in sulphur oxidizers, where it functions in reverse. Predictions of physiological traits in metagenomic studies relying on the presence of dsrAB, other dsr genes or combinations thereof suffer from the lack of information on crucial Dsr proteins. The iron-sulphur flavoprotein DsrL is an example of this group. It has a documented essential function during sulphur oxidation and was recently also found in some metagenomes of probable sulphate and sulphite reducers. Here, we show that DsrL and reverse acting rDsrAB can form a complex and are copurified from the phototrophic sulphur oxidizer Allochromatium vinosum. Recombinant DsrL exhibits NAD(P)H:acceptor oxidoreductase activity with a strong preference for NADH over NADPH. In vitro, the rDsrABL complex effectively catalyses NADH-dependent sulphite reduction, which is strongly enhanced by the sulphur-binding protein DsrC. Our work reveals NAD+ as suitable in vivo electron acceptor for sulphur oxidation in organisms operating the rDsr pathway and points to reduced nicotinamide adenine dinucleotides as electron donors for sulphite reduction in sulphate/sulphite-reducing prokaryotes that contain DsrL. In addition, dsrL cannot be used as a marker distinguishing sulphate/sulphite reducers and sulphur oxidizers in metagenomic studies without further analysis.


Asunto(s)
Chromatiaceae/metabolismo , Hidrogenosulfito Reductasa/metabolismo , NAD/metabolismo , Sulfatos/metabolismo , Sulfitos/metabolismo , Proteínas Bacterianas/metabolismo , Transporte de Electrón , Electrones , NADP/metabolismo , Oxidación-Reducción , Azufre/metabolismo
9.
Photosynth Res ; 145(2): 83-96, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32430765

RESUMEN

All purple photosynthetic bacteria contain RC-LH1 'Core' complexes. The structure of this complex from Rhodobacter sphaeroides, Rhodopseudomonas palustris and Thermochromatium tepidum has been solved using X-ray crystallography. Recently, the application of single particle cryo-EM has revolutionised structural biology and the structure of the RC-LH1 'Core' complex from Blastochloris viridis has been solved using this technique, as well as the complex from the non-purple Chloroflexi species, Roseiflexus castenholzii. It is apparent that these structures are variations on a theme, although with a greater degree of structural diversity within them than previously thought. Furthermore, it has recently been discovered that the only phototrophic representative from the phylum Gemmatimonadetes, Gemmatimonas phototrophica, also contains a RC-LH1 'Core' complex. At present only a low-resolution EM-projection map exists but this shows that the Gemmatimonas phototrophica complex contains a double LH1 ring. This short review compares these different structures and looks at the functional significance of these variations from two main standpoints: energy transfer and quinone exchange.


Asunto(s)
Chromatiaceae/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Rhodopseudomonas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoquinonas/metabolismo , Chromatiaceae/genética , Transferencia de Energía , Variación Genética , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Modelos Moleculares , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Conformación Proteica , Rhodobacter sphaeroides/genética , Rhodopseudomonas/genética , Relación Estructura-Actividad
10.
Biochemistry (Mosc) ; 85(7): 773-780, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33040721

RESUMEN

Phytoene and phytofluene - uncolored C40 carotenoids with short chain of conjugated double bonds (3 and 5, respectively) - are known to be universal precursors in biosynthesis of colored carotenoids in photosynthesizing organisms. It is commonly recognized that C40 carotenoids are photoprotectors of cells and tissues. We have shown that phytofluene is an exception to this rule. By measuring photosensitized phosphorescence of singlet oxygen (1O2) we found out that phytofluene was very effective photosensitizer of 1O2 formation in aerated solutions under UVA irradiation (quantum yield of 85 ± 5%), whereas phytoene was almost inactive in this process. It was demonstrated that both carotenoids quench singlet oxygen in the dark. The obtained quenching rate constants [(4 ± 1) × 106 M-1·s-1 for phytoene and (2 ± 0.5) × 107 M-1·s-1 for phytofluene] were smaller than the rate constant of the diffusion-controlled reactions by 3-4 orders of magnitude. Thus, both carotenoids displayed rather weak protector properties. Moreover, phytofluene due to its high photosensitizing activity might be considered as a promoter of cell photodamage and a promising UVA photosensitizer for medical purposes.


Asunto(s)
Carotenoides/química , Carotenoides/metabolismo , Oxígeno Singlete/química , Chromatiaceae/metabolismo , Ectothiorhodospira/metabolismo , Oxígeno/metabolismo , Fotoquímica/métodos , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(41): 10906-10911, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28935692

RESUMEN

The native core light-harvesting complex (LH1) from the thermophilic purple phototrophic bacterium Thermochromatium tepidum requires Ca2+ for its thermal stability and characteristic absorption maximum at 915 nm. To explore the role of specific amino acid residues of the LH1 polypeptides in Ca-binding behavior, we constructed a genetic system for heterologously expressing the Tch. tepidum LH1 complex in an engineered Rhodobacter sphaeroides mutant strain. This system contained a chimeric pufBALM gene cluster (pufBA from Tch. tepidum and pufLM from Rba. sphaeroides) and was subsequently deployed for introducing site-directed mutations on the LH1 polypeptides. All mutant strains were capable of phototrophic (anoxic/light) growth. The heterologously expressed Tch. tepidum wild-type LH1 complex was isolated in a reaction center (RC)-associated form and displayed the characteristic absorption properties of this thermophilic phototroph. Spheroidene (the major carotenoid in Rba. sphaeroides) was incorporated into the Tch. tepidum LH1 complex in place of its native spirilloxanthins with one carotenoid molecule present per αß-subunit. The hybrid LH1-RC complexes expressed in Rba. sphaeroides were characterized using absorption, fluorescence excitation, and resonance Raman spectroscopy. Site-specific mutagenesis combined with spectroscopic measurements revealed that α-D49, ß-L46, and a deletion at position 43 of the α-polypeptide play critical roles in Ca binding in the Tch. tepidum LH1 complex; in contrast, α-N50 does not participate in Ca2+ coordination. These findings build on recent structural data obtained from a high-resolution crystallographic structure of the membrane integrated Tch. tepidum LH1-RC complex and have unambiguously identified the location of Ca2+ within this key antenna complex.


Asunto(s)
Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Chromatiaceae/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Carotenoides/metabolismo , Chromatiaceae/genética , Chromatiaceae/crecimiento & desarrollo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Modelos Moleculares , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Unión Proteica , Conformación Proteica , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/crecimiento & desarrollo , Relación Estructura-Actividad
12.
Environ Microbiol ; 21(10): 3896-3908, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31299137

RESUMEN

Sulphide-driven anoxygenic photosynthesis is an ancient microbial metabolism that contributes significantly to inorganic carbon fixation in stratified, sulphidic water bodies. Methods commonly applied to quantify inorganic carbon fixation by anoxygenic phototrophs, however, cannot resolve the contributions of distinct microbial populations to the overall process. We implemented a straightforward workflow, consisting of radioisotope labelling and flow cytometric cell sorting based on the distinct autofluorescence of bacterial photopigments, to discriminate and quantify contributions of co-occurring anoxygenic phototrophic populations to in situ inorganic carbon fixation in environmental samples. This allowed us to assign 89.3% ± 7.6% of daytime inorganic carbon fixation by anoxygenic phototrophs in Lake Rogoznica (Croatia) to an abundant chemocline-dwelling population of green sulphur bacteria (dominated by Chlorobium phaeobacteroides), whereas the co-occurring purple sulphur bacteria (Halochromatium sp.) contributed only 1.8% ± 1.4%. Furthermore, we obtained two metagenome assembled genomes of green sulphur bacteria and one of a purple sulphur bacterium which provides the first genomic insights into the genus Halochromatium, confirming its high metabolic flexibility and physiological potential for mixo- and heterotrophic growth.


Asunto(s)
Chlorobium/metabolismo , Chromatiaceae/metabolismo , Lagos/microbiología , Sulfuros/metabolismo , Azufre/metabolismo , Ciclo del Carbono , Chlorobium/aislamiento & purificación , Chromatiaceae/aislamiento & purificación , Croacia , Fotosíntesis , Agua de Mar/microbiología
13.
Environ Microbiol ; 21(5): 1611-1626, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30689286

RESUMEN

Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also oxidize sulfide with nitrate and oxygen, little is known about the prevalence of this chemolithotrophic lifestyle in the environment. In this study, we investigated the role of these phototrophs in light-independent sulfide removal in the chemocline of Lake Cadagno. Our temporally resolved, high-resolution chemical profiles indicated that dark sulfide oxidation was coupled to high oxygen consumption rates of ~9 µM O2 ·h-1 . Single-cell analyses of lake water incubated with 13 CO2 in the dark revealed that Chromatium okenii was to a large extent responsible for aerobic sulfide oxidation and it accounted for up to 40% of total dark carbon fixation. The genome of Chr. okenii reconstructed from the Lake Cadagno metagenome confirms its capacity for microaerophilic growth and provides further insights into its metabolic capabilities. Moreover, our genomic and single-cell data indicated that other PSB grow microaerobically in these apparently anoxic waters. Altogether, our observations suggest that aerobic respiration may not only play an underappreciated role in anoxic environments but also that organisms typically considered strict anaerobes may be involved.


Asunto(s)
Chromatiaceae/metabolismo , Lagos/microbiología , Oxígeno/metabolismo , Sulfuros/metabolismo , Aerobiosis , Chromatiaceae/genética , Chromatiaceae/crecimiento & desarrollo , Chromatiaceae/efectos de la radiación , Lagos/análisis , Luz , Oxidación-Reducción , Oxígeno/análisis , Procesos Fototróficos
14.
Photosynth Res ; 139(1-3): 281-293, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29691716

RESUMEN

The thermophilic purple sulfur bacterium Thermochromatium tepidum possesses four main water-soluble redox proteins involved in the electron transfer behavior. Crystal structures have been reported for three of them: a high potential iron-sulfur protein, cytochrome c', and one of two low-potential cytochrome c552 (which is a flavocytochrome c) have been determined. In this study, we purified another low-potential cytochrome c552 (LPC), determined its N-terminal amino acid sequence and the whole gene sequence, characterized it with absorption and electron paramagnetic spectroscopy, and solved its high-resolution crystal structure. This novel cytochrome was found to contain five c-type hemes. The overall fold of LPC consists of two distinct domains, one is the five heme-containing domain and the other one is an Ig-like domain. This provides a representative example for the structures of multiheme cytochromes containing an odd number of hemes, although the structures of multiheme cytochromes with an even number of hemes are frequently seen in the PDB database. Comparison of the sequence and structure of LPC with other proteins in the databases revealed several characteristic features which may be important for its functioning. Based on the results obtained, we discuss the possible intracellular function of this LPC in Tch. tepidum.


Asunto(s)
Chromatiaceae/metabolismo , Grupo Citocromo c/química , Grupo Citocromo c/metabolismo , Hemo/química , Hemo/metabolismo , Cristalografía por Rayos X , Citocromos c/química , Citocromos c/metabolismo , Transporte de Electrón/genética , Transporte de Electrón/fisiología
15.
Antonie Van Leeuwenhoek ; 112(5): 711-721, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30465324

RESUMEN

A wide range of bacterial species are able to induce calcium carbonate precipitation. Using our own laboratory-preserved strains, we have newly discovered that Ensifer sp. MY11e, Microbacterium sp. TMd9a1, Paeniglutamicibacter sp. MSa1a, Pseudomonas sp. GTc3, and Rheinheimera sp. ATWe6 can induce the formation of calcite crystals on an agar medium. Type strains of their closely related species (Ensifer adhaerens, Microbacterium testaceum, Paeniglutamicibacter kerguelensis, Pseudomonas protegens, and Rheinheimera texasensis) could also induce calcite formation. Although the initial pH value of the agar medium was 6.1, the pH of the agar media containing calcite, induced by cultivation of the 10 bacterial strains, increased to 8.0-8.4. The ammonification (oxidative deamination) of amino acids may been responsible for this increase in pH. The crystals formed both on and around the bacterial colonies. Furthermore, when these strains (excepting two Microbacterium strains) were cultivated on a cellulose acetate membrane filter (0.20 µm pore size) resting on the surface of the agar medium (i.e., in the membrane filter culture method), the crystals formed on the agar medium separate from the bacterial cells. These results indicate that the bacterial cells did not necessarily become nucleation sites for these crystals. We also investigated whether the studied strains could be applied to the biocementation of sand, and found that only two Ensifer strains were able to form large sand lumps.


Asunto(s)
Actinomycetales/metabolismo , Arthrobacter/metabolismo , Carbonato de Calcio/metabolismo , Chromatiaceae/metabolismo , Ortópteros/metabolismo , Pseudomonas/metabolismo , Actinomycetales/química , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Arthrobacter/química , Carbonato de Calcio/química , Chromatiaceae/química , Concentración de Iones de Hidrógeno , Ortópteros/química , Oxidación-Reducción , Pseudomonas/química
16.
Dokl Biochem Biophys ; 485(1): 135-137, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31201634

RESUMEN

Singlet fission of carotenoid excitation is studied in purple phototrophic bacterium Thermochromatium tepidum. Using time-resolved EPR and magnetic field-induced modulation of fluorescence yield it is shown that the concept of intramolecular excitation fission developed in a number of publications is not supported by the experimental results. The obtained data favor intermolecular fission mechanism involving two carotenoid molecules.


Asunto(s)
Carotenoides/química , Chromatiaceae/química , Fluorescencia , Carotenoides/metabolismo , Chromatiaceae/metabolismo , Espectroscopía de Resonancia por Spin del Electrón
17.
Biochemistry ; 57(30): 4496-4503, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29965735

RESUMEN

The light-harvesting 1 reaction center (LH1-RC) complex from Thermochromatium tepidum exhibits a largely red-shifted LH1 Q y absorption at 915 nm due to binding of Ca2+, resulting in an "uphill" energy transfer from LH1 to the reaction center (RC). In a recent study, we developed a heterologous expression system (strain TS2) to construct a functional hybrid LH1-RC with LH1 from Tch. tepidum and the RC from Rhodobacter sphaeroides [Nagashima, K. V. P., et al. (2017) Proc. Natl. Acad. Sci. U. S. A. 114, 10906]. Here, we present detailed characterizations of the hybrid LH1-RC from strain TS2. Effects of metal cations on the phototrophic growth of strain TS2 revealed that Ca2+ is an indispensable element for its growth, which is also true for Tch. tepidum but not for Rba. sphaeroides. The thermal stability of the TS2 LH1-RC was strongly dependent on Ca2+ in a manner similar to that of the native Tch. tepidum, but interactions between the heterologous LH1 and RC became relatively weaker in strain TS2. A Fourier transform infrared analysis demonstrated that the Ca2+-binding site of TS2 LH1 was similar but not identical to that of Tch. tepidum. Steady-state and time-resolved fluorescence measurements revealed that the uphill energy transfer rate from LH1 to the RC was related to the energy gap in an order of Rba. sphaeroides, Tch. tepidum, and strain TS2; however, the quantum yields of LH1 fluorescence did not exhibit such a correlation. On the basis of these findings, we discuss the roles of Ca2+, interactions between LH1 and the RC from different species, and the uphill energy transfer mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chromatiaceae/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Calcio/metabolismo , Chromatiaceae/química , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Agregado de Proteínas , Unión Proteica , Estabilidad Proteica , Rhodobacter sphaeroides/química
18.
Photosynth Res ; 135(1-3): 23-31, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28493058

RESUMEN

The light-harvesting 1 reaction center (LH1-RC) complex in the thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum binds Ca ions as cofactors, and Ca-binding is largely involved in its characteristic Q y absorption at 915 nm and enhanced thermostability. Ca2+ can be biosynthetically replaced by Sr2+ in growing cultures of Tch. tepidum. However, the resulting Sr2+-substituted LH1-RC complexes in such cells do not display the absorption maximum and thermostability of those from Ca2+-grown cells, signaling that inherent structural differences exist in the LH1 complexes between the Ca2+- and Sr2+-cultured cells. In this study, we examined the effects of the biosynthetic Sr2+-substitution and limited proteolysis on the spectral properties and thermostability of the Tch. tepidum LH1-RC complex. Preferential truncation of two consecutive, positively charged Lys residues at the C-terminus of the LH1 α-polypeptide was observed for the Sr2+-cultured cells. A proportion of the truncated LH1 α-polypeptide increased during repeated subculturing in the Sr2+-substituted medium. This result suggests that the truncation is a biochemical adaptation to reduce the electrostatic interactions and/or steric repulsion at the C-terminus when Sr2+ substitutes for Ca2+ in the LH1 complex. Limited proteolysis of the native Ca2+-LH1 complex with lysyl protease revealed selective truncations at the Lys residues in both C- and N-terminal extensions of the α- and ß-polypeptides. The spectral properties and thermostability of the partially digested native LH1-RC complexes were similar to those of the biosynthetically Sr2+-substituted LH1-RC complexes in their Ca2+-bound forms. Based on these findings, we propose that the C-terminal domain of the LH1 α-polypeptide plays important roles in retaining proper structure and function of the LH1-RC complex in Tch. tepidum.


Asunto(s)
Chromatiaceae/metabolismo , Complejos de Proteína Captadores de Luz/química , Péptidos/química , Estroncio/farmacología , Secuencia de Aminoácidos , Vías Biosintéticas/efectos de los fármacos , Células Cultivadas , Complejos de Proteína Captadores de Luz/metabolismo , Péptidos/metabolismo , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura
19.
Mar Drugs ; 16(8)2018 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-30081558

RESUMEN

The production of secondary metabolites by a new isolate of the purple sulfur bacterium Allochromatium vinosum, which had shown antibiotic activities during a preliminary study, revealed the production of several metabolites. Growth conditions suitable for the production of one of the compounds shown in the metabolite profile were established and compound 1 was purified. The molecular formula of compound 1 (C20H28O2) was determined by high resolution mass spectra, and its chemical structure by means of spectroscopic methods. The evaluation of these data revealed that the structure of the compound was identical to dehydroabietic acid, a compound known to be characteristically produced by conifer trees, but so far not known from bacteria, except cyanobacteria. The purified substance showed weak antibiotic activities against Bacillus subtilis and Staphylococcus lentus with IC50 values of 70.5 µM (±2.9) and 57.0 µM (±3.3), respectively.


Asunto(s)
Abietanos/metabolismo , Antibacterianos/metabolismo , Organismos Acuáticos/metabolismo , Chromatiaceae/metabolismo , Abietanos/aislamiento & purificación , Abietanos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Concentración 50 Inhibidora , Oxidación-Reducción , Staphylococcus/efectos de los fármacos
20.
Dokl Biochem Biophys ; 483(1): 321-325, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30607730

RESUMEN

Seven different carotenoids with the number of conjugated double bonds (N) from 5 to 11 were incorporated in vitro into carotenoidless complexes LH2 of the sulfur bacterium Allochromatium vinosum strain MSU. The efficiency of their incorporation varied from 4 to 99%. The influence of N in the carotenoid molecules on the energy transfer efficiency from these pigments to bacteriochlorophyll (BChl) in the modified LH2 complexes was studied for the first time. The highest level of energy transfer was recorded for rhodopin (N = 11) and neurosporene (N = 7) (37 and 51%, respectively). In the other carotenoids, this parameter ranged from 11 to 33%. In the LH2 complexes studied, we found no direct correlation between the decrease in N in carotenoids and increase in the energy transfer efficiency from these pigments to BChl.


Asunto(s)
Proteínas Bacterianas/química , Bacterioclorofilas/química , Chromatiaceae/química , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Chromatiaceae/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA