Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.278
Filtrar
1.
Annu Rev Cell Dev Biol ; 30: 207-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288113

RESUMEN

Development in multicellular organisms requires the coordinated production of a large number of specialized cell types through sophisticated signaling mechanisms. Non-cell-autonomous signals are one of the key mechanisms by which organisms coordinate development. In plants, intercellular movement of transcription factors and other mobile signals, such as hormones and peptides, is essential for normal development. Through a combination of different approaches, a large number of non-cell-autonomous signals that control plant development have been identified. We review some of the transcriptional regulators that traffic between cells, as well as how changes in symplasmic continuity affect and are affected by development. We also review current models for how mobile signals move via plasmodesmata and how movement is inhibited. Finally, we consider challenges in and new tools for studying protein movement.


Asunto(s)
Comunicación Celular/fisiología , Desarrollo de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plasmodesmos/fisiología , Transporte de Proteínas/fisiología , Pared Celular/ultraestructura , Cloroplastos/fisiología , Florigena , Glucanos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Plasmodesmos/ultraestructura , ARN de Planta/fisiología , Transducción de Señal , Factores de Transcripción/metabolismo , Tricomas/metabolismo
2.
Plant Cell ; 36(4): 1159-1181, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38134410

RESUMEN

Plants have unique responses to fluctuating light conditions. One such response involves chloroplast photorelocation movement, which optimizes photosynthesis under weak light by the accumulation of chloroplasts along the periclinal side of the cell, which prevents photodamage under strong light by avoiding chloroplast positioning toward the anticlinal side of the cell. This light-responsive chloroplast movement relies on the reorganization of chloroplast actin (cp-actin) filaments. Previous studies have suggested that CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1) is essential for chloroplast photorelocation movement as a regulator of cp-actin filaments. In this study, we conducted comprehensive analyses to understand CHUP1 function. Functional, fluorescently tagged CHUP1 colocalized with and was coordinately reorganized with cp-actin filaments on the chloroplast outer envelope during chloroplast movement in Arabidopsis thaliana. CHUP1 distribution was reversibly regulated in a blue light- and phototropin-dependent manner. X-ray crystallography revealed that the CHUP1-C-terminal domain shares structural homology with the formin homology 2 (FH2) domain, despite lacking sequence similarity. Furthermore, the CHUP1-C-terminal domain promoted actin polymerization in the presence of profilin in vitro. Taken together, our findings indicate that CHUP1 is a plant-specific actin polymerization factor that has convergently evolved to assemble cp-actin filaments and enables chloroplast photorelocation movement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Actinas , Proteínas de Arabidopsis/genética , Polimerizacion , Proteínas de Cloroplastos/genética , Arabidopsis/genética , Citoesqueleto de Actina , Cloroplastos/fisiología , Luz , Movimiento
3.
Proc Natl Acad Sci U S A ; 120(3): e2216497120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36638210

RESUMEN

Plants have developed intricate mechanisms to adapt to changing light conditions. Besides phototropism and heliotropism (differential growth toward light and diurnal motion with respect to sunlight, respectively), chloroplast motion acts as a fast mechanism to change the intracellular structure of leaf cells. While chloroplasts move toward the sides of the plant cell to avoid strong light, they accumulate and spread out into a layer on the bottom of the cell at low light to increase the light absorption efficiency. Although the motion of chloroplasts has been studied for over a century, the collective organelle motion leading to light-adapting self-organized structures remains elusive. Here, we study the active motion of chloroplasts under dim-light conditions, leading to an accumulation in a densely packed quasi-2D layer. We observe burst-like rearrangements and show that these dynamics resemble systems close to the glass transition by tracking individual chloroplasts. Furthermore, we provide a minimal mathematical model to uncover relevant system parameters controlling the stability of the dense configuration of chloroplasts. Our study suggests that the meta-stable caging close to the glass transition in the chloroplast monolayer serves a physiological relevance: Chloroplasts remain in a spread-out configuration to increase the light uptake but can easily fluidize when the activity is increased to efficiently rearrange the structure toward an avoidance state. Our research opens questions about the role that dynamical phase transitions could play in self-organized intracellular responses of plant cells toward environmental cues.


Asunto(s)
Cloroplastos , Células Vegetales , Cloroplastos/fisiología , Luz Solar , Fototropismo , Hojas de la Planta/fisiología , Luz
4.
Plant J ; 119(1): 300-331, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613336

RESUMEN

Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.


Asunto(s)
Aclimatación , Arabidopsis , Respuesta al Choque Térmico , Plantones , Arabidopsis/fisiología , Arabidopsis/genética , Plantones/fisiología , Plantones/genética , Respuesta al Choque Térmico/fisiología , Metabolismo Energético , Termotolerancia/fisiología , Cloroplastos/metabolismo , Cloroplastos/fisiología , Mitocondrias/metabolismo , Regulación de la Expresión Génica de las Plantas , Orgánulos/fisiología , Orgánulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calor , Dinámicas Mitocondriales/fisiología
5.
Plant Cell ; 34(1): 419-432, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34755875

RESUMEN

In bacteria and chloroplasts, the GTPase filamentous temperature-sensitive Z (FtsZ) is essential for division and polymerizes to form rings that mark the division site. Plants contain two FtsZ subfamilies (FtsZ1 and FtsZ2) with different assembly dynamics. FtsZ1 lacks the C-terminal domain of a typical FtsZ protein. Here, we show that the conserved short motif FtsZ1Carboxyl-terminus (Z1C) (consisting of the amino acids RRLFF) with weak membrane-binding activity is present at the C-terminus of FtsZ1 in angiosperms. For a polymer-forming protein such as FtsZ, this activity is strong enough for membrane tethering. Arabidopsis thaliana plants with mutated Z1C motifs contained heterogeneously sized chloroplasts and parallel FtsZ rings or long FtsZ filaments, suggesting that the Z1C motif plays an important role in regulating FtsZ ring dynamics. Our findings uncover a type of amphiphilic beta-strand motif with weak membrane-binding activity and point to the importance of this motif for the dynamic regulation of protein complex formation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Cloroplastos/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
6.
Nat Rev Mol Cell Biol ; 14(12): 787-802, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24263360

RESUMEN

Chloroplasts are the organelles that define plants, and they are responsible for photosynthesis as well as numerous other functions. They are the ancestral members of a family of organelles known as plastids. Plastids are remarkably dynamic, existing in strikingly different forms that interconvert in response to developmental or environmental cues. The genetic system of this organelle and its coordination with the nucleocytosolic system, the import and routing of nucleus-encoded proteins, as well as organellar division all contribute to the biogenesis and homeostasis of plastids. They are controlled by the ubiquitin-proteasome system, which is part of a network of regulatory mechanisms that integrate plastid development into broader programmes of cellular and organismal development.


Asunto(s)
Arabidopsis/fisiología , Cloroplastos/fisiología , Animales , Arabidopsis/citología , Genoma de Plastidios , Homeostasis , Humanos , Tamaño de los Orgánulos , Hojas de la Planta/citología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Proteolisis , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 119(23): e2113488119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35639691

RESUMEN

The tocopherol biosynthetic pathway, encoded by VTE genes 1 through 6, is highly conserved in plants but most large effect quantitative trait loci for seed total tocopherols (totalT) lack VTE genes, indicating other activities are involved. A genome-wide association study of Arabidopsis seed tocopherols showed five of seven significant intervals lacked VTE genes, including the most significant, which mapped to an uncharacterized, seed-specific, envelope-localized, alpha/beta hydrolase with esterase activity, designated AtVTE7. Atvte7 null mutants decreased seed totalT 55% while a leaky allele of the maize ortholog, ZmVTE7, decreased kernel and leaf totalT 38% and 49%, respectively. Overexpressing AtVTE7 or ZmVTE7 partially or fully complemented the Atvte7 seed phenotype and increased leaf totalT by 3.6- and 6.9-fold, respectively. VTE7 has the characteristics of an esterase postulated to provide phytol from chlorophyll degradation for tocopherol synthesis, but bulk chlorophyll levels were unaffected in vte7 mutants and overexpressing lines. Instead, levels of specific chlorophyll biosynthetic intermediates containing partially reduced side chains were impacted and strongly correlated with totalT. These intermediates are generated by a membrane-associated biosynthetic complex containing protochlorophyllide reductase, chlorophyll synthase, geranylgeranyl reductase (GGR) and light harvesting-like 3 protein, all of which are required for both chlorophyll and tocopherol biosynthesis. We propose a model where VTE7 releases prenyl alcohols from chlorophyll biosynthetic intermediates, which are then converted to the corresponding diphosphates for tocopherol biosynthesis.


Asunto(s)
Arabidopsis , Hidrolasas , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/fisiología , Estudio de Asociación del Genoma Completo , Hidrolasas/metabolismo , Fitol/metabolismo , Fitomejoramiento , Plantas/genética , Plantas/metabolismo , Tocoferoles/metabolismo , Vitamina E/metabolismo
8.
Plant Cell Environ ; 47(8): 3215-3226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38736289

RESUMEN

Chloroplasts accumulate in regions of plant cells exposed to irradiation to maximize light reception for efficient photosynthesis. This response is mediated by the blue-light receptor phototropin. Upon the perception of blue light, phototropin is photoactivated, an unknown signal is transmitted from the photoactivated phototropin to distant chloroplasts, and the chloroplasts begin their directional movement. How activated phototropin initiates this signal transmission is unknown. Here, using the liverwort Marchantia polymorpha, we analysed whether increased photoactive phototropin levels mediate signal transmission and chloroplast behaviour during the accumulation response. The signal transmission rate was higher in transgenic cells overexpressing phototropin than in wild-type cells. However, the chloroplast directional movement was similar between wild-type and transgenic cells. Consistent with the observation, increasing the amount of photoactivated phototropin through higher blue-light intensity also accelerated signal transmission but did not affect chloroplast behaviour in wild-type cells. Photoactivation of phototropin under weak blue-light led to the greater protein level of phosphorylated phototropin in cells overexpressing phototropin than in wild-type cells, whereas the autophosphorylation level within each phototropin molecule was similar. These results indicate that the abundance of photoactivated phototropin modulates the signal transmission rate to distant chloroplasts but does not affect chloroplast behaviour during the accumulation response.


Asunto(s)
Cloroplastos , Luz , Marchantia , Fototropinas , Plantas Modificadas Genéticamente , Transducción de Señal , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Cloroplastos/fisiología , Fototropinas/metabolismo , Fototropinas/genética , Marchantia/fisiología , Marchantia/efectos de la radiación , Marchantia/genética , Marchantia/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
9.
J Plant Res ; 137(4): 659-667, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38598067

RESUMEN

Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4-5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern Adiantum capillus-veneris gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.


Asunto(s)
Citoesqueleto de Actina , Arabidopsis , Cloroplastos , Luz , Cloroplastos/fisiología , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Cloroplastos/ultraestructura , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Adiantum/fisiología , Adiantum/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Actinas/metabolismo , Movimiento
10.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431680

RESUMEN

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.


Asunto(s)
Celulosa/biosíntesis , Ingeniería Química/métodos , Cloroplastos/efectos de la radiación , Glucosa/biosíntesis , Impresión Tridimensional/instrumentación , Celulosa/química , Cloroplastos/química , Cloroplastos/fisiología , Reactivos de Enlaces Cruzados/química , Módulo de Elasticidad , Glucosa/química , Humanos , Isocianatos/química , Luz , Fotosíntesis/efectos de la radiación , Hojas de la Planta/química , Hojas de la Planta/efectos de la radiación , Robótica/métodos , Spinacia oleracea/química , Spinacia oleracea/efectos de la radiación
11.
Plant Cell Environ ; 46(8): 2358-2375, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37212157

RESUMEN

CO2 -induced chloroplast movement was reported in the monograph by Gustav Senn in 1908: unilateral CO2 supply to the one cell-layered moss leaves induced the positively CO2 -tactic periclinal arrangement of chloroplasts. Here, using the model moss plant Physcomitrium patens, we examined basic features of chloroplast CO2 -tactic relocation with a modernized experimental system. The CO2 relocation was light-dependent and, especially, CO2 relocation in red light was substantially dependent on photosynthetic activity. In blue light, CO2 relocation was mainly dependent on microfilaments while microtubule-based movement was insensitive to CO2 , whereas in red light, both cytoskeletons contributed redundantly to CO2 relocation. The CO2 relocation was observed not only when the two leaf surfaces were exposed to CO2 -free air versus CO2 -containing air, but also by exposing them physiologically relevant differences in CO2 concentrations. In the leaves placed on the surface of a gel sheet, chloroplasts avoided the gel side and positioned in the air-facing surface, and this phenomenon was also shown to be photosynthesis dependent. Based on these observations, we propose a hypothesis that the threshold light intensity between the light-accumulation and -avoidance responses of the photorelocation would be increased by CO2 , resulting in the CO2 -tactic relocation of chloroplasts.


Asunto(s)
Briófitas , Dióxido de Carbono , Luz , Cloroplastos/fisiología , Hojas de la Planta/fisiología , Movimiento
12.
Plant Cell Environ ; 46(6): 1822-1832, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36782387

RESUMEN

Chloroplasts move to the periclinal walls of cells under weak light to harness light energy for photosynthesis and to anticlinal walls to avoid strong light. These responses involve the cytoskeleton components microtubules and/or actin filaments. In the dark, chloroplasts move to the anticlinal cell walls bordering neighbouring cells (dark-positioning response), but this response in various plants normally requires a prolonged dark incubation period, which has hampered analysis. However, we recently demonstrated the dark-positioning response that can be induced after a short period of dark incubation in the liverwort Apopellia endiviifolia. Here, we investigated whether the cytoskeleton components function in the dark-positioning response of A. endiviifolia cells. Microtubules and actin filaments were fluorescently visualised in A. endiviifolia cells and were disrupted following treatment with the microtubule and actin filament polymerisation inhibitors. The dark-positioning response was unaffected in the cells with disrupted microtubules. By contrast, the dark-positioning response was inhibited by the disruption of actin filaments. The disruption of actin filaments also restricted chloroplast mobility during light- and cold-dependent chloroplast movements in A. endiviifolia. Therefore, the dark-positioning response of A. endiviifolia depends solely on an actin filament-associated motility mechanism, as do the light- and cold-dependent chloroplast responses.


Asunto(s)
Hepatophyta , Luz , Citoesqueleto de Actina/fisiología , Microtúbulos , Cloroplastos/fisiología , Actinas
13.
Nat Rev Mol Cell Biol ; 12(1): 48-59, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21139638

RESUMEN

Mitochondria and chloroplasts import the vast majority of their proteins across two membranes, and use translocases of the outer membrane as an entry gate. These translocases interact with the incoming precursor protein and guiding chaperone factors. Within the translocon, precursor-protein receptors dock to a central component that mediates both transfer through a cation-selective channel and initial sorting towards internal subcompartments. Despite these similarities, the mode of translocation differs between the two organelles: in chloroplasts, GTP-binding and hydrolysis by the receptors is required for transport, whereas in mitochondria passage of the preprotein is driven by its increasing affinity for the translocase subunits.


Asunto(s)
Cloroplastos/fisiología , Proteínas de la Membrana/metabolismo , Mitocondrias/fisiología , Animales , Humanos , Modelos Biológicos , Proteínas de Transferencia de Fosfolípidos/metabolismo , Transporte de Proteínas
14.
PLoS Genet ; 16(6): e1008814, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555650

RESUMEN

The circadian clocks in chlorophyte algae have been studied in two model organisms, Chlamydomonas reinhardtii and Ostreococcus tauri. These studies revealed that the chlorophyte clocks include some genes that are homologous to those of the angiosperm circadian clock. However, the genetic network architectures of the chlorophyte clocks are largely unknown, especially in C. reinhardtii. In this study, using C. reinhardtii as a model, we characterized RHYTHM OF CHLOROPLAST (ROC) 75, a clock gene encoding a putative GARP DNA-binding transcription factor similar to the clock proteins LUX ARRHYTHMO (LUX, also called PHYTOCLOCK 1 [PCL1]) and BROTHER OF LUX ARRHYTHMO (BOA, also called NOX) of the angiosperm Arabidopsis thaliana. We observed that ROC75 is a day/subjective day-phase-expressed nuclear-localized protein that associates with some night-phased clock genes and represses their expression. This repression may be essential for the gating of reaccumulation of the other clock-related GARP protein, ROC15, after its light-dependent degradation. The restoration of ROC75 function in an arrhythmic roc75 mutant under constant darkness leads to the resumption of circadian oscillation from the subjective dawn, suggesting that the ROC75 restoration acts as a morning cue for the C. reinhardtii clock. Our study reveals a part of the genetic network of C. reinhardtii clock that could be considerably different from that of A. thaliana.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Cloroplastos/fisiología , Ritmo Circadiano/genética , Redes Reguladoras de Genes/fisiología , Mutación , Fotoperiodo , Plantas Modificadas Genéticamente
15.
Proc Natl Acad Sci U S A ; 117(35): 21796-21803, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817419

RESUMEN

Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast identity. In a second stage, phytoene conversion into downstream carotenoids is required for the differentiation of chromoplasts, a process that involves a concurrent reprogramming of nuclear gene expression and plastid morphology for improved carotenoid storage. We hence demonstrate that loss of photosynthetic competence and enhanced production of carotenoids are not just consequences but requirements for chloroplasts to differentiate into chromoplasts.


Asunto(s)
Carotenoides/metabolismo , Cloroplastos/metabolismo , Plastidios/metabolismo , Arabidopsis/metabolismo , Diferenciación Celular/fisiología , Cloroplastos/fisiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plastidios/fisiología , Ingeniería de Proteínas/métodos , Nicotiana/metabolismo , beta Caroteno/metabolismo
16.
Plant J ; 107(3): 688-697, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051021

RESUMEN

The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Semillas/metabolismo , Almidón/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética
17.
Plant J ; 108(2): 459-477, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34365695

RESUMEN

Autophagy is a conserved catabolic process that plays an essential role under nutrient starvation conditions and influences different developmental processes. We observed that seedlings of autophagy mutants (atg2, atg5, atg7, and atg9) germinated in the dark showed delayed chloroplast development following illumination. The delayed chloroplast development was characterized by a decrease in photosynthetic and chlorophyll biosynthetic proteins, lower chlorophyll content, reduced chloroplast size, and increased levels of proteins involved in lipid biosynthesis. Confirming the biological impact of these differences, photosynthetic performance was impaired in autophagy mutants 12 h post-illumination. We observed that while gene expression for photosynthetic machinery during de-etiolation was largely unaffected in atg mutants, several genes involved in photosystem assembly were transcriptionally downregulated. We also investigated if the delayed chloroplast development could be explained by lower lipid import to the chloroplast or lower triglyceride (TAG) turnover. We observed that the limitations in the chloroplast lipid import imposed by trigalactosyldiacylglycerol1 are unlikely to explain the delay in chloroplast development. However, we found that lower TAG mobility in the triacylglycerol lipase mutant sugardependent1 significantly affected de-etiolation. Moreover, we showed that lower levels of carbon resources exacerbated the slow greening phenotype whereas higher levels of carbon resources had an opposite effect. This work suggests a lack of autophagy machinery limits chloroplast development during de-etiolation, and this is exacerbated by limited lipid turnover (lipophagy) that physically or energetically restrains chloroplast development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Autofagia/genética , Carbono/metabolismo , Cloroplastos/fisiología , Aminopeptidasas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Hidrolasas de Éster Carboxílico/genética , Cloroplastos/metabolismo , Oscuridad , Etiolado , Regulación de la Expresión Génica de las Plantas , Luz , Metabolismo de los Lípidos/genética , Proteínas de Transporte de Membrana/genética , Mutación , Fotosíntesis/genética , Plantones/genética , Plantones/fisiología
18.
Plant J ; 106(6): 1625-1646, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811402

RESUMEN

To examine the effect of mitochondrial function on photosynthesis, wild-type and transgenic Nicotiana tabacum with varying amounts of alternative oxidase (AOX) were treated with different respiratory inhibitors. Initially, each inhibitor increased the reduction state of the chloroplast electron transport chain, most severely in AOX knockdowns and least severely in AOX overexpressors. This indicated that the mitochondrion was a necessary sink for photo-generated reductant, contributing to the 'P700 oxidation capacity' of photosystem I. Initially, the Complex III inhibitor myxothiazol and the mitochondrial ATP synthase inhibitor oligomycin caused an increase in photosystem II regulated non-photochemical quenching not evident with the Complex III inhibitor antimycin A (AA). This indicated that the increased quenching depended upon AA-sensitive cyclic electron transport (CET). Following 12 h with oligomycin, the reduction state of the chloroplast electron transport chain recovered in all plant lines. Recovery was associated with large increases in the protein amount of chloroplast ATP synthase and mitochondrial uncoupling protein. This increased the capacity for photophosphorylation in the absence of oxidative phosphorylation and enabled the mitochondrion to act again as a sink for photo-generated reductant. Comparing the AA and myxothiazol treatments at 12 h showed that CET optimized photosystem I quantum yield, depending upon the P700 oxidation capacity. When this capacity was too high, CET drew electrons away from other sinks, moderating the P700+ amount. When P700 oxidation capacity was too low, CET acted as an electron overflow, moderating the amount of reduced P700. This study reveals flexible chloroplast-mitochondrion interactions able to overcome lesions in energy metabolism.


Asunto(s)
Cloroplastos/fisiología , Mitocondrias/fisiología , Nicotiana/genética , Nicotiana/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Oxidación-Reducción , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Agua/administración & dosificación
19.
Plant J ; 108(6): 1690-1703, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34628678

RESUMEN

The riboflavin derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes in multiple cellular processes. Characterizing mutants with impaired riboflavin metabolism can help clarify the role of riboflavin in plant development. Here, we characterized a rice (Oryza sativa) white and lesion-mimic (wll1) mutant, which displays a lesion-mimic phenotype with white leaves, chlorophyll loss, chloroplast defects, excess reactive oxygen species (ROS) accumulation, decreased photosystem protein levels, changes in expression of chloroplast development and photosynthesis genes, and cell death. Map-based cloning and complementation test revealed that WLL1 encodes lumazine synthase, which participates in riboflavin biosynthesis. Indeed, the wll1 mutant showed riboflavin deficiency, and application of FAD rescued the wll1 phenotype. In addition, transcriptome analysis showed that cytokinin metabolism was significantly affected in wll1 mutant, which had increased cytokinin and δ-aminolevulinic acid contents. Furthermore, WLL1 and riboflavin synthase (RS) formed a complex, and the rs mutant had a similar phenotype to the wll1 mutant. Taken together, our findings revealed that WLL1 and RS play pivotal roles in riboflavin biosynthesis, which is necessary for ROS balance and chloroplast development in rice.


Asunto(s)
Cloroplastos/fisiología , Complejos Multienzimáticos/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Clorofila/genética , Clorofila/metabolismo , Citocininas/genética , Citocininas/metabolismo , Daño del ADN , Evolución Molecular , Flavina-Adenina Dinucleótido/genética , Flavina-Adenina Dinucleótido/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejos Multienzimáticos/genética , Mutación , Fenotipo , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Riboflavina/genética , Riboflavina/metabolismo , Técnicas del Sistema de Dos Híbridos
20.
BMC Plant Biol ; 22(1): 20, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991480

RESUMEN

BACKGROUND: Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in eukaryotic organisms and play essential roles in immunity and stress responses. However, the role of MAPKs in chloroplast development remains to be evidently established. RESULTS: In this study, a rice chlorosis seedling lethality 1 (csl1) mutant with a Zhonghua11 (ZH11, japonica) background was isolated. Seedlings of the mutant were characterized by chlorotic leaves and death after the trefoil stage, and chloroplasts were observed to contain accumulated starch granules. Molecular cloning revealed that OsCSL1 encoded a MAPK kinase kinase22 (MKKK22) targeted to the endoplasmic reticulum (ER), and functional complementation of OsCSL1 was found to restore the normal phenotype in csl1 plants. The CRISPR/Cas9 technology was used for targeted disruption of OsCSL1, and the OsCSL1-Cas9 lines obtained therein exhibited yellow seedlings which phenocopied the csl1 mutant. CSL1/MKKK22 was observed to establish direct interaction with MKK4, and altered expression of MKK1 and MKK4 was detected in the csl1 mutant. Additionally, disruption of OsCSL1 led to reduced expression of chloroplast-associated genes, including chlorophyll biosynthetic genes, plastid-encoded RNA polymerases, nuclear-encoded RNA polymerase, and nuclear-encoded chloroplast genes. CONCLUSIONS: The findings of this study revealed that OsCSL1 played roles in regulating the expression of multiple chloroplast synthesis-related genes, thereby affecting their functions, and leading to wide-ranging defects, including chlorotic seedlings and severely disrupted chloroplasts containing accumulated starch granules.


Asunto(s)
Cloroplastos/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Biogénesis de Organelos , Oryza/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Clorofila/genética , Retículo Endoplásmico/metabolismo , Genes del Cloroplasto , Genes Letales , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Oryza/genética , Oryza/ultraestructura , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA