Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 591(7850): 431-437, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33505021

RESUMEN

Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Canales de Potasio/metabolismo , Potasio/metabolismo , Animales , Biocatálisis , Neuronas Dopaminérgicas/metabolismo , Femenino , Mutación con Ganancia de Función , Células HEK293 , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Noqueados , Destreza Motora , Complejos Multiproteicos/química , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Enfermedad de Parkinson/genética , Canales de Potasio/química , Canales de Potasio/deficiencia , Canales de Potasio/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , alfa-Sinucleína/metabolismo
2.
EMBO J ; 40(21): e108648, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34542926

RESUMEN

So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.


Asunto(s)
Adaptación Fisiológica , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Complejos Multiproteicos/genética , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Expresión Génica , Humanos , Mitocondrias/patología , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/deficiencia , Complejos Multiproteicos/deficiencia , Osteoblastos/metabolismo , Osteoblastos/patología , Fosforilación Oxidativa
3.
Nature ; 560(7716): 117-121, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022168

RESUMEN

53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.


Asunto(s)
Reparación del ADN , Complejos Multiproteicos/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/genética , Femenino , Genes BRCA1 , Humanos , Cambio de Clase de Inmunoglobulina/genética , Ratones , Modelos Biológicos , Complejos Multiproteicos/química , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión a Telómeros/metabolismo , Proteína p53 Supresora de Tumor/deficiencia
4.
Nature ; 563(7730): 265-269, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401838

RESUMEN

Inactivation of ARID1A and other components of the nuclear SWI/SNF protein complex occurs at very high frequencies in a variety of human malignancies, suggesting a widespread role for the SWI/SNF complex in tumour suppression1. However, the underlying mechanisms remain poorly understood. Here we show that ARID1A-containing SWI/SNF complex (ARID1A-SWI/SNF) operates as an inhibitor of the pro-oncogenic transcriptional coactivators YAP and TAZ2. Using a combination of gain- and loss-of-function approaches in several cellular contexts, we show that YAP/TAZ are necessary to induce the effects of the inactivation of the SWI/SNF complex, such as cell proliferation, acquisition of stem cell-like traits and liver tumorigenesis. We found that YAP/TAZ form a complex with SWI/SNF; this interaction is mediated by ARID1A and is alternative to the association of YAP/TAZ with the DNA-binding platform TEAD. Cellular mechanotransduction regulates the association between ARID1A-SWI/SNF and YAP/TAZ. The inhibitory interaction of ARID1A-SWI/SNF and YAP/TAZ is predominant in cells that experience low mechanical signalling, in which loss of ARID1A rescues the association between YAP/TAZ and TEAD. At high mechanical stress, nuclear F-actin binds to ARID1A-SWI/SNF, thereby preventing the formation of the ARID1A-SWI/SNF-YAP/TAZ complex, in favour of an association between TEAD and YAP/TAZ. We propose that a dual requirement must be met to fully enable the YAP/TAZ responses: promotion of nuclear accumulation of YAP/TAZ, for example, by loss of Hippo signalling, and inhibition of ARID1A-SWI/SNF, which can occur either through genetic inactivation or because of increased cell mechanics. This study offers a molecular framework in which mechanical signals that emerge at the tissue level together with genetic lesions activate YAP/TAZ to induce cell plasticity and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , Mecanotransducción Celular , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Carcinogénesis/genética , Proteínas de Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Femenino , Vía de Señalización Hippo , Humanos , Masculino , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Mecánico , Factores de Transcripción de Dominio TEA , Transactivadores , Factores de Transcripción/metabolismo , Vía de Señalización Wnt
5.
Nature ; 547(7662): 227-231, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28581498

RESUMEN

The regenerative capacity of the adult mammalian heart is limited, because of the reduced ability of cardiomyocytes to progress through mitosis. Endogenous cardiomyocytes have regenerative capacity at birth but this capacity is lost postnatally, with subsequent organ growth occurring through cardiomyocyte hypertrophy. The Hippo pathway, a conserved kinase cascade, inhibits cardiomyocyte proliferation in the developing heart to control heart size and prevents regeneration in the adult heart. The dystrophin-glycoprotein complex (DGC), a multicomponent transmembrane complex linking the actin cytoskeleton to extracellular matrix, is essential for cardiomyocyte homeostasis. DGC deficiency in humans results in muscular dystrophy, including the lethal Duchenne muscular dystrophy. Here we show that the DGC component dystroglycan 1 (Dag1) directly binds to the Hippo pathway effector Yap to inhibit cardiomyocyte proliferation in mice. The Yap-Dag1 interaction was enhanced by Hippo-induced Yap phosphorylation, revealing a connection between Hippo pathway function and the DGC. After injury, Hippo-deficient postnatal mouse hearts maintained organ size control by repairing the defect with correct dimensions, whereas postnatal hearts deficient in both Hippo and the DGC showed cardiomyocyte overproliferation at the injury site. In the hearts of mature Mdx mice (which have a point mutation in Dmd)-a model of Duchenne muscular dystrophy-Hippo deficiency protected against overload-induced heart failure.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Distrofina/metabolismo , Glicoproteínas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Miocitos Cardíacos/citología , Fosfoproteínas/metabolismo , Animales , Cardiomiopatías , Proteínas de Ciclo Celular , Proliferación Celular , Distroglicanos/metabolismo , Distrofina/deficiencia , Distrofina/genética , Glicoproteínas/deficiencia , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/prevención & control , Vía de Señalización Hippo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Complejos Multiproteicos/deficiencia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos , Fosforilación , Presión , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Señalizadoras YAP
6.
Immunology ; 152(2): 276-286, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28557002

RESUMEN

The mammalian target of rapamycin (mTOR) is a serine-threonine kinase that has been shown to be essential for the differentiation and function of various immune cells. Earlier in vitro studies showed that mTOR signalling regulates B-cell biology by supporting their activation and proliferation. However, how mTOR signalling temporally regulates in vivo germinal centre B (GCB) cell development and differentiation into short-lived plasma cells, long-lived plasma cells and memory cells is still not well understood. In this study, we used a combined conditional/inducible knock-out system to investigate the temporal regulation of mTOR complex 1 (mTORC1) in the GCB cell response to acute lymphocytic choriomeningitis virus infection by deleting Raptor, a main component of mTORC1, specifically in B cells in pre- and late GC phase. Early Raptor deficiency strongly inhibited GCB cell proliferation and differentiation and plasma cell differentiation. Nevertheless, late GC Raptor deficiency caused only decreases in the size of memory B cells and long-lived plasma cells through poor maintenance of GCB cells, but it did not change their differentiation. Collectively, our data revealed that mTORC1 signalling supports GCB cell responses at both early and late GC phases during viral infection but does not regulate GCB cell differentiation into memory B cells and plasma cells at the late GC stage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos B/enzimología , Centro Germinal/enzimología , Coriomeningitis Linfocítica/enzimología , Virus de la Coriomeningitis Linfocítica/inmunología , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/trasplante , Linfocitos B/virología , Trasplante de Médula Ósea , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Centro Germinal/inmunología , Centro Germinal/virología , Interacciones Huésped-Patógeno , Inmunidad Humoral , Memoria Inmunológica , Activación de Linfocitos , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Fenotipo , Células Plasmáticas/enzimología , Células Plasmáticas/inmunología , Células Plasmáticas/virología , Proteína Reguladora Asociada a mTOR , Transducción de Señal , Serina-Treonina Quinasas TOR/deficiencia , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Factores de Tiempo , Quimera por Trasplante
7.
J Cell Biochem ; 118(4): 748-753, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27606668

RESUMEN

mTORC1 signaling has been shown to promote limb skeletal growth through stimulation of protein synthesis in chondrocytes. However, potential roles of mTORC1 in prechondrogenic mesenchyme have not been explored. In this study, we first deleted Raptor, a unique and essential component of mTORC1, in prechondrogenic limb mesenchymal cells. Deletion of Raptor reduced the size of limb bud cells, resulting in overall diminution of the limb bud without affecting skeletal patterning. We then examined the potential role of mTORC1 in chondrogenic differentiation in vitro. Both pharmacological and genetic disruption of mTORC1 significantly suppressed the number and size of cartilage nodules in micromass cultures of limb bud mesenchymal cells. Similarly, inhibition of mTORC1 signaling in chondrogenic ATDC5 cells greatly impaired cartilage nodule formation, and decreased the expression of the master transcriptional factor Sox9, along with the cartilage matrix genes Acan and Col2a1. Thus, we have identified an important role for mTORC1 signaling in promoting limb mesenchymal cell growth and chondrogenesis during embryonic development. J. Cell. Biochem. 118: 748-753, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Condrogénesis/fisiología , Esbozos de los Miembros/embriología , Complejos Multiproteicos/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Esbozos de los Miembros/citología , Esbozos de los Miembros/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Noqueados , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Embarazo , Proteína Reguladora Asociada a mTOR , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/deficiencia , Serina-Treonina Quinasas TOR/genética
8.
J Immunol ; 194(10): 4767-76, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25840913

RESUMEN

The mammalian/mechanistic target of rapamycin (mTOR) is a key integrative kinase that functions in two independent complexes, mTOR complex (mTORC) 1 and mTORC2. In contrast to the well-defined role of mTORC1 in dendritic cells (DC), little is known about the function of mTORC2. In this study, to our knowledge, we demonstrate for the first time an enhanced ability of mTORC2-deficient myeloid DC to stimulate and polarize allogeneic T cells. We show that activated bone marrow-derived DC from conditional Rictor(-/-) mice exhibit lower coinhibitory B7-H1 molecule expression independently of the stimulus and enhanced IL-6, TNF-α, IL-12p70, and IL-23 production following TLR4 ligation. Accordingly, TLR4-activated Rictor(-/-) DC display augmented allogeneic T cell stimulatory ability, expanding IFN-γ(+) and IL-17(+), but not IL-10(+) or CD4(+)Foxp3(+) regulatory T cells in vitro. A similar DC profile was obtained by stimulating Dectin-1 (C-type lectin family member) on Rictor(-/-) DC. Using novel CD11c-specific Rictor(-/-) mice, we confirm the alloreactive Th1 and Th17 cell-polarizing ability of endogenous mTORC2-deficient DC after TLR4 ligation in vivo. Furthermore, we demonstrate that proinflammatory cytokines produced by Rictor(-/-) DC after LPS stimulation are key in promoting Th1/Th17 responses. These data establish that mTORC2 activity restrains conventional DC proinflammatory capacity and their ability to polarize T cells following TLR and non-TLR stimulation. Our findings provide new insight into the role of mTORC2 in regulating DC function and may have implications for emerging therapeutic strategies that target mTOR in cancer, infectious diseases, and transplantation.


Asunto(s)
Células Dendríticas/inmunología , Activación de Linfocitos/inmunología , Complejos Multiproteicos/inmunología , Serina-Treonina Quinasas TOR/inmunología , Células TH1/inmunología , Células Th17/inmunología , Traslado Adoptivo , Animales , Western Blotting , Técnicas de Cocultivo , Citometría de Flujo , Técnicas In Vitro , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/deficiencia , Células Mieloides/inmunología , Serina-Treonina Quinasas TOR/deficiencia , Receptor Toll-Like 4/inmunología
9.
Nature ; 477(7364): 340-3, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21866103

RESUMEN

Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.


Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Ebolavirus/fisiología , Glicoproteínas de Membrana/metabolismo , Internalización del Virus , Animales , Transporte Biológico , Proteínas Portadoras/genética , Línea Celular , Endosomas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/virología , Genoma Humano/genética , Glicoproteínas/metabolismo , Haploidia , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/metabolismo , Enfermedad del Virus de Marburg/tratamiento farmacológico , Enfermedad del Virus de Marburg/metabolismo , Marburgvirus/fisiología , Fusión de Membrana/genética , Fusión de Membrana/fisiología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación/genética , Proteína Niemann-Pick C1 , Enfermedades de Niemann-Pick/patología , Enfermedades de Niemann-Pick/virología , Receptores Virales/metabolismo , Proteínas de Transporte Vesicular , Proteínas Virales de Fusión/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(10): 3805-10, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567410

RESUMEN

mTOR is an evolutionarily conserved kinase that plays a critical role in sensing and responding to environmental determinants. Recent studies have shown that fine-tuning of the activity of mTOR complexes contributes to organogenesis and tumorigenesis. Although rapamycin, an allosteric mTOR inhibitor, is an effective immunosuppressant, the precise roles of mTOR complexes in early T-cell development remain unclear. Here we show that mTORC1 plays a critical role in the development of both early T-cell progenitors and leukemia. Deletion of Raptor, an essential component of mTORC1, produced defects in the earliest development of T-cell progenitors in vivo and in vitro. Deficiency of Raptor resulted in cell cycle abnormalities in early T-cell progenitors that were associated with instability of the Cyclin D2/D3-CDK6 complexes; deficiency of Rictor, an mTORC2 component, did not have the same effect, indicating that mTORC1 and -2 control T-cell development in different ways. In a model of myeloproliferative neoplasm and T-cell acute lymphoblastic leukemia (T-ALL) evoked by Kras activation, Raptor deficiency dramatically inhibited the cell cycle in oncogenic Kras-expressing T-cell progenitors, but not myeloid progenitors, and specifically prevented the development of T-ALL. Although rapamycin treatment significantly prolonged the survival of recipient mice bearing T-ALL cells, rapamycin-insensitive leukemia cells continued to propagate in vivo. In contrast, Raptor deficiency in the T-ALL model resulted in cell cycle arrest and efficient eradication of leukemia. Thus, understanding the cell-context-dependent role of mTORC1 illustrates the potential importance of mTOR signals as therapeutic targets.


Asunto(s)
Linfopoyesis/fisiología , Modelos Inmunológicos , Complejos Multiproteicos/fisiología , Células Precursoras de Linfocitos T/fisiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/fisiología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Proteínas Portadoras/metabolismo , Ciclo Celular/inmunología , Ciclo Celular/fisiología , Cartilla de ADN , Citometría de Flujo , Perfilación de la Expresión Génica , Immunoblotting , Inmunohistoquímica , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Complejos Multiproteicos/deficiencia , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Reguladora Asociada a mTOR , Transducción de Señal/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/deficiencia
11.
J Immunol ; 193(3): 1162-70, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24981454

RESUMEN

An efficient immune response relies on the presence of T cells expressing a functional TCR. Whereas the mechanisms generating TCR diversity for antigenic recognition are well defined, what controls its surface expression is less known. In this study, we found that deletion of the mammalian target of rapamycin complex (mTORC) 2 component rictor at early stages of T cell development led to aberrant maturation and increased proteasomal degradation of nascent TCRs. Although CD127 expression became elevated, the levels of TCRs as well as CD4, CD8, CD69, Notch, and CD147 were significantly attenuated on the surface of rictor-deficient thymocytes. Diminished expression of these receptors led to suboptimal signaling, partial CD4(-)CD8(-) double-negative 4 (CD25(-)CD44(-)) proliferation, and CD4(+)CD8(+) double-positive activation as well as developmental blocks at the CD4(-)CD8(-) double-negative 3 (CD25(+)CD44(-)) and CD8-immature CD8(+) single-positive stages. Because CD147 glycosylation was also defective in SIN1-deficient fibroblasts, our findings suggest that mTORC2 is involved in the co/posttranslational processing of membrane receptors. Thus, mTORC2 impacts development via regulation of the quantity and quality of receptors important for cell differentiation.


Asunto(s)
Proteínas Portadoras/fisiología , Regulación del Desarrollo de la Expresión Génica/inmunología , Complejos Multiproteicos/fisiología , Procesamiento Proteico-Postraduccional/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/biosíntesis , Linfocitos T/inmunología , Serina-Treonina Quinasas TOR/fisiología , Animales , Proteínas Portadoras/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Eliminación de Gen , Humanos , Células Jurkat , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Complejos Multiproteicos/deficiencia , Procesamiento Proteico-Postraduccional/genética , Subunidades de Proteína/deficiencia , Subunidades de Proteína/fisiología , Proteína Asociada al mTOR Insensible a la Rapamicina , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/deficiencia
12.
Nature ; 457(7226): 205-9, 2009 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19043402

RESUMEN

In teleosts, proper balance and hearing depend on mechanical sensors in the inner ear. These sensors include actin-based microvilli and microtubule-based cilia that extend from the surface of sensory hair cells and attach to biomineralized 'ear stones' (or otoliths). Otolith number, size and placement are under strict developmental control, but the mechanisms that ensure otolith assembly atop specific cells of the sensory epithelium are unclear. Here we demonstrate that cilia motility is required for normal otolith assembly and localization. Using in vivo video microscopy, we show that motile tether cilia at opposite poles of the otic vesicle create fluid vortices that attract otolith precursor particles, thereby biasing an otherwise random distribution to direct localized otolith seeding on tether cilia. Independent knockdown of subunits for the dynein regulatory complex and outer-arm dynein disrupt cilia motility, leading to defective otolith biogenesis. These results demonstrate a requirement for the dynein regulatory complex in vertebrates and show that cilia-driven flow is a key epigenetic factor in controlling otolith biomineralization.


Asunto(s)
Cilios/fisiología , Dineínas/metabolismo , Proteínas de Microtúbulos/metabolismo , Movimiento , Membrana Otolítica/citología , Membrana Otolítica/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Cilios/metabolismo , Dineínas/química , Dineínas/deficiencia , Dineínas/genética , Epigénesis Genética , Humanos , Microscopía por Video , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/deficiencia , Proteínas de Microtúbulos/genética , Datos de Secuencia Molecular , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Membrana Otolítica/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
13.
Kidney Int ; 86(1): 86-102, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24451322

RESUMEN

The mammalian target of rapamycin (mTOR) plays a critical role for cell growth and survival in many cell types. While substantial progress has been made in understanding the abnormal activation of mTORC1 in the pathogenesis of kidney disease, little is known about mTORC2 in kidney disease such as acute kidney injury (AKI). To study this, we generated a mouse model with tubule-specific deletion of Rictor (Tubule-Rictor-/-). The knockouts were born normal and no obvious kidney dysfunction or kidney morphologic abnormality was found within 2 months of birth. However, ablation of Rictor in the tubular cells exacerbated cisplatin-induced AKI compared to that in the control littermates. As expected, tubular cell apoptosis, Akt phosphorylation (Ser473), and autophagy were induced in the kidneys from the control littermates by cisplatin treatment. Less cell autophagy or Akt phosphorylation and more cell apoptosis in the kidneys of the knockout mice were identified compared with those in the control littermates. In NRK-52E cells in vitro, Rictor siRNA transfection sensitized cell apoptosis to cisplatin but with reduced cisplatin-induced autophagy. Metformin, an inducer of autophagy, abolished cell death induced by Rictor siRNA and cisplatin. Thus, endogenous Rictor/mTORC2 protects against cisplatin-induced AKI, probably mediated by promoting cell survival through Akt signaling activation and induction of autophagy.


Asunto(s)
Lesión Renal Aguda/prevención & control , Proteínas Portadoras/metabolismo , Túbulos Renales/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Supervivencia Celular/fisiología , Células Cultivadas , Cisplatino/toxicidad , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Proteína Asociada al mTOR Insensible a la Rapamicina , Transducción de Señal , Serina-Treonina Quinasas TOR/deficiencia , Serina-Treonina Quinasas TOR/genética
14.
J Cell Sci ; 125(Pt 6): 1591-604, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22344259

RESUMEN

In vertebrates, two condensin complexes exist, condensin I and condensin II, which have differing but unresolved roles in organizing mitotic chromosomes. To dissect accurately the role of each complex in mitosis, we have made and studied the first vertebrate conditional knockouts of the genes encoding condensin I subunit CAP-H and condensin II subunit CAP-D3 in chicken DT40 cells. Live-cell imaging reveals highly distinct segregation defects. CAP-D3 (condensin II) knockout results in masses of chromatin-containing anaphase bridges. CAP-H (condensin I)-knockout anaphases have a more subtle defect, with chromatids showing fine chromatin fibres that are associated with failure of cytokinesis and cell death. Super-resolution microscopy reveals that condensin-I-depleted mitotic chromosomes are wider and shorter, with a diffuse chromosome scaffold, whereas condensin-II-depleted chromosomes retain a more defined scaffold, with chromosomes more stretched and seemingly lacking in axial rigidity. We conclude that condensin II is required primarily to provide rigidity by establishing an initial chromosome axis around which condensin I can arrange loops of chromatin.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Cromosomas/genética , Proteínas de Unión al ADN/fisiología , Mitosis/genética , Complejos Multiproteicos/fisiología , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Animales , Línea Celular Tumoral , Pollos , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes/métodos , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética
15.
Biochem J ; 448(2): 285-95, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23030823

RESUMEN

Mutations leading to inappropriate activation of Akt isoforms contribute to proliferation and survival of a significant proportion of human cancers. Akt is activated by phosphorylation of its T-loop residue (Thr(308)) by PDK1 (3-phosphoinositide-dependent kinase-1) and its C-terminal hydrophobic motif (Ser(473)) by mTORC2 [mTOR (mammalian target of rapamycin) complex 2]. Potent PDK1 inhibitors such as GSK2334470 have recently been elaborated as potential anti-cancer agents. However, these compounds were surprisingly ineffective at suppressing Akt activation. In the present study we demonstrate that resistance to PDK1 inhibitors results from Akt being efficiently recruited to PDK1 via two alternative mechanisms. The first involves ability of Akt and PDK1 to mutually interact with the PI3K (phosphoinositide 3-kinase) second messenger PtdIns(3,4,5)P3. The second entails recruitment of PDK1 to Akt after its phosphorylation at Ser(473) by mTORC2, via a substrate-docking motif termed the PIF-pocket. We find that disruption of either the PtdIns(3,4,5)P3 or the Ser(473) phosphorylation/PIF-pocket mechanism only moderately impacts on Akt activation, but induces marked sensitization to PDK1 inhibitors. These findings suggest that suppression of Ser(473) phosphorylation by using mTOR inhibitors would disrupt the PIF-pocket mechanism and thereby sensitize Akt to PDK1 inhibitors. Consistent with this, we find combing PDK1 and mTOR inhibitors reduced Akt activation to below basal levels and markedly inhibited proliferation of all of the cell lines tested. Our results suggest further work is warranted to explore the utility of combining PDK1 and mTOR inhibitors as a therapeutic strategy for treatment of cancers that harbour mutations elevating Akt activity.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Resistencia a Antineoplásicos , Activación Enzimática , Células HEK293 , Humanos , Indazoles/farmacología , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Pirimidinas/farmacología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina/química , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/deficiencia , Serina-Treonina Quinasas TOR/genética
16.
J Exp Med ; 203(2): 337-47, 2006 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-16432253

RESUMEN

Mast cells are pivotal effector cells in IgE-mediated allergic inflammatory diseases. Central for mast cell activation are signals from the IgE receptor FcepsilonRI, which induce cell degranulation with the release of preformed mediators and de novo synthesis of proinflammatory leukotrienes and cytokines. How these individual mast cell responses are differentially controlled is still unresolved. We identify B cell lymphoma 10 (Bcl10) and mucosa-associated lymphoid tissue 1 (Malt1) as novel key regulators of mast cell signaling. Mice deficient for either protein display severely impaired IgE-dependent late phase anaphylactic reactions. Mast cells from these animals neither activate nuclear factor kappaB (NF-kappaB) nor produce tumor necrosis factor alpha or interleukin 6 upon FcepsilonRI ligation even though proximal signaling, degranulation, and leukotriene secretion are normal. Thus, Bcl10 and Malt1 are essential positive mediators of FcepsilonRI-dependent mast cell activation that selectively uncouple NF-kappaB-induced proinflammatory cytokine production from degranulation and leukotriene synthesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Degranulación de la Célula/inmunología , Citocinas/biosíntesis , Mastocitos/inmunología , Complejos Multiproteicos/fisiología , FN-kappa B/metabolismo , Proteínas de Neoplasias/fisiología , Receptores de IgE/fisiología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteína 10 de la LLC-Linfoma de Células B , Caspasas , Células Cultivadas , Inmunoglobulina E/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/inmunología , Linfoma de Células B de la Zona Marginal/genética , Mastocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética
17.
J Clin Invest ; 125(5): 2090-108, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893604

RESUMEN

Activation of mTOR-dependent pathways regulates the specification and differentiation of CD4+ T effector cell subsets. Herein, we show that mTOR complex 1 (mTORC1) and mTORC2 have distinct roles in the generation of CD8+ T cell effector and memory populations. Evaluation of mice with a T cell-specific deletion of the gene encoding the negative regulator of mTORC1, tuberous sclerosis complex 2 (TSC2), resulted in the generation of highly glycolytic and potent effector CD8+ T cells; however, due to constitutive mTORC1 activation, these cells retained a terminally differentiated effector phenotype and were incapable of transitioning into a memory state. In contrast, CD8+ T cells deficient in mTORC1 activity due to loss of RAS homolog enriched in brain (RHEB) failed to differentiate into effector cells but retained memory characteristics, such as surface marker expression, a lower metabolic rate, and increased longevity. However, these RHEB-deficient memory-like T cells failed to generate recall responses as the result of metabolic defects. While mTORC1 influenced CD8+ T cell effector responses, mTORC2 activity regulated CD8+ T cell memory. mTORC2 inhibition resulted in metabolic reprogramming, which enhanced the generation of CD8+ memory cells. Overall, these results define specific roles for mTORC1 and mTORC2 that link metabolism and CD8+ T cell effector and memory generation and suggest that these functions have the potential to be targeted for enhancing vaccine efficacy and antitumor immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfopoyesis/fisiología , Complejos Multiproteicos/fisiología , Serina-Treonina Quinasas TOR/fisiología , Traslado Adoptivo , Animales , Relación CD4-CD8 , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/trasplante , Proteínas Portadoras/genética , Línea Celular Tumoral , Desoxiglucosa/farmacología , Desoxiglucosa/uso terapéutico , Femenino , Genes Reporteros , Glucólisis/efectos de los fármacos , Memoria Inmunológica , Interferón gamma/biosíntesis , Activación de Linfocitos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Proteínas de Unión al GTP Monoméricas/deficiencia , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Neuropéptidos/deficiencia , Neuropéptidos/genética , Ovalbúmina/inmunología , Fragmentos de Péptidos/inmunología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Homóloga de Ras Enriquecida en el Cerebro , Proteínas Recombinantes de Fusión/inmunología , Sirolimus/farmacología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/deficiencia , Serina-Treonina Quinasas TOR/genética , Timoma/inmunología , Timoma/terapia , Transducción Genética , Factor de Necrosis Tumoral alfa/biosíntesis
18.
Oncotarget ; 5(20): 9577-93, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25294810

RESUMEN

Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins.


Asunto(s)
Núcleo Celular/metabolismo , Neoplasias/metabolismo , Proteínas Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/metabolismo , Neoplasias/enzimología , Proteínas de Complejo Poro Nuclear/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/deficiencia
19.
J Clin Invest ; 123(2): 740-50, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23348741

RESUMEN

Hereditary hearing loss is the most common sensory deficit. We determined that progressive high-frequency hearing loss in 2 families of Iraqi Jewish ancestry was due to homozygosity for the protein truncating mutation SYNE4 c.228delAT. SYNE4, a gene not previously associated with hearing loss, encodes nesprin-4 (NESP4), an outer nuclear membrane (ONM) protein expressed in the hair cells of the inner ear. The truncated NESP4 encoded by the families' mutation did not localize to the ONM. NESP4 and SUN domain-containing protein 1 (SUN1), which localizes to the inner nuclear membrane (INM), are part of the linker of nucleoskeleton and cytoskeleton (LINC) complex in the nuclear envelope. Mice lacking either Nesp4 or Sun1 were evaluated for hair cell defects and hearing loss. In both Nesp4-/- and Sun1-/- mice, OHCs formed normally, but degenerated as hearing matured, leading to progressive hearing loss. The nuclei of OHCs from mutant mice failed to maintain their basal localization, potentially affecting cell motility and hence the response to sound. These results demonstrate that the LINC complex is essential for viability and normal morphology of OHCs and suggest that the position of the nucleus in sensory epithelial cells is critical for maintenance of normal hearing.


Asunto(s)
Audición/fisiología , Complejos Multiproteicos/fisiología , Animales , Análisis Mutacional de ADN , Femenino , Compuestos Ferrosos , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/fisiología , Audición/genética , Pérdida Auditiva de Alta Frecuencia/etiología , Pérdida Auditiva de Alta Frecuencia/genética , Pérdida Auditiva de Alta Frecuencia/fisiopatología , Humanos , Irak/etnología , Israel , Judíos/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Mutación , Membrana Nuclear/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Linaje
20.
J Cell Biol ; 198(4): 501-8, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22891261

RESUMEN

Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.


Asunto(s)
Dictyostelium/fisiología , Complejos Multiproteicos/genética , Proteínas Protozoarias/genética , Seudópodos/fisiología , Proteína del Síndrome de Wiskott-Aldrich/fisiología , Actinas/fisiología , Movimiento Celular/fisiología , Quimiotaxis/fisiología , Invaginaciones Cubiertas de la Membrana Celular/fisiología , Dictyostelium/genética , Técnicas de Inactivación de Genes/métodos , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/metabolismo , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA