Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Drug Metab Dispos ; 52(8): 911-918, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38849209

RESUMEN

Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for cytochrome P450 (CYP) s3A, 2C6, 2D, 2C11, 1A, and 2E, were selected as probe drugs for the pharmacokinetic study. Significant decreases in areas under the curves of probe substrates were observed in rats after consecutive 30-day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little change in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. SIGNIFICANCE STATEMENT: Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. The present study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (areas under the curve) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.


Asunto(s)
Arsenitos , Sistema Enzimático del Citocromo P-450 , Interacciones Farmacológicas , Ratas Sprague-Dawley , Animales , Arsenitos/toxicidad , Arsenitos/farmacocinética , Masculino , Ratas , Sistema Enzimático del Citocromo P-450/metabolismo , Absorción Intestinal/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Omeprazol/farmacología , Omeprazol/farmacocinética , Midazolam/farmacocinética , Cafeína/farmacocinética , Clorzoxazona/farmacocinética , Metoprolol/farmacocinética , Metoprolol/farmacología , Tolbutamida/farmacocinética , Compuestos de Sodio/toxicidad , Compuestos de Sodio/farmacocinética
2.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791175

RESUMEN

The modified release of active substances such as chlorzoxazone from matrix tablets, based on Kollidon®SR and chitosan, depends both on the drug solubility in the dissolution medium and on the matrix composition. The aim of this study is to obtain some new oral matrix tablet formulations, based on Kollidon®SR and chitosan, in order to optimize the low-dose oral bioavailability of chlorzoxazone, a non-steroidal anti-inflammatory drug of class II Biopharmaceutical Classification System. Nine types of chlorzoxazone matrix tablets were obtained using the direct compression method by varying the components ratio as 1:1, 1:2, and 1:3 chlorzoxazone/excipients, 20-40 w/w % Kollidon®SR, 3-7 w/w % chitosan while the auxiliary substances: Aerosil® 1 w/w %, magnesium stearate 0.5 w/w % and Avicel® up to 100 w/w % were kept in constant concentrations. Pharmaco-technical characterization of the tablets included the analysis of flowability and compressibility properties (flow time, friction coefficient, angle of repose, Hausner ratio, and Carr index), and pharmaco-chemical characteristics (such as mass and dose uniformity, thickness, diameter, mechanical strength, friability, softening degree, and in vitro release profiles). Based on the obtained results, only three matrix tablet formulations (F1b, F2b, and F3b, containing 30 w/w % KOL and 5 w/w % CHT, were selected and further tested. These formulations were studied in detail by Fourier-transform infrared spectrometry, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. The three formulations were comparatively studied regarding the release kinetics of active substances using in vitro release testing. The results were analyzed by fitting into four representative mathematical models for the modified-release oral formulations. In vitro kinetic study revealed a complex mechanism of release occurring in two steps of drug release, the first step (0-2 h) and the second (2-36 h). Two factors were calculated to assess the release profile of chlorzoxazone: f1-the similarity factor, and f2-the factor difference. The results have shown that both Kollidon®SR and chitosan may be used as matrix-forming agents when combined with chlorzoxazone. The three formulations showed optima pharmaco-technical properties and in vitro kinetic behavior; therefore, they have tremendous potential to be used in oral pharmaceutical products for the controlled delivery of chlorzoxazone. In vitro dissolution tests revealed a faster drug release for the F2b sample.


Asunto(s)
Quitosano , Clorzoxazona , Preparaciones de Acción Retardada , Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Comprimidos , Comprimidos/química , Clorzoxazona/química , Clorzoxazona/farmacocinética , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Quitosano/química , Solubilidad , Excipientes/química , Química Farmacéutica/métodos
3.
Br J Clin Pharmacol ; 85(10): 2310-2320, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31222796

RESUMEN

AIMS: Chlorzoxazone is the paradigm marker substrate for CYP2E1 phenotyping in vivo. Because at the commonly used milligram doses (250-750 mg) chlorzoxazone acts as an inhibitor of the CYP3A4/5 marker substrate midazolam, previous attempts failed to combine both drugs in a common phenotyping cocktail. Microdosing chlorzoxazone could circumvent this problem. METHOD: We enrolled 12 healthy volunteers in a trial investigating the dose-exposure relationship of single ascending chlorzoxazone oral doses over a 10,000-fold range (0.05-500 mg) and assessed the effect of 0.1 and 500 mg of chlorzoxazone on oral midazolam pharmacokinetics (0.003 mg). RESULTS: Chlorzoxazone area under the concentration-time curve was dose-linear in the dose range between 0.05 and 5 mg. A nonlinear increase occurred with doses ≥50 mg, probably due to saturated presystemic metabolic elimination. While midazolam area under the concentration-time curve increased 2-fold when coadministered with 500 mg of chlorzoxazone, there was no pharmacokinetic interaction between chlorzoxazone and midazolam microdoses. CONCLUSION: The chlorzoxazone microdose did not interact with the CYP3A marker substrate midazolam, enabling the simultaneous administration in a phenotyping cocktail. This microdose assay is now ready to be further validated and tested as a phenotyping procedure assessing the impact of induction and inhibition of CYP2E1 on chlorzoxazone microdose pharmacokinetics.


Asunto(s)
Clorzoxazona/administración & dosificación , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Midazolam/administración & dosificación , Administración Oral , Adulto , Área Bajo la Curva , Clorzoxazona/farmacocinética , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Humanos , Masculino , Midazolam/farmacocinética , Persona de Mediana Edad , Fenotipo , Adulto Joven
4.
Br J Clin Pharmacol ; 84(8): 1738-1747, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29618168

RESUMEN

AIMS: To test the in vivo activity of Cytochrome P450 (CYP) 2E1 in obese children vs. nonobese children, aged 11-18 years. Secondly, whether the activity of CYP2E1 in these patients is associated with NALFD, diabetes or hyperlipidaemia. METHODS: Seventy children were divided into groups by body mass index (BMI) standard deviation score (SDS). All children received 250 mg oral chlorzoxazone (CLZ) as probe for CYP2E1 activity. Thirteen blood samples and 20-h urine samples were collected per participant. RESULTS: Obese children had an increased oral clearance and distribution of CLZ, indicating increased CYP2E1 activity, similar to obese adults. The mean AUC0-∞ value of CLZ was decreased by 46% in obese children compared to nonobese children. The F was was increased twofold in obese children compared to nonobese children, P < 0.0001. Diabetic biomarkers were significantly increased in obese children, while fasting blood glucose and Hba1c levels were nonsignificant between groups. Liver fat content was not associated with CLZ Cl. CONCLUSION: Oral clearance of CLZ was increased two-fold in obese children vs. nonobese children aged 11-18 years. This indicates an increased CYP2E1 activity of clinical importance, and dose adjustment should be considered for CLZ.


Asunto(s)
Clorzoxazona/farmacocinética , Citocromo P-450 CYP2E1/metabolismo , Obesidad/metabolismo , Administración Oral , Adolescente , Área Bajo la Curva , Índice de Masa Corporal , Niño , Clorzoxazona/administración & dosificación , Diabetes Mellitus , Relación Dosis-Respuesta a Droga , Hígado Graso , Femenino , Humanos , Hidroxilación , Masculino , Tasa de Depuración Metabólica/fisiología , Obesidad/sangre , Obesidad/fisiopatología , Obesidad/orina
5.
Arch Toxicol ; 92(10): 3077-3091, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30151596

RESUMEN

CYP2E1 activity is measured in vitro and in vivo via hydroxylation of the Chlorzoxazone (CHZ) producing the 6-hydroxychlorzoxazone (OH-CHZ) further metabolized as a glucuronide excreted in urine. Thus, the quantification of the OH-CHZ following enzymatic hydrolysis of CHZ-derived glucuronide appears to be a reliable assay to measure the CYP2E1 activity without direct detection of this glucuronide. However, OH-CHZ hydrolyzed from urinary glucuronide accounts for less than 80% of the CHZ administrated dose in humans leading to postulate the production of other unidentified metabolites. Moreover, the Uridine 5'-diphospho-glucuronosyltransferase (UGT) involved in the hepatic glucuronidation of OH-CHZ has not yet been identified. In this study, we used recombinant HepG2 cells expressing CYP2E1, metabolically competent HepaRG cells, primary hepatocytes and precision-cut human liver slices to identify metabolites of CHZ (300 µM) by high pressure liquid chromatography-UV and liquid-chromatography-mass spectrometry analyses. Herein, we report the detection of the CHZ-O-glucuronide (CHZ-O-Glc) derived from OH-CHZ in culture media but also in mouse and human urine and we identified a novel CHZ metabolite, the CHZ-N-glucuronide (CHZ-N-Glc), which is resistant to enzymatic hydrolysis and produced independently of CHZ hydroxylation by CYP2E1. Moreover, we demonstrate that UGT1A1, 1A6 and 1A9 proteins catalyze the synthesis of CHZ-O-Glc while CHZ-N-Glc is produced by UGT1A9 specifically. Together, we demonstrated that hydrolysis of CHZ-O-Glc is required to reliably quantify CYP2E1 activity because of the rapid transformation of OH-CHZ into CHZ-O-Glc and identified the CHZ-N-Glc produced independently of the CYP2E1 activity. Our results also raise the questions of the contribution of CHZ-N-Glc in the overall CHZ metabolism and of the quantification of CHZ glucuronides in vitro and in vivo for measuring UGT1A activities.


Asunto(s)
Clorzoxazona/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glucurónidos/metabolismo , Hepatocitos/metabolismo , Animales , Clorzoxazona/análogos & derivados , Clorzoxazona/farmacocinética , Clorzoxazona/orina , Cromatografía Líquida de Alta Presión , Medios de Cultivo/análisis , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Hidroxilación , Masculino , Ratones Endogámicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Biomed Chromatogr ; 32(7): e4232, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29505100

RESUMEN

A facile, fast and specific method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous quantitation of paracetamol, chlorzoxazone and aceclofenac in human plasma was developed and validated. Sample preparation was achieved by liquid-liquid extraction. The analysis was performed on a reversed-phase C18 HPLC column (5 µm, 4.6 × 50 mm) using acetonitrile-10 mM ammonium formate pH 3.0 (65:35, v/v) as the mobile phase where atrovastatin was used as an internal standard. A very small injection volume (3 µL) was applied and the run time was 2.0 min. The detection was carried out by electrospray positive and negative ionization mass spectrometry in the multiple-reaction monitoring mode. The developed method was capable of determining the analytes over the concentration ranges of 0.03-30.0, 0.015-15.00 and 0.15-15.00 µg/mL for paracetamol, chlorzoxazone and aceclofenac, respectively. Intraday and interday precisions (as coefficient of variation) were found to be ≤12.3% with an accuracy (as relative error) of ±5.0%. The method was successfully applied to a pharmacokinetic study of the three analytes after being orally administered to six healthy volunteers.


Asunto(s)
Acetaminofén/sangre , Clorzoxazona/sangre , Cromatografía Liquida/métodos , Diclofenaco/análogos & derivados , Espectrometría de Masas en Tándem/métodos , Acetaminofén/química , Acetaminofén/farmacocinética , Clorzoxazona/química , Clorzoxazona/farmacocinética , Diclofenaco/sangre , Diclofenaco/química , Diclofenaco/farmacocinética , Humanos , Límite de Detección , Modelos Lineales , Masculino , Reproducibilidad de los Resultados
7.
Drug Metab Dispos ; 45(5): 512-522, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28254952

RESUMEN

MicroRNAs (miRNAs or miRs), including miR-34a, have been shown to regulate nuclear receptor, drug-metabolizing enzyme, and transporter gene expression in various cell model systems. However, to what degree miRNAs affect pharmacokinetics (PK) at the systemic level remains unknown. In addition, miR-34a replacement therapy represents a new cancer treatment strategy, although it is unknown whether miR-34a therapeutic agents could elicit any drug-drug interactions. To address this question, we refined a practical single-mouse PK approach and investigated the effects of a bioengineered miR-34a agent on the PK of several cytochrome P450 probe drugs (midazolam, dextromethorphan, phenacetin, diclofenac, and chlorzoxazone) administered as a cocktail. This approach involves manual serial blood microsampling from a single mouse and requires a sensitive liquid chromatography-tandem mass spectrometry assay, which was able to illustrate the sharp changes in midazolam PK by ketoconazole and pregnenolone 16α-carbonitrile as well as phenacetin PK by α-naphthoflavone and 3-methylcholanthrene. Surprisingly, 3-methylcholanthrene also decreased systemic exposure to midazolam, whereas both pregnenolone 16α-carbonitrile and 3-methylcholanthrene largely reduced the exposure to dextromethorphan, diclofenac, and chlorzoxazone. Finally, the biologic miR-34a agent had no significant effects on the PK of cocktail drugs but caused a marginal (45%-48%) increase in systemic exposure to midazolam, phenacetin, and dextromethorphan in mice. In vitro validation of these data suggested that miR-34a slightly attenuated intrinsic clearance of dextromethorphan. These findings from single-mouse PK and corresponding mouse liver microsome models suggest that miR-34a might have minor or no effects on the PK of coadministered cytochrome P450-metabolized drugs.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , MicroARNs/farmacología , Animales , Clorzoxazona/farmacocinética , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Dextrometorfano/farmacocinética , Diclofenaco/farmacocinética , Interacciones Farmacológicas , Masculino , Ratones , Midazolam/farmacocinética , Farmacocinética , Fenacetina/farmacocinética
8.
Phytother Res ; 30(3): 463-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26680654

RESUMEN

The purpose of the present study was to investigate the effect of resveratrol (RSV) pretreatment on CYP2E1 enzyme activity and pharmacokinetics of chlorzoxazone (CHZ) in healthy human volunteers. The open-label, two period, sequential study was conducted in 12 healthy human volunteers. A single dose of RSV 500 mg was administered once daily for 10 days during treatment phase. A single dose of CHZ 250 mg was administered during control and after treatment phases under fasting conditions. The blood samples were collected after CHZ dosing at predetermined time intervals and analyzed by HPLC. RSV pretreatment significantly enhanced the maximum plasma concentration (Cmax), area under the curve (AUC) and half life (T1/2) and significantly decreased elimination rate constant (Kel), apparent oral clearance (CL/F) and apparent volume of distribution (Vd/F) of CHZ as compared to that of control. In addition, RSV pretreatment significantly decreased the metabolite to parent (6-OHCHZ/CHZ) ratios of Cmax, AUC and T1/2 and significantly increased the Kel ratio of 6-OHCHZ/CHZ, which indicated the reduced formation of CHZ to 6-OHCHZ. The results suggest that the altered CYP2E1 enzyme activity and pharmacokinetics of CHZ might be attributed to RSV mediated inhibition of CYP2E1 enzyme. Thus, there is a potential pharmacokinetic interaction between RSV and CHZ. The inhibition of CYP2E1 by RSV may provide a novel approach for minimizing the hepatotoxicity of ethanol.


Asunto(s)
Clorzoxazona/farmacocinética , Citocromo P-450 CYP2E1/metabolismo , Inhibidores Enzimáticos/farmacología , Interacciones de Hierba-Droga , Extractos Vegetales/farmacología , Estilbenos/farmacología , Adulto , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Ayuno , Semivida , Voluntarios Sanos , Humanos , Masculino , Resveratrol , Adulto Joven
9.
Xenobiotica ; 45(4): 353-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25815637

RESUMEN

1. Chlorzoxazone (CLZ) is currently being used as a marker substrate in vitro/vivo studies to quantify cytochrome P450 2E1 (CYP2E1) activity in humans. Although in CLZ 6-hydroxylation several CYPs are responsible, previous studies have presented the monophasicity of the reaction in human liver microsomes (HLMs). Furthermore, the Km values of CYP2E1 for the 6-hydroxylation in HLMs were reported to be lower than those of its recombinant enzymes. 2. This study aimed to provide the comprehensive Km values for the CLZ 6-hydroxylation in HLMs using CYP antibodies. The Eadie-Hofstee plots revealed a biphasic profile and indicate that the reaction was mainly mediated by CYP1A2 as well as CYP2E1. The formation of 6-hydroxychlorzoxazone was more specific for CYP2E1 activity at higher substrate concentration in HLMs. 3. Moreover, KOH as a vehicle for substrate or sucrose included in HLMs preparation had some effect on the activity of CLZ 6-hydroxylase. These constituents seemed to be casually related to the apparent monophasic kinetics and variability in Km values for the CLZ 6-hydroxylation in HLMs. 4. The Km of CYP1A2 and CYP2E1 in HLMs was 3.8 µmol/L and 410 µmol/L, respectively, and the value of CYP2E1 was close to that of recombinant CYP2E1.


Asunto(s)
Clorzoxazona/análogos & derivados , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Clorzoxazona/farmacocinética , Cromatografía Liquida , Humanos , Hidroxilación , Microsomas Hepáticos/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometría de Masas en Tándem
10.
Pharmazie ; 69(4): 301-5, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24791596

RESUMEN

The purpose of this study was to find out whether icaritin influences the effect on rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2E1 and CYP3A4) using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (20 mg/kg), tolbutamide (5 mg/kg), chlorzoxazone (20 mg/kg) and midazolam (10 mg/kg), was orally administered to rats treated with multiple doses of icaritin. Blood samples were collected at a series of time-points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 2.0. Treatment with multiple doses of icaritin had inhibitive effects on rat CYP1A2, CYP2C9 and CYP3A4 enzyme activities. However, icaritin has no inductive or inhibitory effect on the activity of CYP2E1. Therefore, caution is needed when icaritin is co-administered with some CYP1A2, CYP2C9 or CYP3A4 substrates, which may result in treatment failure and herb-drug interactions.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Flavonoides/farmacología , Hígado/metabolismo , Animales , Clorzoxazona/farmacocinética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Semivida , Indicadores y Reactivos , Isoenzimas/metabolismo , Hígado/efectos de los fármacos , Masculino , Midazolam/farmacocinética , Fenacetina/farmacocinética , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Tolbutamida/farmacocinética , Xenobióticos/metabolismo
12.
J Pharm Pharm Sci ; 16(4): 648-56, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24210069

RESUMEN

PURPOSE: To evaluate the possible changes in CYP2E1 expression and activity in hyperlipidemia (HL), we evaluated the pharmacokinetics of chlorzoxazone (CZX) as a CYP2E1 probe in rats with HL induced by poloxamer 407 (HL rats). METHODS: The pharmacokinetics of CZX and its 6-hydroxy metabolite (OH-CZX) were evaluated after intravenous administration of 20 mg/kg CZX to both control and HL rats. We also examined changes in the expression of CYP2E1 and its in vitro metabolic activity in hepatic microsomal fractions from HL rats. RESULTS: The total area under the plasma concentration-time curve (AUC) of CZX in the HL rats after its intravenous administration was comparable with that in the controls due to unchanged non-renal clearance (CLNR). The AUC of OH-CZX and AUCOH-CZX/AUCCZX ratios in HL rats also remained unchanged. This was primarily due to the comparable hepatic CLint for metabolism of CZX to OH-CZX via CYP2E1 between the control and HL rats as a result of unchanged expression of CYP2E1 in HL rats. CONCLUSIONS: This is the first study to evaluate CYP2E1 expression and activity in HL rats and their effects on the pharmacokinetics of a CYP2E1 probe drug. These findings have potential therapeutic implications assuming that the HL rat model qualitatively reflects similar changes in patients with HL.


Asunto(s)
Clorzoxazona/farmacocinética , Citocromo P-450 CYP2E1/metabolismo , Hiperlipidemias/metabolismo , Animales , Proteínas Sanguíneas/metabolismo , Clorzoxazona/sangre , Hiperlipidemias/inducido químicamente , Hígado/enzimología , Masculino , Microsomas Hepáticos/metabolismo , Poloxámero , Unión Proteica , Ratas , Ratas Sprague-Dawley
13.
Zhongguo Zhong Yao Za Zhi ; 38(12): 2009-14, 2013 Jun.
Artículo en Zh | MEDLINE | ID: mdl-24066602

RESUMEN

OBJECTIVE: To investigate the effect of CYP450 enzyme inhibition of berberine in pooled human liver microsomes by cocktail probe drugs. METHOD: Cocktail probe drugs method has been established, an LC-MS/MS analytical method has been established to determine the five probes of midazolam, phenacetin, dextromethorphan, tolbutamide, chlorzoxazone and the internal standard was benzhydramine to evaluate the effect of CYP450 activity following administration of berberine in pooled human liver microsomes. RESULT: Compared with control group, the pharmacokinetics of midazolam, phenacetin and tolbutamide were no significant differences, but the pharmacokinetics of chlorzoxazone was significantly decreased. There were no significant differences for the pharmacokinetics of dextromethorphan when the concentration of berberine was 50 microg x L(-1). The pharmacokinetics of dextromethorphan was significantly decreased when the concentration of berberine was exceed 200 microg x L(-1). CONCLUSION: Berberine has no influence on the activities of CYP3A4, CYP1A2 and CYP2C19 below 2 000 microg x L(-1), but can inhibit the activity of CYP2E1 and CYP2D6 in concentration-dependent.


Asunto(s)
Berberina/farmacología , Inhibidores Enzimáticos del Citocromo P-450 , Microsomas Hepáticos/enzimología , Clorzoxazona/farmacocinética , Dextrometorfano/farmacocinética , Relación Dosis-Respuesta a Droga , Humanos , Midazolam/farmacocinética , Fenacetina/farmacocinética , Tolbutamida/farmacocinética
14.
Br J Clin Pharmacol ; 69(2): 152-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20233178

RESUMEN

AIMS: Smoking slows the metabolism of nicotine and accelerates the metabolism of chlorzoxazone, which are probe reactions for cytochrome P450 2A6 (CYP2A6) and CYP2E1 activities, respectively. We aimed to determine the role of nicotine in these metabolic effects of cigarette smoking. METHODS: The study had a single-blind, randomized, crossover two-arm design. Twelve healthy smokers were given two transdermal patches with 42-mg nicotine a day or placebo patches, each for 10 days. The subjects abstained from smoking during the study arms. Oral chlorzoxazone was given on day 7 and deuterium-labelled nicotine-d(2) and cotinine-d(4) infusion on day 8. RESULTS: There was no significant influence of transdermal nicotine administration on pharmacokinetic parameters of nicotine-d(2) or on the formation of cotinine-d(2). Nicotine decreased the volume of distribution (62.6 vs. 67.7 l, 95% confidence interval of the difference -9.7, -0.6, P= 0.047) of infused cotinine-d(4). There were no significant differences in disposition kinetics of chlorzoxazone between the treatments. CONCLUSIONS: CYP2A6 and CYP2E1 activities are not affected by nicotine. The tobacco smoke constituents responsible for the reduced CYP2A6 and increased CYP2E1 activities remain unknown.


Asunto(s)
Clorzoxazona/farmacocinética , Citocromo P-450 CYP2E1/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Relajantes Musculares Centrales/farmacocinética , Nicotina/farmacología , Agonistas Nicotínicos/farmacocinética , Adulto , Anciano , Hidrocarburo de Aril Hidroxilasas/metabolismo , Clorzoxazona/metabolismo , Cotinina/metabolismo , Estudios Cruzados , Interacciones Farmacológicas , Femenino , Humanos , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Método Simple Ciego , Fumar/metabolismo , Adulto Joven
15.
Planta Med ; 76(3): 245-50, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19774504

RESUMEN

Shenmai injection (SMI), a mixture of Radix Ginseng and Radix Ophiopogonis, is one of the most popular herbal medicinal products and is widely used for the treatment of coronary atherosclerotic cardiopathy and viral myocarditis. The purpose of this study was to investigate the effect of SMI, in vivo and in vitro, on the metabolic activities of hepatic cytochrome CYP450 3A1/2, 2C6, 2E1, and 1A2 in rats. After a single or multiple pretreatment with SMI, the rats were administrated intravenously a cocktail containing midazolam (1 mg/kg), diclofenac (0.5 mg/kg), theophylline (1 mg/kg), and chlorzoxazone (0.5 mg/kg) as probe substrates of rat CYP450 3A1/2, 2C6, 1A2, and 2E1, respectively. Single and multiple SMI pretreatment to rats resulted in a rise of 33.8 % (p < 0.01) and 25.6 % (p < 0.01) in AUC for midazolam, and an increase in AUC for diclofenac by 14.7 % (p < 0.05) and 31.2 % (p < 0.01), respectively. However, the pharmacokinetics of chlorzoxazone and theophylline in rats was not altered markedly. In rat liver microsomes, linear mixed-type inhibition of SMI against the enzyme activities of CYP3A1/2, CYP2C6, and CYP1A2 was shown with IC(50) values of 3.3 %, 2.0 %, and 3.1 % and K(i) values of 3.8 %, 1.5 %. and 1.9 %, respectively. These in vivo and in vitro results demonstrated that SMI had the potential to inhibit the activities of hepatic CYP3A1/2 and CYP2C6, but might not significantly affect CYP1A2 and CYP2E1-mediated metabolism in rats.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Medicamentos Herbarios Chinos/farmacología , Interacciones de Hierba-Droga , Inactivación Metabólica , Hígado/efectos de los fármacos , Ophiopogon , Panax , Animales , Área Bajo la Curva , Clorzoxazona/farmacocinética , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Diclofenaco/farmacocinética , Combinación de Medicamentos , Concentración 50 Inhibidora , Inyecciones , Hígado/metabolismo , Masculino , Midazolam/farmacocinética , Raíces de Plantas , Ratas , Ratas Sprague-Dawley , Teofilina/farmacocinética
16.
Drug Metab Pharmacokinet ; 35(5): 425-431, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32788076

RESUMEN

Hemoglobin-vesicles (Hb-V), hemoglobin encapsulated within a liposome, were developed as an artificial red blood cell (RBC). When Hb-V becomes clinically available in the future, patients would presumably be co-administered with one or more drugs. Since drug-drug interactions can cause serious adverse effects and impede overall curative effects, evidence regarding the risk associated with drug-drug interactions between Hb-V and such simultaneously administered drugs is needed. Therefore, we report on cytochrome P450 (CYP)-based drug interactions with Hb-V in healthy rats. At 1 day after the saline, Hb-V or packed RBC (PRBC) administration, the blood retention of CYP-metabolizing drugs (caffeine, chlorzoxazone, tolbutamide and midazolam) were moderately prolonged in the case of the Hb-V group, but not the PRBC group, compared to saline group. The results of a proteome analysis revealed that the Hb-V administration had only negligible effects on the protein expression of CYPs in the liver. Hb-V administration, however, clearly suppressed the CYP metabolic activity of the four target CYP isoforms compared with the saline and PRBC group. However, these alterations were nearly recovered at 7 day after the Hb-V administration. Taken together, these results suggest that the administration of Hb-V slightly and transiently affects the CYP-based metabolism of the above drugs.


Asunto(s)
Cafeína/farmacocinética , Clorzoxazona/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Hemoglobinas/metabolismo , Midazolam/farmacocinética , Tolbutamida/farmacocinética , Animales , Cafeína/química , Clorzoxazona/química , Sistema Enzimático del Citocromo P-450/química , Interacciones Farmacológicas , Hemoglobinas/química , Liposomas/química , Liposomas/metabolismo , Masculino , Midazolam/química , Ratas , Ratas Sprague-Dawley , Tolbutamida/química
17.
Biopharm Drug Dispos ; 30(8): 485-93, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19753555

RESUMEN

It has been reported that chlorzoxazone (CZX) was primarily metabolized via hepatic Cyp2e1 to form 6-hydroxychlorzoxazone (OH-CZX) in rats, and the activity of aniline hydroxylase (a Cyp2e1 marker) in the liver was significantly decreased in rats at 24 h after pretreatment with lipopolysaccharide derived from Klebsiella pneumoniae (24 h KPLPS rats), whereas the levels were not changed at 2 h and 96 h in the KPLPS rats. Thus, the time-dependent pharmacokinetic parameters of CZX and OH-CZX were evaluated after the intravenous administration of CZX (20 mg/kg) to control rats, and the 2 h, 24 h and 96 h KPLPS rats along with the time-dependent changes in the protein expression of hepatic Cyp2e1. After the intravenous administration of CZX to 24 h KPLPS rats, the AUC(0-2 h) of OH-CZX and AUC(OH-CZX, 0-2 h)/AUC(CZX) were significantly smaller (by 40.5% and 71.2%, respectively) than those of controls due to the significant decrease (by 75.3%) in the protein expression of hepatic Cyp2e1. However, in 96 h KPLPS rats, the pharmacokinetic parameters of both CZX and OH-CZX were unchanged compared with controls due to the restoration of the protein expression of hepatic Cyp2e1 to control levels. These observations highlighted the existence of the time-dependent effects of KPLPS on the pharmacokinetics of CZX and OH-CZX in rats.


Asunto(s)
Clorzoxazona/análogos & derivados , Citocromo P-450 CYP2E1/metabolismo , Endotoxinas/farmacología , Klebsiella pneumoniae/química , Lipopolisacáridos/farmacología , Lesión Renal Aguda/metabolismo , Animales , Clorzoxazona/farmacocinética , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Inyecciones Intravenosas , Lipopolisacáridos/farmacocinética , Masculino , Microsomas Hepáticos/metabolismo , Relajantes Musculares Centrales/farmacocinética , Ratas , Ratas Sprague-Dawley
18.
J Chromatogr Sci ; 57(8): 751-757, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31363741

RESUMEN

A simple, sensitive, specific, accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determination of chlorzoxazone in human plasma was developed and validated to evaluate the pharmacokinetic characteristics of chlorzoxazone test or reference formulation. Sample preparation was achieved by one step protein precipitation and dilution with acetontrile. The chromatographic separation was performed at 40°C with a gradient mobile phase (0.3 mL/min) and a Shimadzu VP-ODS C18 analytical column (column size: 150 × 2.0 mm). TSQ quantum access triple-quadrapole MS/MS detection was operated in a negative mode by multiple reaction monitoring. Ion transitions at m/z 168.0→132.1 for chlorzoxazone and m/z 451.3→379.3 for repaglinide (internal standard) were used for the LC-MS/MS analysis. The calibration was linear (r ≥ 0.995) over the tested concentration range of 0.2-20 µg/mL for chlorzoxazone in plasma. Precision, accuracy, recovery, matrix effect and stability for chlorzoxazone were evaluated and were excellent within the range of tested concentrations. This method was successfully applied to a bioequivalence study in 20 healthy Chinese volunteers. This method could also contribute to the personalized medication and therapeutic drug monitoring of chlorzoxazone.


Asunto(s)
Clorzoxazona/sangre , Clorzoxazona/farmacocinética , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Adulto , Monitoreo de Drogas , Humanos , Equivalencia Terapéutica , Adulto Joven
19.
Clin Pharmacol Ther ; 106(6): 1280-1289, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31099895

RESUMEN

We conducted a comprehensive in vivo study evaluating the influence of type 2 diabetes (T2D) on major cytochrome P450 (CYP450) activities. These activities were assessed in 38 T2D and 35 non-T2D subjects after a single oral administration of a cocktail of probe drugs: 100 mg caffeine (CYP1A2), 100 mg bupropion (CYP2B6), 250 mg tolbutamide (CYP2C9), 20 mg omeprazole (CYP2C19), 30 mg dextromethorphan (CYP2D6), 2 mg midazolam (CYP3As), and 250 mg chlorzoxazone (alone; CYP2E1). Mean metabolic activity for CYP2C19, CYP2B6, and CYP3A was decreased in subjects with T2D by about 46%, 45%, and 38% (P < 0.01), respectively. CYP1A2 and CYP2C9 activities seemed slightly increased in subjects with diabetes, and no difference was observed for CYP2D6 or CYP2E1 activities. Several covariables, such as inflammatory markers (interleukin (IL)-1ß, IL-6, gamma interferon, and tumor necrosis factor alpha), genotypes, and diabetes-related and demographic-related factors were considered in our analyses. Our results indicate that low chronic inflammatory status associated with T2D modulates CYP450 activities in an isoform-specific manner.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Diabetes Mellitus Tipo 2/enzimología , Adulto , Anciano , Bupropión/farmacocinética , Cafeína/farmacocinética , Estudios de Casos y Controles , Clorzoxazona/farmacocinética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Dextrometorfano/farmacocinética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Interferón gamma/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Midazolam/farmacocinética , Persona de Mediana Edad , Omeprazol/farmacocinética , Tolbutamida/farmacocinética , Factor de Necrosis Tumoral alfa/metabolismo
20.
Nutrients ; 11(10)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618937

RESUMEN

Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) contains various phytonutrients for treating many diseases in Asia. To investigate whether orally administered adlay bran oil (ABO) can cause drug interactions, the effects of ABO on the pharmacokinetics of five cytochrome P450 (CYP) probe drugs were evaluated. Rats were given a single oral dose (2.5 mL/kg BW) of ABO 1 h before administration of a drug cocktail either orally or intravenously, and blood was collected at various time points. A single oral dose of ABO administration did not affect the pharmacokinetics of five probe drugs when given as a drug cocktail intravenously. However, ABO increased plasma theophylline (+28.4%), dextromethorphan (+48.7%), and diltiazem (+46.7%) when co-administered an oral drug cocktail. After 7 days of feeding with an ABO-containing diet, plasma concentrations of theophylline (+45.4%) and chlorzoxazone (+53.6%) were increased after the oral administration of the drug cocktail. The major CYP enzyme activities in the liver and intestinal tract were not affected by ABO treatment. Results from this study indicate that a single oral dose or short-term administration of ABO may increase plasma drug concentrations when ABO is given concomitantly with drugs. ABO is likely to enhance intestinal drug absorption. Therefore, caution is needed to avoid food-drug interactions between ABO and co-administered drugs.


Asunto(s)
Capsaicina/química , Clorzoxazona/farmacocinética , Dextrometorfano/farmacocinética , Diclofenaco/farmacocinética , Diltiazem/farmacocinética , Interacciones Alimento-Droga , Aceites de Plantas/administración & dosificación , Teofilina/farmacocinética , Administración Intravenosa , Administración Oral , Animales , Clorzoxazona/administración & dosificación , Clorzoxazona/toxicidad , Sistema Enzimático del Citocromo P-450/metabolismo , Dextrometorfano/administración & dosificación , Dextrometorfano/toxicidad , Diclofenaco/administración & dosificación , Diclofenaco/toxicidad , Diltiazem/administración & dosificación , Diltiazem/toxicidad , Absorción Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/enzimología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Aceites de Plantas/aislamiento & purificación , Aceites de Plantas/toxicidad , Ratas Sprague-Dawley , Medición de Riesgo , Teofilina/administración & dosificación , Teofilina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA