Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.153
Filtrar
1.
Nature ; 615(7954): 934-938, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949187

RESUMEN

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Asunto(s)
Microscopía por Crioelectrón , Complejo III de Transporte de Electrones , Complejo II de Transporte de Electrones , Complejo IV de Transporte de Electrones , Complejo I de Transporte de Electrón , Mitocondrias , Membranas Mitocondriales , Transporte de Electrón , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/ultraestructura , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/ultraestructura , Mitocondrias/química , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/ultraestructura , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Simulación de Dinámica Molecular , Sitios de Unión , Evolución Molecular
2.
Nat Rev Mol Cell Biol ; 16(6): 375-88, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25991374

RESUMEN

The mitochondrial respiratory chain, also known as the electron transport chain (ETC), is crucial to life, and energy production in the form of ATP is the main mitochondrial function. Three proton-translocating enzymes of the ETC, namely complexes I, III and IV, generate proton motive force, which in turn drives ATP synthase (complex V). The atomic structures and basic mechanisms of most respiratory complexes have previously been established, with the exception of complex I, the largest complex in the ETC. Recently, the crystal structure of the entire complex I was solved using a bacterial enzyme. The structure provided novel insights into the core architecture of the complex, the electron transfer and proton translocation pathways, as well as the mechanism that couples these two processes.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas , Complejo III de Transporte de Electrones , Complejo IV de Transporte de Electrones , Complejo I de Transporte de Electrón , Fuerza Protón-Motriz/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Estructura Cuaternaria de Proteína
3.
Proc Natl Acad Sci U S A ; 119(38): e2207761119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095184

RESUMEN

Aerobic life is powered by membrane-bound enzymes that catalyze the transfer of electrons to oxygen and protons across a biological membrane. Cytochrome c oxidase (CcO) functions as a terminal electron acceptor in mitochondrial and bacterial respiratory chains, driving cellular respiration and transducing the free energy from O2 reduction into proton pumping. Here we show that CcO creates orientated electric fields around a nonpolar cavity next to the active site, establishing a molecular switch that directs the protons along distinct pathways. By combining large-scale quantum chemical density functional theory (DFT) calculations with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations and atomistic molecular dynamics (MD) explorations, we find that reduction of the electron donor, heme a, leads to dissociation of an arginine (Arg438)-heme a3 D-propionate ion-pair. This ion-pair dissociation creates a strong electric field of up to 1 V Å-1 along a water-mediated proton array leading to a transient proton loading site (PLS) near the active site. Protonation of the PLS triggers the reduction of the active site, which in turn aligns the electric field vectors along a second, "chemical," proton pathway. We find a linear energy relationship of the proton transfer barrier with the electric field strength that explains the effectivity of the gating process. Our mechanism shows distinct similarities to principles also found in other energy-converting enzymes, suggesting that orientated electric fields generally control enzyme catalysis.


Asunto(s)
Complejo IV de Transporte de Electrones , Protones , Aerobiosis , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Oxígeno/metabolismo , Agua/química
4.
Proc Natl Acad Sci U S A ; 119(30): e2205228119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858451

RESUMEN

The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.


Asunto(s)
Diosgenina , Complejo IV de Transporte de Electrones , Esteroides , Animales , Sitios de Unión , Dominio Catalítico/efectos de los fármacos , Bovinos , Diosgenina/farmacología , Transporte de Electrón , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/química , Oxidación-Reducción , Oxígeno/metabolismo , Conformación Proteica , Protones , Esteroides/química , Esteroides/farmacología , Esteroles
5.
EMBO J ; 39(3): e102817, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31912925

RESUMEN

Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT-CYB-deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre-formation of fully assembled individual complexes. In contrast, they support a cooperative-assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo I de Transporte de Electrón/metabolismo , Proteómica/métodos , Línea Celular , Complejo I de Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Estabilidad de Enzimas , Humanos , Mitocondrias/metabolismo , Mutación , NAD/metabolismo
6.
Photochem Photobiol Sci ; 23(5): 839-851, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615307

RESUMEN

Photolabile (µ-peroxo)(µ-hydroxo)bis[bis(bipyridyl)-cobalt-based caged oxygen compounds have been synthesized and characterized by optical absorbance spectroscopy, X-ray crystallography. and the quantum yield and redox stability were investigated. Furthermore, conditions were established where redox incompatibilities encountered between caged oxygen compounds and oxygen-dependant cytochrome c oxidase (CcO) could be circumvented. Herein, we demonstrate that millimolar concentrations of molecular oxygen can be released from a caged oxygen compound with spatio-temporal control upon laser excitation, triggering enzymatic turnover in cytochrome c oxidase. Spectroscopic evidence confirms the attainment of a homogeneous reaction initiation at concentrations and conditions relevant for further crystallography studies. This was demonstrated by the oxidizing microcrystals of reduced CcO by liberation of millimolar concentrations of molecular oxygen from a caged oxygen compound. We believe this will expand the scope of available techniques for the detailed investigation of oxygen-dependant enzymes with its native substrate and facilitate further time-resolved X-ray based studies such as wide/small angle X-ray scattering and serial femtosecond crystallography.


Asunto(s)
Complejo IV de Transporte de Electrones , Oxígeno , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Oxígeno/química , Cristalografía por Rayos X , Oxidación-Reducción , Cobalto/química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Factores de Tiempo , Estructura Molecular , Modelos Moleculares
7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34548399

RESUMEN

Combining mass spectrometry-based chemical cross-linking and complexome profiling, we analyzed the interactome of heart mitochondria. We focused on complexes of oxidative phosphorylation and found that dimeric apoptosis-inducing factor 1 (AIFM1) forms a defined complex with ∼10% of monomeric cytochrome c oxidase (COX) but hardly interacts with respiratory chain supercomplexes. Multiple AIFM1 intercross-links engaging six different COX subunits provided structural restraints to build a detailed atomic model of the COX-AIFM12 complex (PDBDEV_00000092). An application of two complementary proteomic approaches thus provided unexpected insight into the macromolecular organization of the mitochondrial complexome. Our structural model excludes direct electron transfer between AIFM1 and COX. Notably, however, the binding site of cytochrome c remains accessible, allowing formation of a ternary complex. The discovery of the previously overlooked COX-AIFM12 complex and clues provided by the structural model hint at potential roles of AIFM1 in oxidative phosphorylation biogenesis and in programmed cell death.


Asunto(s)
Factor Inductor de la Apoptosis/química , Factor Inductor de la Apoptosis/metabolismo , Apoptosis , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Fosforilación Oxidativa , Animales , Bovinos , Transporte de Electrón , Conformación Proteica
8.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836592

RESUMEN

Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport, which maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred from respiratory complexes III to IV (CIII and CIV) by water-soluble cytochrome (cyt.) c In Saccharomyces cerevisiae and some other organisms, these complexes assemble into larger CIII2CIV1/2 supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of the S. cerevisiae supercomplex cyt. c-mediated QH2:O2 oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Single-particle electron cryomicroscopy (cryo-EM) structures of the supercomplex with cyt. c show the positively charged cyt. c bound to either CIII or CIV or along a continuum of intermediate positions. Collectively, the structural and kinetic data indicate that cyt. c travels along a negatively charged patch on the supercomplex surface. Thus, rather than enhancing electron transfer rates by decreasing the distance that cyt. c must diffuse in three dimensions, formation of the CIII2CIV1/2 supercomplex facilitates electron transfer by two-dimensional (2D) diffusion of cyt. c This mechanism enables the CIII2CIV1/2 supercomplex to increase QH2:O2 oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.


Asunto(s)
Citocromos c/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Citocromos c/química , Transporte de Electrón , Complejo III de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/química , Cinética , Mitocondrias/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Biol Chem ; 298(4): 101799, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35257742

RESUMEN

Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in the inner membrane of mitochondria. It contains four metal redox centers, two of which, CuB and heme a3, form the binuclear center (BNC), where dioxygen is reduced to water. Crystal structures of CcO in various forms have been reported, from which ligand-binding states of the BNC and conformations of the protein matrix surrounding it have been deduced to elucidate the mechanism by which the oxygen reduction chemistry is coupled to proton translocation. However, metal centers in proteins can be susceptible to X-ray-induced radiation damage, raising questions about the reliability of conclusions drawn from these studies. Here, we used microspectroscopy-coupled X-ray crystallography to interrogate how the structural integrity of bovine CcO in the fully oxidized state (O) is modulated by synchrotron radiation. Spectroscopic data showed that, upon X-ray exposure, O was converted to a hybrid O∗ state where all the four metal centers were reduced, but the protein matrix was trapped in the genuine O conformation and the ligands in the BNC remained intact. Annealing the O∗ crystal above the glass transition temperature induced relaxation of the O∗ structure to a new R∗ structure, wherein the protein matrix converted to the fully reduced R conformation with the exception of helix X, which partly remained in the O conformation because of incomplete dissociation of the ligands from the BNC. We conclude from these data that reevaluation of reported CcO structures obtained with synchrotron light sources is merited.


Asunto(s)
Complejo IV de Transporte de Electrones , Metales , Rayos X , Animales , Bovinos , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/efectos de la radiación , Ligandos , Metales/química , Oxidación-Reducción , Estructura Terciaria de Proteína/efectos de la radiación , Reproducibilidad de los Resultados , Temperatura
10.
J Am Chem Soc ; 145(41): 22305-22309, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37695261

RESUMEN

Cytochrome c oxidase (CcO) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, CcO has a unique binuclear center (BNC) composed of a copper atom (CuB) and a heme a3 iron, where O2 binds and is reduced to water. CO is a versatile O2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine CcO (bCcO) revealed that photolyzing CO from the heme a3 iron leads to a metastable intermediate (CuB-CO), where CO is bound to CuB, before it escapes out of the BNC. Here, with a pump-probe based time-resolved serial femtosecond X-ray crystallography, we detected a geminate photoproduct of the bCcO-CO complex, where CO is dissociated from the heme a3 iron and moved to a temporary binding site midway between the CuB and the heme a3 iron, while the locations of the two metal centers and the conformation of Helix-X, housing the proximal histidine ligand of the heme a3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bCcO, allows for a clearer definition of the ligand dissociation trajectory as well as the associated protein dynamics.


Asunto(s)
Cobre , Complejo IV de Transporte de Electrones , Bovinos , Animales , Complejo IV de Transporte de Electrones/química , Oxidación-Reducción , Cobre/química , Ligandos , Oxígeno/química , Cristalografía por Rayos X , Hierro/química , Agua/metabolismo
11.
Chem Rev ; 121(15): 9644-9673, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34184881

RESUMEN

In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.


Asunto(s)
Membrana Celular/enzimología , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Saccharomyces cerevisiae , Transporte de Electrón , Protones , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología
12.
Phys Chem Chem Phys ; 25(37): 25105-25115, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37461851

RESUMEN

As the terminal oxidase of cell respiration in mitochondria and aerobic bacteria, the proton pumping mechanism of ba3-type cytochrome c oxidase (CcO) of Thermus thermophiles is still not fully understood. Especially, the functions of key residues which were considered as the possible proton loading sites (PLSs) above the catalytic center, as well as water located above and within the catalytic center, remain unclear. In this work, molecular dynamic simulations were performed on a set of designed mutants of key residues (Asp287, Asp372, His376, and Glu126II). The results showed that Asp287 may not be a PLS, but it could modulate the ability of the proton transfer pathway to transfer protons through its salt bridge with Arg225. Maintaining the closed state of the water pool above the catalytic center is necessary for the participation of inside water molecules in proton transfer. Water molecules inside the water pool can form hydrogen bond chains with PLS to facilitate proton transfer. Additional quantum cluster models of the Fe-Cu metal catalytic center are established, indicating that when the proton is transferred from Tyr237, it is more likely to reach the OCu atom directly through only one water molecule. This work provides a more profound understanding of the functions of important residues and specific water molecules in the proton pumping mechanism of CcO.


Asunto(s)
Complejo IV de Transporte de Electrones , Bombas de Protones , Complejo IV de Transporte de Electrones/química , Protones , Agua/química , Simulación de Dinámica Molecular , Oxidación-Reducción
13.
Exp Parasitol ; 251: 108572, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348640

RESUMEN

Copper can exist in an oxidized and a reduced form, which enables the metal to play essential roles as a catalytic co-factor in redox reactions in many organisms. Copper confers redox activity to the terminal electron transport chain cytochrome c oxidase protein. Cytochrome c oxidase in yeast obtains copper for the CuB site in the Cox1 subunit from Cox11 in association with Cox19. When copper is chelated in growth medium, Plasmodium falciparum parasite development in infected red blood cells is inhibited and excess copper is toxic for the parasite. The gene of a 26 kDa Plasmodium falciparum PfCox19 protein with two Cx9C Cox19 copper binding motifs, was cloned and expressed as a 66 kDa fusion protein with maltose binding protein and affinity purified (rMBP-PfCox19). rMBP-PfCox19 bound copper measured by: a bicinchoninic acid release assay; an in vivo bacterial host growth inhibition assay; ascorbate oxidation inhibition and differential scanning fluorimetry. The native protein was detected by antibodies raised against rMBP-PfCox19. PfCox19 binds copper and is predicted to associate with PfCox11 in the insertion of copper into the CuB site of Plasmodium cytochrome c oxidase. Characterisation of the proteins involved in Plasmodium spp. copper metabolism will help us understand the role of cytochrome c oxidase and this essential metal in Plasmodium homeostasis.


Asunto(s)
Cobre , Plasmodium falciparum , Plasmodium falciparum/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/química
14.
Proc Natl Acad Sci U S A ; 117(2): 872-876, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31888984

RESUMEN

Virtually all proton-pumping terminal respiratory oxygen reductases are members of the heme-copper oxidoreductase superfamily. Most of these enzymes use reduced cytochrome c as a source of electrons, but a group of enzymes have evolved to directly oxidize membrane-bound quinols, usually menaquinol or ubiquinol. All of the quinol oxidases have an additional transmembrane helix (TM0) in subunit I that is not present in the related cytochrome c oxidases. The current work reports the 3.6-Å-resolution X-ray structure of the cytochrome aa3 -600 menaquinol oxidase from Bacillus subtilis containing 1 equivalent of menaquinone. The structure shows that TM0 forms part of a cleft to accommodate the menaquinol-7 substrate. Crystals which have been soaked with the quinol-analog inhibitor HQNO (N-oxo-2-heptyl-4-hydroxyquinoline) or 3-iodo-HQNO reveal a single binding site where the inhibitor forms hydrogen bonds to amino acid residues shown previously by spectroscopic methods to interact with the semiquinone state of menaquinone, a catalytic intermediate.


Asunto(s)
Bacillus subtilis/metabolismo , Cobre/química , Complejo IV de Transporte de Electrones/química , Hemo/química , Hidroquinonas/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Grupo Citocromo b/química , Transporte de Electrón , Enlace de Hidrógeno , Modelos Moleculares , Naftoles/metabolismo , Oxidorreductasas , Conformación Proteica , Subunidades de Proteína/química , Bombas de Protones/química , Bombas de Protones/metabolismo , Terpenos/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Proc Natl Acad Sci U S A ; 117(17): 9329-9337, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32291341

RESUMEN

The organization of the mitochondrial electron transport chain proteins into supercomplexes (SCs) is now undisputed; however, their assembly process, or the role of differential expression isoforms, remain to be determined. In Saccharomyces cerevisiae, cytochrome c oxidase (CIV) forms SCs of varying stoichiometry with cytochrome bc1 (CIII). Recent studies have revealed, in normoxic growth conditions, an interface made exclusively by Cox5A, the only yeast respiratory protein that exists as one of two isoforms depending on oxygen levels. Here we present the cryo-EM structures of the III2-IV1 and III2-IV2 SCs containing the hypoxic isoform Cox5B solved at 3.4 and 2.8 Å, respectively. We show that the change of isoform does not affect SC formation or activity, and that SC stoichiometry is dictated by the level of CIII/CIV biosynthesis. Comparison of the CIV5B- and CIV5A-containing SC structures highlighted few differences, found mainly in the region of Cox5. Additional density was revealed in all SCs, independent of the CIV isoform, in a pocket formed by Cox1, Cox3, Cox12, and Cox13, away from the CIII-CIV interface. In the CIV5B-containing hypoxic SCs, this could be confidently assigned to the hypoxia-induced gene 1 (Hig1) type 2 protein Rcf2. With conserved residues in mammalian Hig1 proteins and Cox3/Cox12/Cox13 orthologs, we propose that Hig1 type 2 proteins are stoichiometric subunits of CIV, at least when within a III-IV SC.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón/métodos , Complejo III de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/fisiología , Hipoxia/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Isoformas de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
16.
Proc Natl Acad Sci U S A ; 117(17): 9349-9355, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32291342

RESUMEN

Mitochondria metabolize almost all the oxygen that we consume, reducing it to water by cytochrome c oxidase (CcO). CcO maximizes energy capture into the protonmotive force by pumping protons across the mitochondrial inner membrane. Forty years after the H+/e- stoichiometry was established, a consensus has yet to be reached on the route taken by pumped protons to traverse CcO's hydrophobic core and on whether bacterial and mitochondrial CcOs operate via the same coupling mechanism. To resolve this, we exploited the unique amenability to mitochondrial DNA mutagenesis of the yeast Saccharomyces cerevisiae to introduce single point mutations in the hydrophilic pathways of CcO to test function. From adenosine diphosphate to oxygen ratio measurements on preparations of intact mitochondria, we definitely established that the D-channel, and not the H-channel, is the proton pump of the yeast mitochondrial enzyme, supporting an identical coupling mechanism in all forms of the enzyme.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Hemo/química , Oxidorreductasas/química , Bacterias/metabolismo , Cobre/química , Cobre/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Transporte Iónico , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Bombas de Protones/metabolismo , Protones , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Biochemistry ; 61(22): 2506-2521, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-21028883

RESUMEN

The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the CuAr site to the low-spin heme-(a)bo site, i.e., CuAr + heme-a(b)o → CuAo + heme-a(b)r in three structurally characterized enzymes: A-type aa3 from Paracoccus denitrificans (PDB code 3HB3) and bovine heart tissue (PDB code 2ZXW), and the B-type ba3 from T. thermophilus (PDB codes 1EHK and 1XME). k,T data sets were obtained with the use of pulse radiolysis as described previously. Semiclassical Marcus theory revealed that λ varies from 0.74 to 1.1 eV, Hab, varies from ∼2 × 10-5 eV (0.16 cm-1) to ∼24 × 10-5 eV (1.9 cm-1), and ßD varies from 9.3 to 13.9. These parameters are consistent with diabatic electron tunneling. The II-Asp111Asn CuA mutation in cytochrome ba3 had no effect on the rate of this reaction whereas the II-Met160Leu CuA-mutation was slower by an amount corresponding to a decreased driving force of ∼0.06 eV. The structures support the presence of a common, electron-conducting "wire" between CuA and heme-a(b). The transfer of an electron from the low-spin heme to the high-spin heme, i.e., heme-a(b)r + heme-a3o → heme-a(b)o + heme-a3r, was not observed with the A-type enzymes in our experiments but was observed with the Thermus ba3; its Marcus parameters are λ = 1.5 eV, Hab = 26.6 × 10-5 eV (2.14 cm-1), and ßD = 9.35, consistent also with diabatic electron tunneling between the two hemes. The II-Glu15Ala mutation of the K-channel structure, ∼ 24 Å between its CA and Fe-a3, was found to completely block heme-br to heme-a3o electron transfer. A structural mechanism is suggested to explain these observations.


Asunto(s)
Complejo IV de Transporte de Electrones , Thermus thermophilus , Bovinos , Animales , Complejo IV de Transporte de Electrones/química , Grupo Citocromo b/química , Electrones , Radiólisis de Impulso , Temperatura , Oxidación-Reducción , Hemo/química
18.
J Biol Chem ; 297(3): 100967, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34274318

RESUMEN

Mammalian cytochrome c oxidase (CcO) reduces O2 to water in a bimetallic site including Fea3 and CuB giving intermediate molecules, termed A-, P-, F-, O-, E-, and R-forms. From the P-form on, each reaction step is driven by single-electron donations from cytochrome c coupled with the pumping of a single proton through the H-pathway, a proton-conducting pathway composed of a hydrogen-bond network and a water channel. The proton-gradient formed is utilized for ATP production by F-ATPase. For elucidation of the proton pumping mechanism, crystal structural determination of these intermediate forms is necessary. Here we report X-ray crystallographic analysis at ∼1.8 Å resolution of fully reduced CcO crystals treated with O2 for three different time periods. Our disentanglement of intermediate forms from crystals that were composed of multiple forms determined that these three crystallographic data sets contained ∼45% of the O-form structure, ∼45% of the E-form structure, and ∼20% of an oxymyoglobin-type structure consistent with the A-form, respectively. The O- and E-forms exhibit an unusually long CuB2+-OH- distance and CuB1+-H2O structure keeping Fea33+-OH- state, respectively, suggesting that the O- and E-forms have high electron affinities that cause the O→E and E→R transitions to be essentially irreversible and thus enable tightly coupled proton pumping. The water channel of the H-pathway is closed in the O- and E-forms and partially open in the R-form. These structures, together with those of the recently reported P- and F-forms, indicate that closure of the H-pathway water channel avoids back-leaking of protons for facilitating the effective proton pumping.


Asunto(s)
Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/enzimología , Bombas de Protones/metabolismo , Animales , Catálisis , Bovinos , Cristalografía por Rayos X , Complejo IV de Transporte de Electrones/química , Conformación Proteica
19.
Chemphyschem ; 23(7): e202100831, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35142420

RESUMEN

Mössbauer isomer shift and quadrupole splitting properties have been calculated using the OLYP-D3(BJ) density functional method on previously obtained (W.-G. Han Du, et al., Inorg Chem. 2020, 59, 8906-8915) geometry optimized Fea33+ -H2 O-CuB2+ dinuclear center (DNC) clusters of the resting oxidized (O state) "as-isolated" cytochrome c oxidase (CcO). The calculated results are highly consistent with the available experimental observations. The calculations have also shown that the structural heterogeneities of the O state DNCs implicated by the Mössbauer experiments are likely consequences of various factors, particularly the variable positions of the central H2 O molecule between the Fea33+ and CuB2+ sites in different DNCs, whether or not this central H2 O molecule has H-bonding interaction with another H2 O molecule, the different spin states having similar energies for the Fea33+ sites, and whether the Fea33+ and CuB2+ sites are ferromagnetically or antiferromagnetically spin-coupled.


Asunto(s)
Complejo IV de Transporte de Electrones , Teoría Funcional de la Densidad , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Oxidación-Reducción
20.
Nature ; 539(7630): 579-582, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775717

RESUMEN

Respiratory chain complexes can super-assemble into quaternary structures called supercomplexes that optimize cellular metabolism. The interaction between complexes III (CIII) and IV (CIV) is modulated by supercomplex assembly factor 1 (SCAF1, also known as COX7A2L). The discovery of SCAF1 represented strong genetic evidence that supercomplexes exist in vivo. SCAF1 is present as a long isoform (113 amino acids) or a short isoform (111 amino acids) in different mouse strains. Only the long isoform can induce the super-assembly of CIII and CIV, but it is not clear whether SCAF1 is required for the formation of the respirasome (a supercomplex of CI, CIII2 and CIV). Here we show, by combining deep proteomics and immunodetection analysis, that SCAF1 is always required for the interaction between CIII and CIV and that the respirasome is absent from most tissues of animals containing the short isoform of SCAF1, with the exception of heart and skeletal muscle. We used directed mutagenesis to characterize SCAF1 regions that interact with CIII and CIV and discovered that this interaction requires the correct orientation of a histidine residue at position 73 that is altered in the short isoform of SCAF1, explaining its inability to interact with CIV. Furthermore, we find that the CIV subunit COX7A2 is replaced by SCAF1 in supercomplexes containing CIII and CIV and by COX7A1 in CIV dimers, and that dimers seem to be more stable when they include COX6A2 rather than the COX6A1 isoform.


Asunto(s)
Membranas Mitocondriales/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Complejo IV de Transporte de Electrones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA