Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Bull Exp Biol Med ; 171(6): 727-731, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34705174

RESUMEN

The parameters of coupled respiration and transport of calcium ions in mitochondria isolated from the heart of rats were studied in two modes of exposure to epinephrine for modelling myocardial damage. In 24 h after injection of 1.5 mg/kg epinephrine to rats, we observed a decrease in the efficiency of oxidative phosphorylation in heart mitochondria in the presence of both NADH- and FADH-dependent respiratory substrates. Increasing the epinephrine dose and exposure (2 mg/kg, 72 h) led to a more pronounced decrease in the ADP/O coefficient when succinate was used as a substrate, which indicated a predominant decrease in the activity of complex II of the respiratory chain. The injection of epinephrine in the two modes resulted in a decrease in the rate of calcium entry in rat heart mitochondria, but had no effect on mitochondrial calcium retention capacity, which reflects the resistance of the organelles to the induction of the Са2+-dependent pore. These findings suggest that both cardiomyopathy models in rats can be used to study the effectiveness of pharmacological therapy using mitochondria-targeted agents.


Asunto(s)
Cardiomiopatías/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Adenosina Trifosfato/biosíntesis , Animales , Calcio/metabolismo , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Cationes Bivalentes , Modelos Animales de Enfermedad , Complejo II de Transporte de Electrones/metabolismo , Epinefrina/administración & dosificación , Ácido Glutámico/metabolismo , Malatos/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , NAD/metabolismo , Ratas , Ratas Wistar , Ácido Succínico/metabolismo
2.
Am J Physiol Endocrinol Metab ; 317(2): E284-E297, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31184932

RESUMEN

Hydrogen sulfide (H2S), a gaseous molecule, is involved in modulating multiple physiological functions, such as antioxidant, antihypertension, and the production of polysulfide cysteine. H2S may inhibit reactive oxygen species generation and ATP production through modulating respiratory chain enzyme activities; however, the mechanism of this effect remains unclear. In this study, db/db mice, neonatal rat cardiomyocytes, and H9c2 cells treated with high glucose, oleate, and palmitate were used as animal and cellular models of type 2 diabetes. The mitochondrial respiratory rate, respiratory chain complex activities, and ATP production were decreased in db/db mice compared with those in db/db mice treated with exogenous H2S. Liquid chromatography with tandem mass spectrometry analysis showed that the acetylation level of proteins involved in the mitochondrial respiratory chain were increased in the db/db mice hearts compared with those with sodium hydrosulfide (NaHS) treatment. Exogenous H2S restored the ratio of NAD+/NADH, enhanced the expression and activity of sirtuin 3 (SIRT3) and decreased mitochondrial acetylation level in cardiomyocytes under hyperglycemia and hyperlipidemia. As a result of SIRT3 activation, acetylation of the respiratory complexe enzymes NADH dehydrogenase 1 (ND1), ubiquinol cytochrome c reductase core protein 1, and ATP synthase mitochondrial F1 complex assembly factor 1 was reduced, which enhanced the activities of the mitochondrial respiratory chain activity and ATP production. We conclude that exogenous H2S plays a critical role in improving cardiac mitochondrial function in diabetes by upregulating SIRT3.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo I de Transporte de Electrón/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , ATPasas de Translocación de Protón Mitocondriales/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sirtuina 3/metabolismo , Acetilación/efectos de los fármacos , Animales , Animales Recién Nacidos , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , NAD/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
3.
Curr Genet ; 65(6): 1347-1353, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31172256

RESUMEN

The respiratory chain has been proposed as an attractive target for the development of new therapies to tackle human fungal pathogens. This arises from the presence of fungal-specific electron transport chain components and links between respiration and the control of virulence traits in several pathogenic species. However, as the physiological roles of mitochondria remain largely undetermined with respect to pathogenesis, its value as a potential new drug target remains to be determined. The use of respiration inhibitors as fungicides is well developed but has been hampered by the emergence of rapid resistance to current inhibitors. In addition, recent data suggest that adaptation of the human fungal pathogen, Candida albicans, to respiration inhibitors can enhance virulence traits such as yeast-to-hypha transition and cell wall organisation. We conclude that although respiration holds promise as a target for the development of new therapies to treat human fungal infections, we require a more detailed understanding of the role that mitochondria play in stress adaption and virulence.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Antifúngicos/uso terapéutico , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Quimioterapia Combinada , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/efectos de los fármacos , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Hongos/efectos de los fármacos , Hongos/metabolismo , Hongos/patogenicidad , Humanos , Mitocondrias/metabolismo , Micosis/tratamiento farmacológico , Oxidorreductasas/efectos de los fármacos , Oxidorreductasas/metabolismo , Virulencia/efectos de los fármacos
4.
Am J Physiol Endocrinol Metab ; 311(2): E293-301, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27329802

RESUMEN

The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction.


Asunto(s)
Antineoplásicos/farmacología , Catalasa/efectos de los fármacos , Doxorrubicina/farmacología , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Catalasa/genética , Catalasa/metabolismo , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Femenino , Peróxido de Hidrógeno/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/metabolismo , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/fisiopatología , Oxidación-Reducción/efectos de los fármacos , Proteínas/efectos de los fármacos , Proteínas/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 310(6): H667-80, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26747502

RESUMEN

Mitochondrial dysfunction has been implicated as a cause of energy deprivation in heart failure (HF). Herein, we tested individual and combined effects of two pathogenic factors of nonischemic HF, inhibition of nitric oxide synthesis [with l-N(G)-nitroarginine methyl ester (l-NAME)] and hypertension [with angiotensin II (AngII)], on myocardial mitochondrial function, oxidative stress, and metabolic gene expression. l-NAME and AngII were administered individually and in combination to mice for 5 wk. Although all treatments increased blood pressure and reduced cardiac contractile function, the l-NAME + AngII group was associated with the most severe HF, as characterized by edema, hypertrophy, oxidative stress, increased expression of Nppa and Nppb, and decreased expression of Atp2a2 and Camk2b. l-NAME + AngII-treated mice exhibited robust deterioration of cardiac mitochondrial function, as observed by reduced respiratory control ratios in subsarcolemmal mitochondria and reduced state 3 levels in interfibrillar mitochondria for complex I but not for complex II substrates. Cardiac myofibrils showed reduced ADP-supported and oligomycin-inhibited oxygen consumption. Mitochondrial functional impairment was accompanied by reduced mitochondrial DNA content and activities of pyruvate dehydrogenase and complex I but increased H2O2 production and tissue protein carbonyls in hearts from AngII and l-NAME + AngII groups. Microarray analyses revealed the majority of the gene changes attributed to the l-NAME + AngII group. Pathway analyses indicated significant changes in metabolic pathways, such as oxidative phosphorylation, mitochondrial function, cardiac hypertrophy, and fatty acid metabolism in l-NAME + AngII hearts. We conclude that l-NAME + AngII is associated with impaired mitochondrial respiratory function and increased oxidative stress compared with either l-NAME or AngII alone, resulting in nonischemic HF.


Asunto(s)
Angiotensina II/farmacología , Inhibidores Enzimáticos/farmacología , Insuficiencia Cardíaca/etiología , Mitocondrias Cardíacas/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Vasoconstrictores/farmacología , Animales , Factor Natriurético Atrial , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomegalia , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Miocardio/patología , Péptido Natriurético Encefálico/efectos de los fármacos , Péptido Natriurético Encefálico/genética , Péptido Natriurético Tipo-C/efectos de los fármacos , Péptido Natriurético Tipo-C/genética , Precursores de Proteínas/efectos de los fármacos , Precursores de Proteínas/genética , Complejo Piruvato Deshidrogenasa/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
6.
Metab Brain Dis ; 30(2): 545-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25112549

RESUMEN

Studies have been suggested that minocycline can be a potential new agent for the treatment of depression. In addition, both oxidative stress and energy metabolism present an important role in pathophysiology of depression. So, the present study was aimed to evaluate the effects of minocycline on stress oxidative parameters and energy metabolism in the brain of adult rats submitted to the chronic mild stress protocol (CMS). After CMS Wistar, both stressed animals as controls received twice ICV injection of minocycline (160 µg) or vehicle. The oxidative stress and energy metabolism parameters were assessed in the prefrontal cortex (PF), hippocampus (HIP), amygdala (AMY) and nucleus accumbens (Nac). Our findings showed that stress induced an increase on protein carbonyl in the PF, AMY and NAc, and mynocicline injection reversed this alteration. The TBARS was increased by stress in the PF, HIP and NAc, however, minocycline reversed the alteration in the PF and HIP. The Complex I was incrased in AMY by stress, and minocycline reversed this effect, however reduced Complex I activity in the NAc; Complex II reduced in PF and AMY by stress or minocycline; the Complex II-III increased in the HIP in stress plus minocycline treatment and in the NAc with minocycline; in the PF and HIP there were a reduced in Complex IV with stress and minocycline. The creatine kinase was reduced in AMY and NAc with stress and minocycline. In conclusion, minocycline presented neuroprotector effects by reducing oxidative damage and regulating energy metabolism in specific brain areas.


Asunto(s)
Antioxidantes/farmacología , Química Encefálica/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Minociclina/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Psicológico/metabolismo , Animales , Enfermedad Crónica , Creatina Quinasa/metabolismo , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo II de Transporte de Electrones/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Ratas , Ratas Wistar , Estrés Psicológico/tratamiento farmacológico , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
7.
Toxicol Ind Health ; 31(12): 1325-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23843224

RESUMEN

The present study is an unsubstantiated qualitative assessment of the abused drugs-tramadol and clonazepam. The aim of this study is to evaluate whether the effects of tramadol, clonazepam, and their combination on mitochondrial electron transport chain (ETC) complexes were influential at therapeutic or at progressively increasing doses. The study comprised of a total of 70 healthy male rats, aged 3 months. According to the drug intake regimen, animals were divided into seven groups: control, tramadol therapeutic, clonazepam therapeutic, combination therapeutic, tramadol abuse, clonazepam abuse, and combination abuse group. At the end of the experiment, brain mitochondrial ETC complexes (I, II, III, and IV) were evaluated. Histopathological examinations were also performed on brain tissues. The results showed that groups that received tramadol (therapeutic and abuse) suffered from weight loss. Tramadol abuse group and combination abuse group showed significant decrease in the activities of I, III, and IV complexes but not in the activity of complex II. In conclusion, tramadol but not clonazepam has been found to partially inhibit the activities of respiratory chain complexes I, III, and IV but not the activity of complex II and such inhibition occurred only at doses that exceeded the maximum recommended adult human daily therapeutic doses. This result explains the clinical and histopathological effects of tramadol, such as seizures and red neurons (marker for apoptosis), respectively.


Asunto(s)
Modelos Animales de Enfermedad , Complejo III de Transporte de Electrones/efectos de los fármacos , Complejo IV de Transporte de Electrones/efectos de los fármacos , Complejo I de Transporte de Electrón/efectos de los fármacos , Síndromes de Neurotoxicidad/enzimología , Trastornos Relacionados con Opioides/enzimología , Tramadol/envenenamiento , Analgésicos Opioides/envenenamiento , Animales , Anticonvulsivantes/envenenamiento , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Clonazepam/envenenamiento , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Síndromes de Neurotoxicidad/complicaciones , Síndromes de Neurotoxicidad/patología , Trastornos Relacionados con Opioides/complicaciones , Trastornos Relacionados con Opioides/patología , Investigación Cualitativa , Distribución Aleatoria , Ratas , Trastornos Relacionados con Sustancias/complicaciones , Trastornos Relacionados con Sustancias/enzimología , Trastornos Relacionados con Sustancias/patología , Pérdida de Peso/efectos de los fármacos
8.
Biochim Biophys Acta ; 1827(10): 1156-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23800966

RESUMEN

The impact of complex II (succinate:ubiquinone oxidoreductase) on the mitochondrial production of reactive oxygen species (ROS) has been underestimated for a long time. However, recent studies with intact mitochondria revealed that complex II can be a significant source of ROS. Using submitochondrial particles from bovine heart mitochondria as a system that allows the precise setting of substrate concentrations we could show that mammalian complex II produces ROS at subsaturating succinate concentrations in the presence of Q-site inhibitors like atpenin A5 or when a further downstream block of the respiratory chain occurred. Upon inhibition of the ubiquinone reductase activity, complex II produced about 75% hydrogen peroxide and 25% superoxide. ROS generation was attenuated by all dicarboxylates that are known to bind competitively to the substrate binding site of complex II, suggesting that the oxygen radicals are mainly generated by the unoccupied flavin site. Importantly, the ROS production induced by the Q-site inhibitor atpenin A5 was largely unaffected by the redox state of the Q pool and the activity of other respiratory chain complexes. Hence, complex II has to be considered as an independent source of mitochondrial ROS in physiology and pathophysiology.


Asunto(s)
Ciclo del Ácido Cítrico/efectos de los fármacos , Ácidos Dicarboxílicos/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Transporte de Electrón/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Succínico/metabolismo , Animales , Sitios de Unión , Bovinos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Piridonas/farmacología , Superóxidos/metabolismo , Ubiquinona/metabolismo
9.
J Neurochem ; 128(5): 764-75, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24151877

RESUMEN

Psychostimulant methamphetamine (METH) is toxic to striatal dopaminergic and serotonergic nerve terminals in adult, but not in the adolescent, brain. Betulinic acid (BA) and its derivatives are promising anti-HIV agents with some toxic properties. Many METH users, particularly young men, are HIV-positive; therefore, they might be treated with BA or its derivative for HIV infection. It is not known whether BA, or any of its derivatives, are neurotoxic in combination with METH in the adolescent brain. The present study investigated the effects of BA and binge METH in the striatum of late adolescent rats. BA or METH alone did not decrease the levels of dopaminergic or serotonergic markers in the striatum whereas BA and METH together decreased these markers in a BA dose-dependent manner. BA+METH also caused decreases in the levels of mitochondrial complex I in the same manner; BA alone only slightly decreased the levels of this enzyme in striatal synaptosomes. BA or METH alone increased cytochrome c. METH alone decreased parkin, increased complex II and striatal BA levels. These results suggest that METH in combination with BA can be neurotoxic to striatal dopaminergic and serotonergic nerve terminals in the late adolescent brain via mitochondrial dysfunction and parkin deficit. We report a synergistic neurotoxicity of betulinic acid (BA) and methamphetamine (METH) to monoaminergic terminals in the striatum of male late adolescent rats. BA contribution to the neurotoxicity is decreasing mitochondrial complex I whereas METH contribution is decreasing parkin and increasing brain concentration of BA. We propose that clinical use of BA in young male METH users can be neurotoxic.


Asunto(s)
Fármacos Anti-VIH/toxicidad , Dopaminérgicos/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Metanfetamina/toxicidad , Neostriado/patología , Terminaciones Nerviosas/efectos de los fármacos , Neuronas Serotoninérgicas/efectos de los fármacos , Triterpenos/toxicidad , Animales , Western Blotting , Química Encefálica/efectos de los fármacos , Caspasa 3/metabolismo , Quimotripsina/metabolismo , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Fiebre/inducido químicamente , Fiebre/fisiopatología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Neostriado/efectos de los fármacos , Triterpenos Pentacíclicos , Ratas , Ratas Sprague-Dawley , Sinaptosomas/efectos de los fármacos , Sinaptosomas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Betulínico
10.
Neuro Endocrinol Lett ; 35 Suppl 2: 141-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25638378

RESUMEN

OBJECTIVES: Formation of formazan is a commonly used measure of cytotoxicity of compounds. It is a product of reduction of tetrazolium salts such as 4-[3- (4-iodophenyl)-2- (4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride. The extent of substrates reduction reflects the activity of enzymes succinate dehydrogenase (SDH; respiratory complex II) and lactate dehydrogenase (LDH), respectively. The aim of present study was a) to investigate formazan formation under the conditions of in vitro stimulation of cells with interferon-γ (IFN-γ) and lipopolysaccharide (LPS), and b) to analyse possible interference of pyrimidine analogues with formazan production. METHODS: Peritoneal cells and splenocytes were obtained from C57BL/6 mice. They were cultured at 37 degrees C, 5% CO2 in humidified incubator. Levels of formazan were determined at the interval of 24 h of culture using the WST-1 and LDH assays. Nitric oxide (NO) was activated by IFN-γ plus LPS and assayed by Griess reagent 24 h afterwards. Pyrimidines were applied concomitantly with immunostimulatory agents. RESULTS: IFN-γ enhanced concentration of SDH-produced formazan by macrophages (not by splenocytes) by approximately 50%. The activity of LDH remained unaffected. LPS was ineffective in both cases. While pyrimidines with NO-inhibitory properties suppressed the IFN-γ-enhanced levels of SDH-produced formazan, they did not change the LDH-dependent formazan production. CONCLUSION: IFN-γ augments the SDH-produced formazan by macrophages. It does not change the LDH-dependent formazan formation. The enhancing effect may have a significant impact upon the appropriate interpretation of cytotoxic properties of drugs investigated under the conditions of immune stimulation of cells.


Asunto(s)
Complejo II de Transporte de Electrones/efectos de los fármacos , Formazáns/metabolismo , Interferón gamma/farmacología , Pirimidinas/farmacología , Animales , Ratones , Ratones Endogámicos C57BL , Peritoneo/citología , Bazo/citología
11.
Toxicol Appl Pharmacol ; 266(2): 198-203, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22820421

RESUMEN

This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague-Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged and dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Ácidos Aristolóquicos/toxicidad , ADN Mitocondrial/efectos de los fármacos , Necrosis Tubular Aguda/inducido químicamente , Enfermedades Mitocondriales/inducido químicamente , Animales , Ácidos Aristolóquicos/administración & dosificación , Nitrógeno de la Urea Sanguínea , Creatinina/metabolismo , Relación Dosis-Respuesta a Droga , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Antimicrob Agents Chemother ; 55(9): 4204-10, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21670183

RESUMEN

The 8-aminoquinoline analogue sitamaquine (SQ) is an oral antileishmanial drug currently undergoing phase 2b clinical trials for the treatment of visceral leishmaniasis. In the present study, we investigated the mechanism of action of this drug in Leishmania donovani promastigotes. SQ causes a dose-dependent inhibition of complex II (succinate dehydrogenase) of the respiratory chain in digitonin-permeabilized promastigotes, together with a drop in intracellular ATP levels and a decrease of the mitochondrial electrochemical potential. This is associated with increases of reactive oxygen species and intracellular Ca(2+) levels, a higher percentage of the population with sub-G(1) DNA content, and exposure of phosphatidylserine. Taken together, these results support a lethal mechanism for SQ that involves inhibition of the respiratory chain complex II, which in turn triggers oxidative stress and finally leads to an apoptosis-like death of Leishmania parasites.


Asunto(s)
Aminoquinolinas/farmacología , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Leishmania donovani/efectos de los fármacos , Leishmania donovani/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tripanocidas/farmacología , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
13.
Int J Exp Pathol ; 92(4): 281-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21410800

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic condition of the liver in the western world. There is only little evidence about altered sensitivity of steatotic liver to acute toxic injury. The aim of this project was to test whether hepatic steatosis sensitizes rat liver to acute toxic injury induced by thioacetamide (TAA). Male Sprague-Dawley rats were fed ad libitum a standard pelleted diet (ST-1, 10% energy fat) and high-fat gelled diet (HFGD, 71% energy fat) for 6 weeks and then TAA was applied intraperitoneally in one dose of 100 mg/kg. Animals were sacrificed in 24-, 48- and 72-h interval after TAA administration. We assessed the serum biochemistry, the hepatic reduced glutathione, thiobarbituric acid reactive substances, cytokine concentration, the respiration of isolated liver mitochondria and histopathological samples (H+E, Sudan III, bromodeoxyuridine [BrdU] incorporation). Activities of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase and concentration of serum bilirubin were significantly higher in HFGD groups after application of TAA, compared to ST-1. There were no differences in activities of respiratory complexes I and II. Serum tumour necrosis factor alpha at 24 and 48 h, liver tissue interleukin-6 at 72 h and transforming growth factor ß1 at 24 and 48 h were elevated in TAA-administrated rats fed with HFGD, but not ST-1. TAA-induced centrilobular necrosis and subsequent regenerative response of the liver were higher in HFGD-fed rats in comparison with ST-1. Liver affected by NAFLD, compared to non-steatotic liver, is more sensitive to toxic effect of TAA.


Asunto(s)
Carcinógenos/toxicidad , Hígado Graso/patología , Hígado/efectos de los fármacos , Hígado/patología , Tioacetamida/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Colesterol/metabolismo , Citocinas/sangre , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/fisiología , Hígado Graso/sangre , Hígado Graso/inducido químicamente , Hígado/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico , Ratas , Ratas Sprague-Dawley , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Triglicéridos/metabolismo
14.
Biochim Biophys Acta ; 1790(6): 558-65, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19364480

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) are among the main determinants of cellular damage during ischemia and reperfusion. There is also ample evidence that mitochondrial ROS production is involved in signaling during ischemic and pharmacological preconditioning. In a previous study we analyzed the mitochondrial effects of the efficient preconditioning drug diazoxide and found that it increased the mitochondrial oxidation of the ROS-sensitive fluorescent dye 2',7'-dichlorodihydrofluorescein (H(2)DCF) but had no direct impact on the H(2)O(2) production of submitochondrial particles (SMP) or intact rat heart mitochondria (RHM). METHODS: H(2)O(2) generation of bovine SMP and tightly coupled RHM was monitored under different conditions using the amplex red/horseradish peroxidase assay in response to diazoxide and a number of inhibitors. RESULTS: We show that diazoxide reduces ROS production by mitochondrial complex I under conditions of reverse electron transfer in tightly coupled RHM, but stimulates mitochondrial ROS production at the Q(o) site of complex III under conditions of oxidant-induced reduction; this stimulation is greatly enhanced by uncoupling. These opposing effects can both be explained by inhibition of complex II by diazoxide. 5-Hydroxydecanoate had no effect, and the results were essentially identical in the presence of Na(+) or K(+) excluding a role for putative mitochondrial K(ATP)-channels. GENERAL SIGNIFICANCE: A straightforward rationale is presented to mechanistically explain the ambivalent effects of diazoxide reported in the literature. Depending on the metabolic state and the membrane potential of mitochondria, diazoxide-mediated inhibition of complex II promotes transient generation of signaling ROS at complex III (during preconditioning) or attenuates the production of deleterious ROS at complex I (during ischemia and reperfusion).


Asunto(s)
Diazóxido/farmacología , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo I de Transporte de Electrón/efectos de los fármacos , Mitocondrias Cardíacas , Especies Reactivas de Oxígeno/metabolismo , Animales , Bovinos , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/efectos de los fármacos , Complejo III de Transporte de Electrones/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Oxidantes/metabolismo , Ratas , Partículas Submitocóndricas/efectos de los fármacos , Partículas Submitocóndricas/metabolismo , Vasodilatadores/farmacología
15.
Nat Commun ; 11(1): 5938, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230096

RESUMEN

Recurrent somatic mutations in ETNK1 (Ethanolamine-Kinase-1) were identified in several myeloid malignancies and are responsible for a reduced enzymatic activity. Here, we demonstrate in primary leukemic cells and in cell lines that mutated ETNK1 causes a significant increase in mitochondrial activity, ROS production, and Histone H2AX phosphorylation, ultimately driving the increased accumulation of new mutations. We also show that phosphoethanolamine, the metabolic product of ETNK1, negatively controls mitochondrial activity through a direct competition with succinate at mitochondrial complex II. Hence, reduced intracellular phosphoethanolamine causes mitochondria hyperactivation, ROS production, and DNA damage. Treatment with phosphoethanolamine is able to counteract complex II hyperactivation and to restore a normal phenotype.


Asunto(s)
Etanolaminas/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Línea Celular , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/genética , Roturas del ADN/efectos de los fármacos , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Etanolaminas/metabolismo , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Mitocondrias/genética , Mitocondrias/patología , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Succínico/metabolismo , Tigeciclina/farmacología
16.
Neurotox Res ; 38(2): 359-369, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32506340

RESUMEN

Chronic fatigue syndrome (CFS) is a disorder characterized by persistent and relapsing fatigue along with long-lasting and debilitating fatigue, myalgia, cognitive impairment, and many other common symptoms. The present study was conducted to explore the protective effect of hemin on CFS in experimental mice. Male albino mice were subjected to stress-induced CFS in a forced swimming test apparatus for 21 days. After animals had been subjected to the forced swimming test, hemin (5 and 10 mg/kg; i.p.) and hemin (10 mg/kg) + tin(IV) protoporphyrin (SnPP), a hemeoxygenase-1 (HO-1) enzyme inhibitor, were administered daily for 21 days. Various behavioral tests (immobility period, locomotor activity, grip strength, and anxiety) and estimations of biochemical parameters (lipid peroxidation, nitrite, and GSH), mitochondrial complex dysfunctions (complexes I and II), and neurotransmitters (dopamine, serotonin, and norepinephrine and their metabolites) were subsequently assessed. Animals exposed to 10 min of forced swimming session for 21 days showed a fatigue-like behavior (as increase in immobility period, decreased grip strength, and anxiety) and biochemical alteration observed by increased oxidative stress, mitochondrial dysfunction, and neurotransmitter level alteration. Treatment with hemin (5 and 10 mg/kg) for 21 days significantly improved the decreased immobility period, increased locomotor activity, and improved anxiety-like behavior, oxidative defense, mitochondrial complex dysfunction, and neurotransmitter level in the brain. Further, these observations were reversed by SnPP, suggesting that the antifatigue effect of hemin is HO-1 dependent. The present study highlights the protective role of hemin against experimental CFS-induced behavioral, biochemical, and neurotransmitter alterations.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Síndrome de Fatiga Crónica/metabolismo , Hemina/farmacología , Locomoción/efectos de los fármacos , Metaloporfirinas/farmacología , Neurotransmisores/metabolismo , Protoporfirinas/farmacología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Ansiedad , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Prueba de Laberinto Elevado , Síndrome de Fatiga Crónica/fisiopatología , Glutatión/metabolismo , Fuerza de la Mano , Hemo-Oxigenasa 1/antagonistas & inhibidores , Ácido Homovanílico/metabolismo , Ácido Hidroxiindolacético/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nitritos/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo
17.
Basic Res Cardiol ; 104(2): 121-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19242645

RESUMEN

The cardioprotective effects of ischemic preconditioning (IPC) can be mimicked or blocked by pharmacologic agents, which modulate the mitochondrial ATP-sensitive potassium (mK(ATP)) channel, thereby implicating this channel in the mechanism of IPC. Cardioprotection can also be achieved via inhibition of mitochondrial respiratory complex II, and significant pharmacologic overlap exists between complex II inhibitors and mK(ATP) channel agonists. However, the relationship between complex II and the mK(ATP) channel remains unclear. Atpenin A5 (AA5) is a potent and specific complex II inhibitor, and herein we report that AA5 (1 nM) also activates the mK(ATP) channel and protects against simulated ischemia-reperfusion (IR) injury in isolated cardiomyocytes. Similar to known mK(ATP) agonists, AA5-mediated protection was sensitive to the mK(ATP) antagonists 5-hydroxydecanoate (5HD) and glyburide. Notably, the optimal mK(ATP) opening and protective concentration of AA5 had no effect on complex II enzymatic activity, suggesting an interaction of AA5 with complex II, but not inhibition of the complex per se, is necessary for protection. A cardioprotective effect of AA5 was also observed in isolated perfused hearts, wherein AA5 increased post-IR contractile function and decreased infarct size, in a 5HD-sensitive manner. In conclusion, the specific complex II inhibitor AA5 is the most potent mK(ATP) activator discovered to date, and provides a novel method of activating mK(ATP) channels and protecting the heart from IR injury.


Asunto(s)
Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Piridonas/farmacología , Animales , Antiarrítmicos/farmacología , Citoprotección , Ácidos Decanoicos/farmacología , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Hidroxiácidos/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley
18.
Mol Genet Metab ; 97(4): 292-6, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19520594

RESUMEN

BACKGROUND/AIMS: To describe the clinical and biological findings of two Japanese siblings with novel MPV17 gene mutations (c.451insC/c.509C > T) manifesting hepatic mitochondrial DNA depletion syndrome. METHODS: We observed these brothers and sought to determine the efficacy of treatment targeting respiratory chain complex II for the younger brother. RESULTS: A 3-month-old boy had presented with profound liver dysfunction, failure to thrive, and watery diarrhea. Although he was then placed on a carbohydrate-rich diet, his liver function thereafter fluctuated greatly in association with viral infections, and rapidly deteriorated to liver failure. He underwent liver transplantation at 17 months of age but died at 22 months of age. The younger brother, aged 47 months at the time of this writing, presented with liver dysfunction from 8 months of age. His transaminase levels also fluctuated considerably fluctuations in association with viral infections. At 31 months of age, treatment with succinate and ubiquinone was initiated together with a lipid-rich diet using ketone milk. Thereafter, his transaminase levels normalized and never fluctuated, and the liver histology improved. CONCLUSIONS: These cases suggested that the clinical courses of patients with MPV17 mutations are greatly influenced by viral infections and that dietary and pharmaceutical treatments targeting the mitochondrial respiratory chain complex II may be beneficial in the clinical management of MPV17 mutant patients.


Asunto(s)
Complejo II de Transporte de Electrones/efectos de los fármacos , Hepatopatías/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/efectos de los fármacos , Proteínas Mitocondriales/efectos de los fármacos , Carnitina/uso terapéutico , Preescolar , Resultado Fatal , Humanos , Lactante , Hepatopatías/complicaciones , Hepatopatías/dietoterapia , Hepatopatías/tratamiento farmacológico , Hepatopatías/virología , Trasplante de Hígado , Masculino , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Ácido Succínico/uso terapéutico , Ubiquinona/uso terapéutico
19.
Naunyn Schmiedebergs Arch Pharmacol ; 392(10): 1209-1223, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31104106

RESUMEN

Assessment of drug-induced mitochondrial dysfunctions is important in drug development as well as in the understanding of molecular mechanism of therapeutic or adverse effects of drugs. The aim of this study was to investigate the effects of three typical antipsychotics (APs) and seven atypical APs on mitochondrial bioenergetics. The effects of selected APs on citrate synthase, electron transport chain complexes (ETC), and mitochondrial complex I- or complex II-linked respiratory rate were measured using mitochondria isolated from pig brain. Complex I activity was decreased by chlorpromazine, haloperidol, zotepine, aripiprazole, quetiapine, risperidone, and clozapine. Complex II + III was significantly inhibited by zotepine, aripiprazole, quetiapine, and risperidone. Complex IV was inhibited by zotepine, chlorpromazine, and levomepromazine. Mitochondrial respiratory rate was significantly inhibited by all tested APs, except for olanzapine. Typical APs did not exhibit greater efficacy in altering mitochondrial function compared to atypical APs except for complex I inhibition by chlorpromazine and haloperidol. A comparison of the effects of APs on individual respiratory complexes and on the overall mitochondrial respiration has shown that mitochondrial functions may not fully reflect the disruption of complexes of ETC, which indicates AP-induced modulation of other mitochondrial proteins. Due to the complicated processes associated with mitochondrial activity, it is necessary to measure not only the effect of the drug on individual mitochondrial enzymes but also the respiration rate of the mitochondria or a similar complex process. The experimental approach used in the study can be applied to mitochondrial toxicity testing of newly developed drugs.


Asunto(s)
Antipsicóticos/toxicidad , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo I de Transporte de Electrón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético/efectos de los fármacos , Técnicas In Vitro , Mitocondrias/patología , Porcinos
20.
Neurosci Lett ; 446(2-3): 93-6, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-18817848

RESUMEN

The involvement of 5-hydroxytryptaminergic (5-HTergic) system for the 3-nitropropionic acid (3-NPA)-induced depression of spinal reflexes was evaluated and compared with other energy deficiency condition (ischemia; glucose-free and O2-free). The monosynaptic (MSR) and polysynaptic reflex (PSR) potentials were recorded at ventral root by stimulating the corresponding dorsal root in neonatal rat spinal cord in vitro. Superfusion of 3-NPA (3.4 mM) or ischemic solution depressed the reflexes in a time-dependent manner abolishing them by 35 min. Pretreatment with pindolol (1 microM), ketanserin (10 microM) or ondansetron (0.1 microM); 5-HT1, 5-HT2, or 5-HT3 receptor antagonist, respectively, did not block the 3-NPA-induced depression of reflexes whereas, ischemia-induced depression was blocked by ondansetron. 5-HT content of the spinal cords incubated with 3-NPA (3.4 mM) for 30 min was decreased significantly (33 ng/g tissue) while increased (286 ng/g) in cords exposed to ischemic solution as compared to saline-treated cords (161 ng/g). Thus, 3-NPA-induced depression of spinal reflexes does not involve 5-HTergic pathway unlike ischemia-induced depression.


Asunto(s)
Encefalopatías Metabólicas/metabolismo , Metabolismo Energético/fisiología , Reflejo Anormal/fisiología , Serotonina/metabolismo , Isquemia de la Médula Espinal/metabolismo , Animales , Animales Recién Nacidos , Encefalopatías Metabólicas/inducido químicamente , Encefalopatías Metabólicas/fisiopatología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Femenino , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrocompuestos/toxicidad , Propionatos/toxicidad , Ratas , Reflejo Anormal/efectos de los fármacos , Antagonistas de la Serotonina/toxicidad , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Isquemia de la Médula Espinal/fisiopatología , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/fisiopatología , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA