Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cell ; 175(1): 146-158.e15, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30100182

RESUMEN

Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Hierro/metabolismo , Virulencia/fisiología , Animales , Infecciones Asintomáticas , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidad , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/microbiología , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Femenino , Resistencia a la Insulina/fisiología , Intestino Delgado/microbiología , Hierro/farmacología , Dosificación Letal Mediana , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos DBA
2.
Nature ; 628(8006): 180-185, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480886

RESUMEN

The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.


Asunto(s)
Citrobacter rodentium , Mucosa Intestinal , Receptores de Dopamina D2 , Triptófano , Animales , Femenino , Humanos , Masculino , Ratones , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carga Bacteriana/efectos de los fármacos , Citrobacter rodentium/crecimiento & desarrollo , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidad , Suplementos Dietéticos , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/patogenicidad , Escherichia coli O157/fisiología , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Receptores de Dopamina D2/metabolismo , Triptófano/administración & dosificación , Triptófano/metabolismo , Triptófano/farmacología
3.
Cell ; 150(3): 606-19, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22819539

RESUMEN

Systemic infections with Gram-negative bacteria are characterized by high mortality rates due to the "sepsis syndrome," a widespread and uncontrolled inflammatory response. Though it is well recognized that the immune response during Gram-negative bacterial infection is initiated after the recognition of endotoxin by Toll-like receptor 4, the molecular mechanisms underlying the detrimental inflammatory response during Gram-negative bacteremia remain poorly defined. Here, we identify a TRIF pathway that licenses NLRP3 inflammasome activation by all Gram-negative bacteria. By engaging TRIF, Gram-negative bacteria activate caspase-11. TRIF activates caspase-11 via type I IFN signaling, an event that is both necessary and sufficient for caspase-11 induction and autoactivation. Caspase-11 subsequently synergizes with the assembled NLRP3 inflammasome to regulate caspase-1 activation and leads to caspase-1-independent cell death. These events occur specifically during infection with Gram-negative, but not Gram-positive, bacteria. The identification of TRIF as a regulator of caspase-11 underscores the importance of TLRs as master regulators of inflammasomes during Gram-negative bacterial infection.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Caspasas/metabolismo , Citrobacter rodentium/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Inflamasomas/metabolismo , Interferones/metabolismo , Animales , Proteínas Portadoras/metabolismo , Caspasas Iniciadoras , Citrobacter rodentium/inmunología , Escherichia coli Enterohemorrágica/inmunología , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal
4.
Biochem Biophys Res Commun ; 669: 103-112, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37269592

RESUMEN

Tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role in the induction of inflammatory responses not only in innate immune cells but also in non-immune cells, leading to the activation of adaptive immunity. Signal transduction mediated by TRAF6, along with its upstream molecule MyD88 in intestinal epithelial cells (IECs) is crucial for the maintenance of mucosal homeostasis following inflammatory insult. The IEC-specific TRAF6-deficient (TRAF6ΔIEC) and MyD88-deficient (MyD88ΔIEC) mice exhibit increased susceptibility to DSS-induced colitis, emphasizing the critical role of this pathway. Moreover, MyD88 also plays a protective role in Citrobacter rodentium (C. rodentium) infection-induced colitis. However, its pathological role of TRAF6 in infectious colitis remains unclear. To investigate the site-specific roles of TRAF6 in response to enteric bacterial pathogens, we infected TRAF6ΔIEC and dendritic cell (DC)-specific TRAF6-deficient (TRAF6ΔDC) mice with C. rodentium and found that the pathology of infectious colitis was exacerbated with significantly decreased survival rates in TRAF6ΔDC mice, but not in TRAF6ΔIEC mice, compared to those in control mice. TRAF6ΔDC mice showed increased bacterial burdens, marked disruption of epithelial and mucosal structures with increased infiltration of neutrophils and macrophages, and elevated cytokine levels in the colon at the late stages of infection. The frequencies of IFN-γ producing Th1 cells and IL-17A producing Th17 cells in the colonic lamina propria were significantly reduced in TRAF6ΔDC mice. Finally, we demonstrated that TRAF6-deficient DCs failed to produce IL-12 and IL-23 in response to C. rodentium stimulation, and to induce both Th1 and Th17 cells in vitro. Thus, TRAF6 signaling in DCs, but not in IECs, protects against colitis induced by C. rodentium infection by producing IL-12 and IL-23 that induce Th1 and Th17 responses in the gut.


Asunto(s)
Citrobacter rodentium , Colitis , Animales , Ratones , Citrobacter rodentium/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Células Th17 , Colitis/patología , Transducción de Señal , Mucosa Intestinal/metabolismo , Colon/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Ratones Endogámicos C57BL , Células TH1/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(22): 12387-12393, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32409599

RESUMEN

Microbiota, host and dietary metabolites/signals compose the rich gut chemical environment, which profoundly impacts virulence of enteric pathogens. Enterohemorrhagic Escherichia coli (EHEC) engages a syringe-like machinery named type-III secretion system (T3SS) to inject effectors within host cells that lead to intestinal colonization and disease. We previously conducted a high-throughput screen to identify metabolic pathways that affect T3SS expression. Here we show that in the presence of arginine, the arginine sensor ArgR, identified through this screen, directly activates expression of the genes encoding the T3SS. Exogenously added arginine induces EHEC virulence gene expression in vitro. Congruently, a mutant deficient in arginine transport (ΔartP) had decreased virulence gene expression. ArgR also augments murine disease caused by Citrobacter rodentium, which is a murine pathogen extensively employed as a surrogate animal model for EHEC. The source of arginine sensed by C. rodentium is not dietary. At the peak of C. rodentium infection, increased arginine concentration in the colon correlated with down-regulation of the host SLC7A2 transporter. This increase in the concentration of colonic arginine promotes virulence gene expression in C. rodentium Arginine is an important modulator of the host immune response to pathogens. Here we add that arginine also directly impacts bacterial virulence. These findings suggest that a delicate balance between host and pathogen responses to arginine occur during disease progression.


Asunto(s)
Citrobacter rodentium/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/microbiología , Regulación Bacteriana de la Expresión Génica , Animales , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidad , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Humanos , Ratones , Ratones Endogámicos C3H , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
Clin Exp Immunol ; 204(3): 361-372, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33662140

RESUMEN

Dedicator of cytokinesis 2 (Dock2), an atypical guanine exchange factor, is specifically expressed on immune cells and mediates cell adhesion and migration by activating Rac and regulates actin cytoskeleton remodeling. It plays a crucial role in the migration, formation of immune synapses, cell proliferation, activation of T and B lymphocytes and chemotaxis of pDCs and neutrophils. However, in-vivo physiological functions of Dock2 have been relatively seldom studied. Our previous studies showed that Dock2-/- mice were highly susceptible to colitis induced by Citrobacter rodentium infection, and in early infection, Dock2-/- mice had defects in macrophage migration. However, the specific roles of Dock2 in the migration and functions of macrophages are not clear. In this study, we found that the expression of chemokines such as chemokine (C-C motif) ligand (CCL)4 and CCL5 and chemokine receptors such as chemokine (C-C motif) receptor (CCR)4 and CCR5 in bone marrow-derived macrophages (BMDM) of Dock2-/- mice decreased after infection, which were supported by the in-vivo infection experimental results; the Transwell experiment results showed that Dock2-/- BMDM had a defect in chemotaxis. The bacterial phagocytic and bactericidal experiment results also showed that Dock2-/- BMDM had the defects of bacterial phagocytosis and killing. Furthermore, the adoptive transfer of wild-type BMDM alleviated the susceptibility of Dock2-/- mice to C. rodentium infection. Our results show that Dock2 affects migration and phagocytic and bactericidal ability of macrophages by regulating the expression of chemokines, chemokine receptors and their responses to chemokine stimulation, thus playing an essential role in the host defense against enteric bacterial infection.


Asunto(s)
Movimiento Celular/fisiología , Citrobacter rodentium/metabolismo , Infecciones por Enterobacteriaceae/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Macrófagos/metabolismo , Animales , Linfocitos B/metabolismo , Proteínas Portadoras/metabolismo , Adhesión Celular/fisiología , Quimiocinas/metabolismo , Quimiotaxis/fisiología , Células Dendríticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo
7.
Dig Dis Sci ; 66(1): 88-104, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32034605

RESUMEN

BACKGROUND: Environmental enteropathy (EE) is associated with stunting, impairment of responses to oral vaccines, and other adverse health consequences in young children throughout the developing world. EE is characterized by chronic low-grade intestinal inflammation and disrupted epithelial barrier integrity, partly resulting from dysregulation of tight junction proteins, observed in other enteropathies such as celiac disease. During EE, this dysregulation of tight junction expression amplifies translocation of pathogenic bacteria across the intestinal mucosa. AIMS: The aim was to determine whether enteropathogen-mediated epithelial barrier failure can be ameliorated using contra-pathogenicity therapies. METHODS: Intestinal epithelial barrier damage was assessed in Caco-2 cells incubated with three important enteropathogens identified in EE patients: Enteropathogenic Escherichia coli (EPEC), Citrobacter rodentium (C. rodentium), and Cryptosporidium parvum (C. parvum). Potential therapeutic molecules were tested to detect effects on transepithelial resistance (TER), bacterial translocation (BT), claudin-4 expression, and regulation of the inflammatory cytokine response. RESULTS: All three enteropathogens compared to uninfected cells, reduced TER (EPEC; p < 0.0001, C. rodentium; p < 0.0001, C. parvum; p < 0.0007), reduced claudin-4 expression, and permitted BT (EPEC; p < 0.0001, C. rodentium; p < 0.0001, C. parvum; p < 0.0003) through the monolayer. Zinc, colostrum, epidermal growth factor, trefoil factor 3, resistin-like molecule-ß, hydrocortisone, and the myosin light chain kinase inhibitor ML7 (Hexahydro-1-[(5-iodo-1-naphthalenyl)sulfonyl]-1H-1,4-diazepine hydrochloride); ML7) improved TER (up to 70%) and decreased BT (as much as 96%). Only zinc demonstrated modest antimicrobial activity. CONCLUSION: The enteropathogens impaired intestinal-epithelial barrier integrity with dysregulation of claudin-4 and increased bacterial translocation. Enteropathogen-mediated damage was reduced using contra-pathogenicity agents which mitigated the effects of pathogens without direct antimicrobial activity.


Asunto(s)
Traslocación Bacteriana/fisiología , Citrobacter rodentium/metabolismo , Cryptosporidium parvum/metabolismo , Escherichia coli Enteropatógena/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Traslocación Bacteriana/efectos de los fármacos , Células CACO-2 , Citrobacter rodentium/efectos de los fármacos , Cryptosporidium parvum/efectos de los fármacos , Escherichia coli Enteropatógena/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/uso terapéutico , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Humanos , Hidrocortisona/farmacología , Hidrocortisona/uso terapéutico , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/microbiología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Migración Transendotelial y Transepitelial/efectos de los fármacos , Migración Transendotelial y Transepitelial/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-32015030

RESUMEN

Infections with enterohemorrhagic Escherichia coli (EHEC) cause disease ranging from mild diarrhea to hemolytic-uremic syndrome (HUS) and are the most common cause of renal failure in children in high-income countries. The severity of the disease derives from the release of Shiga toxins (Stx). The use of antibiotics to treat EHEC infections is generally avoided, as it can result in increased stx expression. Here, we systematically tested different classes of antibiotics and found that their influence on stx expression and release varies significantly. We assessed a selection of these antibiotics in vivo using the Citrobacter rodentium ϕstx2dact mouse model and show that stx2d-inducing antibiotics resulted in weight loss and kidney damage despite clearance of the infection. However, several non-Stx-inducing antibiotics cleared bacterial infection without causing Stx-mediated pathology. Our results suggest that these antibiotics might be useful in the treatment of EHEC-infected human patients and decrease the risk of HUS development.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antibacterianos/uso terapéutico , Escherichia coli Enterohemorrágica/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Toxina Shiga II/metabolismo , Lesión Renal Aguda/microbiología , Animales , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Modelos Animales de Enfermedad , Escherichia coli Enterohemorrágica/patogenicidad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Femenino , Síndrome Hemolítico-Urémico/tratamiento farmacológico , Síndrome Hemolítico-Urémico/microbiología , Ratones , Ratones Endogámicos C57BL , Toxina Shiga II/genética , Toxina Shiga II/toxicidad
9.
PLoS Pathog ; 14(10): e1007406, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30365535

RESUMEN

Infection with Citrobacter rodentium triggers robust tissue damage repair responses, manifested by secretion of IL-22, in the absence of which mice succumbed to the infection. Of the main hallmarks of C. rodentium infection are colonic crypt hyperplasia (CCH) and dysbiosis. In order to colonize the host and compete with the gut microbiota, C. rodentium employs a type III secretion system (T3SS) that injects effectors into colonic intestinal epithelial cells (IECs). Once injected, the effectors subvert processes involved in innate immune responses, cellular metabolism and oxygenation of the mucosa. Importantly, the identity of the effector/s triggering the tissue repair response is/are unknown. Here we report that the effector EspO ,an orthologue of OspE found in Shigella spp, affects proliferation of IECs 8 and 14 days post C. rodentium infection as well as secretion of IL-22 from colonic explants. While we observed no differences in the recruitment of group 3 innate lymphoid cells (ILC3s) and T cells, which are the main sources of IL-22 at the early and late stages of C. rodentium infection respectively, infection with ΔespO was characterized by diminished recruitment of sub-mucosal neutrophils, which coincided with lower abundance of Mmp9 and chemokines (e.g. S100a8/9) in IECs. Moreover, mice infected with ΔespO triggered significantly lesser nutritional immunity (e.g. calprotectin, Lcn2) and expression of antimicrobial peptides (Reg3ß, Reg3γ) compared to mice infected with WT C. rodentium. This overlapped with a decrease in STAT3 phosphorylation in IECs. Importantly, while the reduced CCH and abundance of antimicrobial proteins during ΔespO infection did not affect C. rodentium colonization or the composition of commensal Proteobacteria, they had a subtle consequence on Firmicutes subpopulations. EspO is the first bacterial virulence factor that affects neutrophil recruitment and secretion of IL-22, as well as expression of antimicrobial and nutritional immunity proteins in IECs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Citrobacter rodentium/metabolismo , Infecciones por Enterobacteriaceae/inmunología , Inmunidad Innata/inmunología , Mucosa Intestinal/inmunología , Sistemas de Secreción Tipo III/metabolismo , Animales , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Femenino , Mucosa Intestinal/lesiones , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL
10.
J Bacteriol ; 201(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30670547

RESUMEN

Outer membrane vesicles (OMVs) are naturally produced by Gram-negative bacteria by a bulging of the outer membrane (OM) and subsequent release into the environment. By serving as vehicles for various cargos, including proteins, nucleic acids and small metabolites, OMVs are central to interbacterial interactions and both symbiotic and pathogenic host bacterial interactions. However, despite their importance, the mechanism of OMV formation remains unclear. Recent evidence indicates that covalent modifications of lipopolysaccharides (LPS) influence OMV biogenesis. Several enteric bacteria modify LPS with phosphoethanolamine (pEtN) using the iron-regulated PmrC (EptA) and CptA pEtN transferases. In wild-type Citrobacter rodentium, the presence of increasing subtoxic concentrations of iron was found to stimulate OMV production 4- to 9-fold above baseline. C. rodentium uses the two-component system PmrAB to sense and adapt to environmental iron. Compared to the wild type, the C. rodentium ΔpmrAB strain exhibited heightened OMV production at similar iron concentrations. PmrAB regulates transcription of pmrC (also known as eptA) and cptA OMV production in strains lacking either pmrC (eptA) or cptA was similarly increased in comparison to that of the wild type. Importantly, plasmid complementation of C. rodentium strains with either pmrC (eptA) or cptA resulted in a drastic inhibition of OMV production. Finally, we showed that ß-lactamase and CroP, two enzymes found in the C. rodentium periplasm and outer membrane (OM), respectively, are associated with OMVs. These data suggest a novel mechanism by which C. rodentium and possibly other Gram-negative bacteria can negatively affect OMV production through the PmrAB-regulated genes pmrC (eptA) and cptAIMPORTANCE Although OMVs secreted by Gram-negative bacteria fulfill multiple functions, the molecular mechanism of OMV biogenesis remains ill defined. Our group has previously shown that PmrC (also known as EptA) and CptA maintain OM integrity and provide resistance to iron toxicity and antibiotics in the murine pathogen Citrobacter rodentium In several enteric bacteria, these proteins modify the lipid A and core regions of lipopolysaccharide with phosphoethanolamine moieties. Here, we show that these proteins also repress OMV production in response to environmental iron in C. rodentium These data support the emerging understanding that lipopolysaccharide modifications are important regulators of OMV biogenesis in Gram-negative bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/enzimología , Citrobacter rodentium/metabolismo , Endopeptidasas/metabolismo , Etanolaminofosfotransferasa/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Bacterianas/genética , Citrobacter rodentium/genética , Endopeptidasas/genética , Etanolaminofosfotransferasa/genética , Eliminación de Gen , Prueba de Complementación Genética , Hierro/metabolismo
11.
Adv Exp Med Biol ; 1111: 205-218, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30411307

RESUMEN

Bacteria deliver virulence proteins termed 'effectors' to counteract host innate immunity. Protein-protein interactions within the host cell ultimately subvert the generation of an inflammatory response to the infecting pathogen. Here we briefly describe a subset of T3SS effectors produced by enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), Citrobacter rodentium, and Salmonella enterica that inhibit innate immune pathways. These effectors are interesting for structural and mechanistic reasons, as well as for their potential utility in being engineered to treat human autoimmune disorders associated with perturbations in NF-κB signaling.


Asunto(s)
Citrobacter rodentium/inmunología , Escherichia coli Enteropatógena/inmunología , Proteínas de Escherichia coli/metabolismo , Inmunidad Innata/inmunología , Salmonella enterica/inmunología , Sistemas de Secreción Tipo III/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Citrobacter rodentium/metabolismo , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Humanos , Salmonella enterica/metabolismo , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
12.
PLoS Genet ; 10(12): e1004869, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474156

RESUMEN

The Type VI secretion system (T6SS) mediates toxin delivery into both eukaryotic and prokaryotic cells. It is composed of a cytoplasmic structure resembling the tail of contractile bacteriophages anchored to the cell envelope through a membrane complex composed of the TssL and TssM inner membrane proteins and of the TssJ outer membrane lipoprotein. The C-terminal domain of TssM is required for its interaction with TssJ, and for the function of the T6SS. In Citrobacter rodentium, the tssM1 gene does not encode the C-terminal domain. However, the stop codon is preceded by a run of 11 consecutive adenosines. In this study, we demonstrate that this poly-A tract is a transcriptional slippery site that induces the incorporation of additional adenosines, leading to frameshifting, and hence the production of two TssM1 variants, including a full-length canonical protein. We show that both forms of TssM1, and the ratio between these two forms, are required for the function of the T6SS in C. rodentium. Finally, we demonstrate that the tssM gene associated with the Yersinia pseudotuberculosis T6SS-3 gene cluster is also subjected to transcriptional frameshifting.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Codón sin Sentido , Mutación del Sistema de Lectura/fisiología , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular , Organismos Modificados Genéticamente , Isoformas de Proteínas/genética , Análisis de Secuencia de ADN , Supresión Genética
13.
J Bacteriol ; 197(8): 1478-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25666139

RESUMEN

UNLABELLED: The Gram-negative enteric bacterium Citrobacter rodentium is a natural mouse pathogen that has been extensively used as a surrogate model for studying the human pathogens enteropathogenic and enterohemorrhagic Escherichia coli. All three pathogens produce similar attaching and effacing (A/E) lesions in the intestinal epithelium. During infection, these bacteria employ surface structures called fimbriae to adhere and colonize the host intestinal epithelium. For C. rodentium, the roles of only a small number of its genome-carried fimbrial operons have been evaluated. Here, we report the identification of a novel C. rodentium colonization factor, called gut colonization fimbria (Gcf), which is encoded by a chaperone-usher fimbrial operon. A gcfA mutant shows a severe colonization defect within the first 10 days of infection. The gcf promoter is not active in C. rodentium under several in vitro growth conditions; however, it is readily expressed in a C. rodentium Δhns1 mutant lacking the closest ortholog of the Escherichia coli histone-like nucleoid structuring protein (H-NS) but not in mutants with deletion of the other four genes encoding H-NS homologs. H-NS binds to the regulatory region of gcf, further supporting its direct role as a repressor of the gcf promoter that starts transcription 158 bp upstream of the start codon of its first open reading frame. The gcf operon possesses interesting novel traits that open future opportunities to expand our knowledge of the structure, regulation, and function during infection of these important bacterial structures. IMPORTANCE: Fimbriae are surface bacterial structures implicated in a variety of biological processes. Some have been shown to play a critical role during host colonization and thus in disease. Pathogenic bacteria possess the genetic information for an assortment of fimbriae, but their function and regulation and the interplay between them have not been studied in detail. This work provides new insights into the function and regulation of a novel fimbria called Gcf that is important for early establishment of a successful infection by C. rodentium in mice, despite being poorly expressed under in vitro growth conditions. This discovery offers an opportunity to better understand the individual role and the regulatory mechanisms controlling the expression of specific fimbrial operons that are critical during infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/metabolismo , Fimbrias Bacterianas/metabolismo , Tracto Gastrointestinal/microbiología , Animales , Proteínas Bacterianas/genética , Citrobacter rodentium/genética , Fimbrias Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Ratones , Familia de Multigenes , Operón , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
14.
J Bacteriol ; 197(22): 3583-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26350132

RESUMEN

UNLABELLED: Bacterial proteases contribute to virulence by cleaving host or bacterial proteins to promote survival and dissemination. Omptins are a family of proteases embedded in the outer membrane of Gram-negative bacteria that cleave various substrates, including host antimicrobial peptides, with a preference for cleaving at dibasic motifs. OmpT, the enterohemorrhagic Escherichia coli (EHEC) omptin, cleaves and inactivates the human cathelicidin LL-37. Similarly, the omptin CroP, found in the murine pathogen Citrobacter rodentium, which is used as a surrogate model to study human-restricted EHEC, cleaves the murine cathelicidin-related antimicrobial peptide (CRAMP). Here, we compared the abilities of OmpT and CroP to cleave LL-37 and CRAMP. EHEC OmpT degraded LL-37 and CRAMP at similar rates. In contrast, C. rodentium CroP cleaved CRAMP more rapidly than LL-37. The different cleavage rates of LL-37 and CRAMP were independent of the bacterial background and substrate sequence specificity, as OmpT and CroP have the same preference for cleaving at dibasic sites. Importantly, LL-37 was α-helical and CRAMP was unstructured under our experimental conditions. By altering the α-helicity of LL-37 and CRAMP, we found that decreasing LL-37 α-helicity increased its rate of cleavage by CroP. Conversely, increasing CRAMP α-helicity decreased its cleavage rate. This structural basis for CroP substrate specificity highlights differences between the closely related omptins of C. rodentium and E. coli. In agreement with previous studies, this difference in CroP and OmpT substrate specificity suggests that omptins evolved in response to the substrates present in their host microenvironments. IMPORTANCE: Omptins are recognized as key virulence factors for various Gram-negative pathogens. Their localization to the outer membrane, their active site facing the extracellular environment, and their unique catalytic mechanism make them attractive targets for novel therapeutic strategies. Gaining insights into similarities and variations between the different omptin active sites and subsequent substrate specificities will be critical to develop inhibitors that can target multiple omptins. Here, we describe subtle differences between the substrate specificities of two closely related omptins, CroP and OmpT. This is the first reported example of substrate conformation acting as a structural determinant for omptin activity between OmpT-like proteases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Citrobacter rodentium/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Péptido Hidrolasas/metabolismo , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/química , Proteínas de la Membrana Bacteriana Externa/genética , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Péptido Hidrolasas/genética , Conformación Proteica , Serina Endopeptidasas/genética
15.
Infect Immun ; 83(6): 2300-11, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25824836

RESUMEN

Bacterial proteases are important virulence factors that inactivate host defense proteins and contribute to tissue destruction and bacterial dissemination. Outer membrane proteases of the omptin family, exemplified by Escherichia coli OmpT, are found in some Gram-negative bacteria. Omptins cleave a variety of substrates at the host-pathogen interface, including plasminogen and antimicrobial peptides. Multiple omptin substrates relevant to infection have been identified; nonetheless, an effective omptin inhibitor remains to be found. Here, we purified native CroP, the OmpT ortholog in the murine pathogen Citrobacter rodentium. Purified CroP was found to readily cleave both a synthetic fluorescence resonance energy transfer substrate and the murine cathelicidin-related antimicrobial peptide. In contrast, CroP was found to poorly activate plasminogen into active plasmin. Although classical protease inhibitors were ineffective against CroP activity, we found that the serine protease inhibitor aprotinin displays inhibitory potency in the micromolar range. Aprotinin was shown to act as a competitive inhibitor of CroP activity and to interfere with the cleavage of the murine cathelicidin-related antimicrobial peptide. Importantly, aprotinin was able to inhibit not only CroP but also Yersinia pestis Pla and, to a lesser extent, E. coli OmpT. We propose a structural model of the aprotinin-omptin complex in which Lys15 of aprotinin forms salt bridges with conserved negatively charged residues of the omptin active site.


Asunto(s)
Aprotinina/farmacología , Citrobacter rodentium/enzimología , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Dominio Catalítico , Catelicidinas/metabolismo , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Conformación Proteica , Serina Proteasas/genética , Especificidad de la Especie
16.
Am J Physiol Gastrointest Liver Physiol ; 308(6): G550-61, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25573177

RESUMEN

Giardia duodenalis is the most common cause of parasitic diarrhea worldwide and a well-established risk factor for postinfectious irritable bowel syndrome. We hypothesized that Giardia-induced disruptions in host-microbiota interactions may play a role in the pathogenesis of giardiasis and in postgiardiasis disease. Functional changes induced by Giardia in commensal bacteria and the resulting effects on Caenorhabditis elegans were determined. Although Giardia or bacteria alone did not affect worm viability, combining commensal Escherichia coli bacteria with Giardia became lethal to C. elegans. Giardia also induced killing of C. elegans with attenuated Citrobacter rodentium espF and map mutant strains, human microbiota from a healthy donor, and microbiota from inflamed colonic sites of ulcerative colitis patient. In contrast, combinations of Giardia with microbiota from noninflamed sites of the same patient allowed for worm survival. The synergistic lethal effects of Giardia and E. coli required the presence of live bacteria and were associated with the facilitation of bacterial colonization in the C. elegans intestine. Exposure to C. elegans and/or Giardia altered the expression of 172 genes in E. coli. The genes affected by Giardia included hydrogen sulfide biosynthesis (HSB) genes, and deletion of a positive regulator of HSB genes, cysB, was sufficient to kill C. elegans even in the absence of Giardia. Our findings indicate that Giardia induces functional changes in commensal bacteria, possibly making them opportunistic pathogens, and alters host-microbe homeostatic interactions. This report describes the use of a novel in vivo model to assess the toxicity of human microbiota.


Asunto(s)
Caenorhabditis elegans/microbiología , Citrobacter rodentium/patogenicidad , Escherichia coli/patogenicidad , Giardia lamblia/patogenicidad , Intestinos/microbiología , Microbiota , Animales , Estudios de Casos y Controles , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Colitis Ulcerosa/microbiología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Giardia lamblia/metabolismo , Interacciones Huésped-Patógeno , Humanos , Viabilidad Microbiana , Simbiosis , Factores de Tiempo , Virulencia
17.
J Biol Chem ; 288(43): 31115-26, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24019519

RESUMEN

The misuse of antibiotics during past decades has led to pervasive antibiotic resistance in bacteria. Hence, there is an urgent need for the development of new and alternative approaches to combat bacterial infections. In most bacterial pathogens the expression of virulence is tightly regulated at the transcriptional level. Therefore, targeting pathogens with drugs that interfere with virulence gene expression offers an effective alternative to conventional antimicrobial chemotherapy. Many Gram-negative intestinal pathogens produce AraC-like proteins that control the expression of genes required for infection. In this study we investigated the prototypical AraC-like virulence regulator, RegA, from the mouse attaching and effacing pathogen, Citrobacter rodentium, as a potential drug target. By screening a small molecule chemical library and chemical optimization, we identified two compounds that specifically inhibited the ability of RegA to activate its target promoters and thus reduced expression of a number of proteins required for virulence. Biophysical, biochemical, genetic, and computational analyses indicated that the more potent of these two compounds, which we named regacin, disrupts the DNA binding capacity of RegA by interacting with amino acid residues within a conserved region of the DNA binding domain. Oral administration of regacin to mice, commencing 15 min before or 12 h after oral inoculation with C. rodentium, caused highly significant attenuation of intestinal colonization by the mouse pathogen comparable to that of an isogenic regA-deletion mutant. These findings demonstrate that chemical inhibition of the DNA binding domains of transcriptional regulators is a viable strategy for the development of antimicrobial agents that target bacterial pathogens.


Asunto(s)
Antibacterianos/farmacología , Factor de Transcripción de AraC/antagonistas & inhibidores , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidad , Infecciones por Enterobacteriaceae/metabolismo , Factores de Virulencia/antagonistas & inhibidores , Animales , Antibacterianos/química , Factor de Transcripción de AraC/genética , Factor de Transcripción de AraC/metabolismo , Citrobacter rodentium/genética , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/patología , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Intestinos/microbiología , Intestinos/patología , Ratones , Estructura Terciaria de Proteína , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
18.
Nat Commun ; 15(1): 4462, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796512

RESUMEN

Virulence and metabolism are often interlinked to control the expression of essential colonisation factors in response to host-associated signals. Here, we identified an uncharacterised transporter of the dietary monosaccharide ʟ-arabinose that is widely encoded by the zoonotic pathogen enterohaemorrhagic Escherichia coli (EHEC), required for full competitive fitness in the mouse gut and highly expressed during human infection. Discovery of this transporter suggested that EHEC strains have an enhanced ability to scavenge ʟ-arabinose and therefore prompted us to investigate the impact of this nutrient on pathogenesis. Accordingly, we discovered that ʟ-arabinose enhances expression of the EHEC type 3 secretion system, increasing its ability to colonise host cells, and that the underlying mechanism is dependent on products of its catabolism rather than the sensing of ʟ-arabinose as a signal. Furthermore, using the murine pathogen Citrobacter rodentium, we show that ʟ-arabinose metabolism provides a fitness benefit during infection via virulence factor regulation, as opposed to supporting pathogen growth. Finally, we show that this mechanism is not restricted to ʟ-arabinose and extends to other pentose sugars with a similar metabolic fate. This work highlights the importance integrating central metabolism with virulence regulation in order to maximise competitive fitness of enteric pathogens within the host-niche.


Asunto(s)
Arabinosa , Citrobacter rodentium , Escherichia coli Enterohemorrágica , Arabinosa/metabolismo , Animales , Ratones , Citrobacter rodentium/patogenicidad , Citrobacter rodentium/metabolismo , Citrobacter rodentium/genética , Humanos , Virulencia , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enterohemorrágica/genética , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Infecciones por Enterobacteriaceae/microbiología , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Infecciones por Escherichia coli/microbiología , Femenino
19.
J Biol Chem ; 287(20): 16955-64, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22461621

RESUMEN

Citrobacter rodentium is an enteric bacterial pathogen of the mouse intestinal tract that triggers inflammatory responses resembling those of humans infected with enteropathogenic and enterohemorrhagic Escherichia coli. Inflammasome signaling is emerging as a central regulator of inflammatory and host responses to several pathogens, but the in vivo role of inflammasome signaling in host defense against C. rodentium has not been characterized. Here, we show that mice lacking the inflammasome components Nlrp3, Nlrc4, and caspase-1 were hypersusceptible to C. rodentium-induced gastrointestinal inflammation. This was due to defective interleukin (IL)-1ß and IL-18 production given that il-1ß(-/-) and il-18(-/-) mice also suffered from increased bacterial burdens and exacerbated histopathology. C. rodentium specifically activated the Nlrp3 inflammasome in in vitro-infected macrophages independently of a functional bacterial type III secretion system. Thus, production of IL-1ß and IL-18 downstream of the Nlrp3 and Nlrc4 inflammasomes plays a critical role in host defense against enteric infections caused by C. rodentium.


Asunto(s)
Citrobacter rodentium/inmunología , Infecciones por Enterobacteriaceae/inmunología , Inflamasomas/inmunología , Macrófagos/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/inmunología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Caspasa 1/genética , Caspasa 1/inmunología , Caspasa 1/metabolismo , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/patología , Inflamasomas/genética , Inflamasomas/metabolismo , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR
20.
Infect Immun ; 81(9): 3253-63, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23798531

RESUMEN

Stressor exposure has been shown to enhance host susceptibility and the severity of a plethora of illnesses, including gastrointestinal disease. In mice, susceptibility to Citrobacter rodentium has been shown to be dependent on host genetics as well as the composition of the intestinal microbiota, but the effects of stressor exposure on this gastrointestinal pathogen have not been elucidated fully. Previously, our lab showed that exposure to the prolonged-restraint stressor prior to a challenge with C. rodentium alters the intestinal microbiota community structure, including a reduction of beneficial genera such as Lactobacillus, which may contribute to stressor-enhanced C. rodentium-induced infectious colitis. To test the effects of stressor exposure on C. rodentium infection, we exposed resistant mice to a prolonged-restraint stressor concurrent with pathogen challenge. Exposure to prolonged restraint significantly enhanced C. rodentium-induced infectious colitis in resistant mice, as measured by increases in colonic histopathology, colonic inflammatory mediator gene production, and pathogen translocation from the colon to the spleen. It was further tested if the beneficial bacterium Lactobacillus reuteri could reduce the stressor-enhanced susceptibility to C. rodentium-enhanced infectious colitis. While L. reuteri treatment did not reduce all aspects of stressor-enhanced infectious colitis, it did significantly reduce pathogen translocation from the colon to the spleen. Taken together, these data demonstrate the deleterious effects that prolonged stressor exposure can have at the onset of a gastrointestinal infection by its ability to render a resistant mouse highly susceptible to C. rodentium. Probiotic treatment ameliorated the systemic manifestations of stress on colonic infection.


Asunto(s)
Citrobacter rodentium/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Limosilactobacillus reuteri/metabolismo , Probióticos/metabolismo , Estrés Fisiológico/fisiología , Animales , Ansiedad/complicaciones , Conducta Animal , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Colon/metabolismo , Colon/microbiología , Colon/patología , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/microbiología , Interleucina-6/metabolismo , Masculino , Ratones , Bazo/metabolismo , Bazo/microbiología , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA