Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443148

RESUMEN

Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Proteínas F-Box/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/fisiología , Regulación hacia Abajo , Proteínas F-Box/fisiología , Lisosomas/metabolismo , Proteínas de la Membrana/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
Nat Rev Mol Cell Biol ; 12(8): 469-82, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21750572

RESUMEN

The mitosis-to-interphase transition involves dramatic cellular reorganization from a state that supports chromosome segregation to a state that complies with all functions of an interphase cell. This process, termed mitotic exit, depends on the removal of mitotic phosphorylations from a broad range of substrates. Mitotic exit regulation involves inactivation of mitotic kinases and activation of counteracting protein phosphatases. The key mitotic exit phosphatase in budding yeast, Cdc14, is now well understood. By contrast, in animal cells, it is now emerging that mitotic exit relies on distinct regulatory networks, including the protein phosphatases PP1 and PP2A.


Asunto(s)
Mitosis/fisiología , Monoéster Fosfórico Hidrolasas/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Aurora Quinasas , Proteína Quinasa CDC2/fisiología , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/fisiología , Ciclina B1/fisiología , Humanos , Interfase/fisiología , Modelos Biológicos , Neoplasias/patología , Neoplasias/terapia , Proteína Fosfatasa 1/fisiología , Proteína Fosfatasa 2/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Quinasa Tipo Polo 1
3.
Biochem Biophys Res Commun ; 594: 131-138, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081502

RESUMEN

Diabetic nephropathy (DN) is one of the most common causes for end-stage renal disease without effective therapies available. NLR family, pyrin domain-containing 3 (NLRP3) inflammasome possesses a fundamental effect to facilitate the pathogenesis of DN. Unfortunately, how NLRP3 inflammasome is mediated still remains largely unclear. In the present study, an E3 ubiquitin ligase Speckle-type BTB-POZ protein (Spop) was identified as a suppressor of NLRP3 inflammasome. We first showed that Spop expression was extensively down-regulated in kidney of DN patients, which was confirmed in kidney of streptozotocin (STZ)-challenged mice and in high glucose (HG)-stimulated podocytes. Intriguingly, we showed that conditional knockout (cKO) of Spop in podocytes considerably accelerated renal dysfunction and pathological changes in the glomerulus of STZ-induced mice with DN, along with severe podocyte injury. Furthermore, Spop specific ablation in podocytes dramatically facilitated inflammatory response in glomeruli of DN mice via enhancing NLRP3 inflammasome and nuclear factor κB (NF-κB) signaling pathways, which were confirmed in HG-cultured podocytes. Notably, our findings indicated that Spop directly interacted with NLRP3. More importantly, Spop promoted NLRP3 degradation via elevating K48-linked polyubiquitination of NLRP3. Collectively, our findings disclosed a mechanisms through which Spop limited NLRP3 inflammasome under HG condition, and illustrated that Spop may be a novel therapeutic target to suppress NLRP3 inflammasome, contributing to the DN management.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Animales , Glucemia/metabolismo , Regulación hacia Abajo , Células HEK293 , Humanos , Inflamación , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas Nucleares/metabolismo , Podocitos/metabolismo , Transducción de Señal , Estreptozocina , Ubiquitina/química , Ubiquitina-Proteína Ligasas/química
4.
J Am Chem Soc ; 143(13): 5141-5149, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33783207

RESUMEN

Ligand-induced protein degradation has emerged as a compelling approach to promote the targeted elimination of proteins from cells by directing these proteins to the ubiquitin-proteasome machinery. So far, only a limited number of E3 ligases have been found to support ligand-induced protein degradation, reflecting a dearth of E3-binding compounds for proteolysis-targeting chimera (PROTAC) design. Here, we describe a functional screening strategy performed with a focused library of candidate electrophilic PROTACs to discover bifunctional compounds that degrade proteins in human cells by covalently engaging E3 ligases. Mechanistic studies revealed that the electrophilic PROTACs act through modifying specific cysteines in DCAF11, a poorly characterized E3 ligase substrate adaptor. We further show that DCAF11-directed electrophilic PROTACs can degrade multiple endogenous proteins, including FBKP12 and the androgen receptor, in human prostate cancer cells. Our findings designate DCAF11 as an E3 ligase capable of supporting ligand-induced protein degradation via electrophilic PROTACs.


Asunto(s)
Complejos de Ubiquitina-Proteína Ligasa/fisiología , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Receptores Androgénicos/metabolismo , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
5.
Hepatology ; 70(5): 1674-1689, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31070797

RESUMEN

During biliary disease, cholangiocytes become activated by various pathological stimuli, including transforming growth factor ß (TGF-ß). The result is an epigenetically regulated transcriptional program leading to a pro-fibrogenic microenvironment, activation of hepatic stellate cells (HSCs), and progression of biliary fibrosis. This study evaluated how TGF-ß signaling intersects with epigenetic machinery in cholangiocytes to support fibrogenic gene transcription. We performed RNA sequencing in cholangiocytes with or without TGF-ß. Ingenuity pathway analysis identified "HSC Activation" as the highly up-regulated pathway, including overexpression of fibronectin 1 (FN), connective tissue growth factor, and other genes. Bioinformatics identified enhancer of zeste homologue 2 (EZH2) as an epigenetic regulator of the cholangiocyte TGF-ß response. EZH2 overexpression suppressed TGF-ß-induced FN protein in vitro, suggesting FN as a direct target of EZH2-based repression. Chromatin immunoprecipitation assays identified an FN promoter element in which EZH2-mediated tri-methylation of lysine 27 on histone 3 is diminished by TGF-ß. TGF-ß also caused a 50% reduction in EZH2 protein levels. Proteasome inhibition rescued EZH2 protein and led to reduced FN production. Immunoprecipitation followed by mass spectrometry identified ubiquitin protein ligase E3 component N-recognin 4 in complex with EZH2, which was validated by western blotting in vitro. Ubiquitin mutation studies suggested K63-based ubiquitin linkage and chain elongation on EZH2 in response to TGF-ß. A deletion mutant of EZH2, lacking its N-terminal domain, abrogates both TGF-ß-stimulated EZH2 degradation and FN release. In vivo, cholangiocyte-selective knockout of EZH2 exacerbates bile duct ligation-induced fibrosis whereas MDR2-/- mice are protected from fibrosis by the proteasome inhibitor bortezomib. Conclusion: TGF-ß regulates proteasomal degradation of EZH2 through N-terminal, K63-linked ubiquitination in cholangiocytes and activates transcription of a fibrogenic gene program that supports biliary fibrosis.


Asunto(s)
Enfermedades de los Conductos Biliares/metabolismo , Conductos Biliares/citología , Conductos Biliares/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Células Epiteliales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Animales , Células Cultivadas , Femenino , Fibrosis , Humanos , Masculino , Ratones
6.
Mol Cell ; 45(1): 123-31, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22178396

RESUMEN

Both the DNA damage response (DDR) and epigenetic mechanisms play key roles in the implementation of senescent phenotypes, but very little is known about how these two mechanisms are integrated to establish senescence-associated gene expression. Here we show that, in senescent cells, the DDR induces proteasomal degradation of G9a and GLP, major histone H3K9 mono- and dimethyltransferases, through Cdc14B- and p21(Waf1/Cip1)-dependent activation of APC/C(Cdh1) ubiquitin ligase, thereby causing a global decrease in H3K9 dimethylation, an epigenetic mark for euchromatic gene silencing. Interestingly, induction of IL-6 and IL-8, major players of the senescence-associated secretory phenotype (SASP), correlated with a decline of H3K9 dimethylation around the respective gene promoters and knockdown of Cdh1 abolished IL-6/IL-8 expression in senescent cells, suggesting that the APC/C(Cdh1)-G9a/GLP axis plays crucial roles in aspects of senescent phenotype. These findings establish a role for APC/C(Cdh1) and reveal how the DDR integrates with epigenetic processes to induce senescence-associated gene expression.


Asunto(s)
Senescencia Celular , Daño del ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/fisiología , Antígenos de Histocompatibilidad/metabolismo , Histona Metiltransferasas , Histonas/metabolismo , Humanos , Metilación , Transducción de Señal
7.
Mol Cell ; 41(1): 93-106, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21211726

RESUMEN

Protein quality control (PQC) degradation systems protect the cell from the toxic accumulation of misfolded proteins. Because any protein can become misfolded, these systems must be able to distinguish abnormal proteins from normal ones, yet be capable of recognizing the wide variety of distinctly shaped misfolded proteins they are likely to encounter. How individual PQC degradation systems accomplish this remains an open question. Here we show that the yeast nuclear PQC ubiquitin ligase San1 directly recognizes its misfolded substrates via intrinsically disordered N- and C-terminal domains. These disordered domains are punctuated with small segments of order and high sequence conservation that serve as substrate-recognition sites San1 uses to target its different substrates. We propose that these substrate-recognition sites, interspersed among flexible, disordered regions, provide San1 an inherent plasticity which allows it to bind its many, differently shaped misfolded substrates.


Asunto(s)
Pliegue de Proteína , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Complejos de Ubiquitina-Proteína Ligasa/química , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
8.
EMBO J ; 32(2): 303-14, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23288039

RESUMEN

The Anaphase Promoting Complex/Cyclosome (APC/C) in complex with its co-activator Cdc20 is responsible for targeting proteins for ubiquitin-mediated degradation during mitosis. The activity of APC/C-Cdc20 is inhibited during prometaphase by the Spindle Assembly Checkpoint (SAC) yet certain substrates escape this inhibition. Nek2A degradation during prometaphase depends on direct binding of Nek2A to the APC/C via a C-terminal MR dipeptide but whether this motif alone is sufficient is not clear. Here, we identify Kif18A as a novel APC/C-Cdc20 substrate and show that Kif18A degradation depends on a C-terminal LR motif. However in contrast to Nek2A, Kif18A is not degraded until anaphase showing that additional mechanisms contribute to Nek2A degradation. We find that dimerization via the leucine zipper, in combination with the MR motif, is required for stable Nek2A binding to and ubiquitination by the APC/C. Nek2A and the mitotic checkpoint complex (MCC) have an overlap in APC/C subunit requirements for binding and we propose that Nek2A binds with high affinity to apo-APC/C and is degraded by the pool of Cdc20 that avoids inhibition by the SAC.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cinesinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc8 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Quinasas Relacionadas con NIMA , Prometafase/fisiología , Unión Proteica , Multimerización de Proteína , Factores de Tiempo , Células Tumorales Cultivadas , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
9.
Plant Cell ; 26(1): 485-96, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24449689

RESUMEN

Proteins with nucleotide binding and leucine-rich repeat domains (NLRs) serve as immune receptors in animals and plants that recognize pathogens and activate downstream defense responses. As high accumulation of NLRs can result in unwarranted autoimmune responses, their cellular concentrations must be tightly regulated. However, the molecular mechanisms of this process are poorly detailed. The F-box protein Constitutive expressor of PR genes 1 (CPR1) was previously identified as a component of a Skp1, Cullin1, F-box protein E3 complex that targets NLRs, including Suppressor of NPR1, Constitutive 1 (SNC1) and Resistance to Pseudomonas syringae 2 (RPS2), for ubiquitination and further protein degradation. From a forward genetic screen, we identified Mutant, snc1-enhancing 3 (MUSE3), an E4 ubiquitin ligase involved in polyubiquitination of its protein targets. Knocking out MUSE3 in Arabidopsis thaliana results in increased levels of NLRs, including SNC1 and RPS2, whereas overexpressing MUSE3 together with CPR1 enhances polyubiquitination and protein degradation of these immune receptors. This report on the functional role of an E4 ligase in plants provides insight into the scarcely understood NLR degradation pathway.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonación Molecular , Resistencia a la Enfermedad/genética , Inmunidad de la Planta , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación
11.
EMBO J ; 31(2): 403-16, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22056777

RESUMEN

The spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance pathway, prevents chromosome segregation in response to conditions that disrupt the kinetochore-microtubule attachment. Removal of the checkpoint-activating stimulus initiates recovery during which spindle integrity is restored, kinetochores become bi-oriented, and cells initiate anaphase. Whether recovery ensues passively after the removal of checkpoint stimulus, or requires mediation by specific effectors remains uncertain. Here, we report two unrecognized functions of yeast Cdk1 required for efficient recovery from SAC-induced arrest. We show that Cdk1 promotes kinetochore bi-orientation during recovery by restraining premature spindle elongation thereby extinguishing SAC signalling. Moreover, Cdk1 is essential for sustaining the expression of Cdc20, an activator of the anaphase promoting complex/cyclosome (APC/C) required for anaphase progression. We suggest a model in which Cdk1 activity promotes recovery from SAC-induced mitotic arrest by regulating bi-orientation and APC/C activity. Our findings provide fresh insights into the regulation of mitosis and have implications for the therapeutic efficacy of anti-mitotic drugs.


Asunto(s)
Proteína Quinasa CDC2/fisiología , Proteínas de Ciclo Celular/biosíntesis , Cinetocoros/fisiología , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Huso Acromático/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Anafase/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Cinetocoros/ultraestructura , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Nocodazol/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/efectos de los fármacos , Huso Acromático/ultraestructura
12.
Development ; 139(19): 3600-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22949615

RESUMEN

Axon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.


Asunto(s)
Axones/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Animales Recién Nacidos , Axones/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Células HEK293 , Humanos , Neurogénesis/genética , Neurogénesis/fisiología , Ratas , Ratas Wistar , Transducción de Señal/genética , Transducción de Señal/fisiología , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/fisiología
13.
Proc Natl Acad Sci U S A ; 109(34): 13853-8, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869741

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a large multiprotein E3 ubiquitin ligase involved in ubiquitin-dependent proteolysis of key cell cycle regulatory proteins, including the destruction of mitotic cyclins at the metaphase-to-anaphase transition. Despite its importance, the role of the APC/C in plant cells and the regulation of its activity during cell division remain poorly understood. Here, we describe the identification of a plant-specific negative regulator of the APC/C complex, designated SAMBA. In Arabidopsis thaliana, SAMBA is expressed during embryogenesis and early plant development and plays a key role in organ size control. Samba mutants produced larger seeds, leaves, and roots, which resulted from enlarged root and shoot apical meristems, and, additionally, they had a reduced fertility attributable to a hampered male gametogenesis. Inactivation of SAMBA stabilized A2-type cyclins during early development. Our data suggest that SAMBA regulates cell proliferation during early development by targeting CYCLIN A2 for APC/C-mediated proteolysis.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Ciclina A/química , Mutación , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Polen/metabolismo , Homología de Secuencia de Aminoácido , Complejos de Ubiquitina-Proteína Ligasa/genética
14.
J Biol Chem ; 288(2): 928-37, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23195958

RESUMEN

Histone transcription and deposition are tightly regulated with the DNA replication cycle to maintain genetic integrity. Ams2 is a GATA-containing transcription factor responsible for core histone gene expression and for CENP-A loading at centromeres in fission yeast. Ams2 levels are cell cycle-regulated, and after the S phase Ams2 is degraded by the SCF(pof3) ubiquitin ligase; however, the regulation of Ams2 in G(1) or meiosis is poorly understood. Here we show that another ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) targets Ams2 for destruction in G(1). Ubiquitylation and destruction of Ams2 is dependent upon a coactivator Cdh1/Ste9 and the KEN box in the C terminus of Ams2. We also find that stabilization of Ams2 sensitizes cells to the anti-microtubule drug thiabendazole and the histone deacetylase inhibitor tricostatin A when a histone deacetylase gene hst4 is deleted, suggesting that histone acetylation together with Ams2 stability ensures the coupling of mitosis to DNA replication. Furthermore, in meiosis, the failure of the APC/C-mediated destruction of Ams2 is deleterious, and pre-meiotic DNA replication is barely completed. These data suggest that Ams2 destruction via both the APC/C and the SCF ubiquitin ligases underlies the coordination of histone expression and DNA replication.


Asunto(s)
Replicación del ADN , ADN de Hongos/biosíntesis , Fase G1 , Factores de Transcripción GATA/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Histonas/genética , Proteolisis , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Acetilación , Ciclosoma-Complejo Promotor de la Anafase , ADN de Hongos/genética , Histonas/metabolismo , Meiosis , Schizosaccharomyces/citología , Transcripción Genética , Ubiquitinación
15.
Development ; 138(5): 905-13, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21270054

RESUMEN

FZR1, an activator of the anaphase-promoting complex/cyclosome (APC/C), is recognized for its roles in the mitotic cell cycle. To examine its meiotic function in females we generated an oocyte-specific knockout of the Fzr1 gene (Fzr1(Δ/Δ)). The total number of fully grown oocytes enclosed in cumulus complexes was 35-40% lower in oocytes from Fzr1(Δ/Δ) mice and there was a commensurate rise in denuded, meiotically advanced and/or fragmented oocytes. The ability of Fzr1(Δ/Δ) oocytes to remain prophase I/germinal vesicle (GV) arrested in vitro was also compromised, despite the addition of the phosphodiesterase milrinone. Meiotic competency of smaller diameter oocytes was also accelerated by Fzr1 loss. Cyclin B1 levels were elevated ~5-fold in Fzr1(Δ/Δ) oocytes, whereas securin and CDC25B, two other APC/C(FZR1) substrates, were unchanged. Cyclin B1 overexpression can mimic the effects of Fzr1 loss on GV arrest and here we show that cyclin B1 knockdown in Fzr1(Δ/Δ) oocytes affects the timing of meiotic resumption. Therefore, the effects of Fzr1 loss are mediated, at least in part, by raised cyclin B1. Thus, APC/C(FZR1) activity is required to repress cyclin B1 levels in oocytes during prophase I arrest in the ovary, thereby maintaining meiotic quiescence until hormonal cues trigger resumption.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Meiosis , Profase Meiótica I , Oocitos/citología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Cdh1 , Ciclina B1/genética , Femenino , Ratones , Ratones Noqueados , Ovario , Factores de Tiempo
16.
Development ; 137(8): 1297-304, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20223764

RESUMEN

Within the mammalian ovary, oocytes remain arrested at G2 for several years. Then a peri-ovulatory hormonal cue triggers meiotic resumption by releasing an inhibitory phosphorylation on the kinase Cdk1. G2 arrest, however, also requires control in the concentrations of the Cdk1-binding partner cyclin B1, a process achieved by anaphase-promoting complex (APC(Cdh1)) activity, which ubiquitylates and so targets cyclin B1 for degradation. Thus, APC(Cdh1) activity prevents precocious meiotic entry by promoting cyclin B1 degradation. However, it remains unresolved how cyclin B1 levels are suppressed sufficiently to maintain arrest but not so low that they make oocytes hormonally insensitive. Here, we examined spatial control of this process by determining the intracellular location of the proteins involved and using nuclear-targeted cyclin B1. We found that raising nuclear cyclin B1 concentrations, an event normally observed in the minutes before nuclear envelope breakdown, was a very effective method of inducing the G2/M transition. Oocytes expressed only the alpha-isoform of Cdh1, which was predominantly nuclear, as were Cdc27 and Psmd11, core components of the APC and the 26S proteasome, respectively. Furthermore, APC(Cdh1) activity appeared higher in the nucleus, as nuclear-targeted cyclin B1 was degraded at twice the rate of wild-type cyclin B1. We propose a simple spatial model of G2 arrest in which nuclear APC(Cdh1)-proteasomal activity guards against any cyclin B1 accumulation mediated by nuclear import.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclina B1/metabolismo , Oocitos/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Empalme Alternativo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/fisiología , Proteína Quinasa CDC2/genética , Proteínas Cdh1 , Proteínas de Ciclo Celular/genética , División Celular/fisiología , Núcleo Celular/fisiología , Femenino , Fase G2/fisiología , Regulación de la Expresión Génica , Meiosis , Ratones , Mitosis/fisiología , Oocitos/citología , Ovario/citología , Ovario/fisiología , Transcripción Genética
17.
J Integr Plant Biol ; 55(1): 64-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23206231

RESUMEN

Anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ligase, plays a critical role in cell cycle control, but the functional characterization of each subunit has not yet been completed. To investigate the function of APC1 in Arabidopsis, we analyzed four mutant alleles of APC1, and found that mutation in APC1 resulted in significantly reduced plant fertility, accumulation of cyclin B, and disrupted auxin distribution in embryos. The three mutant alleles apc1-1, apc1-2 and apc1-3 shared variable defects in female gametogenesis including degradation, abnormal nuclear number, and disrupted polarity of nuclei in the embryo sac as well as in embryogenesis, in which embryos were arrested at multiple stages. All of these defects are similar to those previously identified in apc4. The mutant apc1-4, in which the T-DNA was inserted after the transmembrane domain at the C-terminus, showed much more severe phenotypes; that is, most of the ovules were arrested at the one-nucleate female gametophyte stage (stage FG1). In the apc1 apc4 double mutants, the fertility was further reduced by one-third in apc1-1/+ apc4-1/+, and in some cases no ovules even survived in siliques of apc1-4/+ apc4-1/+. Our data thus suggest that APC1, an essential component of APC/C, plays a synergistic role with APC4 both in female gametogenesis and in embryogenesis.


Asunto(s)
Arabidopsis/fisiología , Óvulo Vegetal/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/embriología , Arabidopsis/genética , Fertilidad , Glucuronidasa/metabolismo , Mutación , Óvulo Vegetal/enzimología
18.
Int J Cancer ; 130(11): 2495-504, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21792894

RESUMEN

Cancers that develop in BRCA1 mutation carriers are usually near tetraploid/polyploid. This led us to hypothesize that BRCA1 controls the mitotic checkpoint complex, as loss of such control could lead to mitotic errors resulting in tetraploidy/polyploidy and subsequent aneuploidy. We used an in vitro system mimicking premalignant conditions, consisting of cell strains derived from the benign counterparts of serous ovarian carcinomas (cystadenomas) and expressing SV40 large T antigen, conferring the equivalent of a p53 mutation. We previously showed that such cells undergo one or several doublings of their DNA content, as they age in culture and approach the phenomenon of in vitro crisis. Here, we show that such increase in DNA content reflects a cell cycle arrest possibly at the anaphase promoting complex, as evidenced by decreased BrdU incorporation and increased expression of the mitotic checkpoint complex. Down-regulation of BRCA1 in cells undergoing crisis leads to activation of the anaphase promoting complex and resumption of growth kinetics similar to those seen in cells before they reach crisis. Cells recovering from crisis after BRCA1 down-regulation become multinucleated, suggesting that reduced BRCA1 expression may lead to initiation of a new cell cycle without completion of cytokinesis. This is the first demonstration that BRCA1 controls a physiological arrest at the M phase apart from its established role in DNA damage response, a role that could represent an important mechanism for acquisition of aneuploidy during tumor development. This may be particularly relevant to cancers that have a near tetraploid/polyploid number of chromosomes.


Asunto(s)
Proteína BRCA1/fisiología , Cistoadenoma/patología , Mitosis , Neoplasias Ováricas/patología , Ciclosoma-Complejo Promotor de la Anafase , División Celular , Citocinesis , Femenino , Humanos , Complejos de Ubiquitina-Proteína Ligasa/fisiología
19.
PLoS Biol ; 7(4): e1000088, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19385718

RESUMEN

The displacement of the mitotic spindle to one side of a cell is important for many cells to divide unequally. While recent progress has begun to unveil some of the molecular mechanisms of mitotic spindle displacement, far less is known about how spindle displacement is precisely timed. A conserved mitotic progression mechanism is known to time events in dividing cells, although this has never been linked to spindle displacement. This mechanism involves the anaphase-promoting complex (APC), its activator Cdc20/Fizzy, its degradation target cyclin, and cyclin-dependent kinase (CDK). Here we show that these components comprise a previously unrecognized timer for spindle displacement. In the Caenorhabditis elegans zygote, mitotic spindle displacement begins at a precise time, soon after chromosomes congress to the metaphase plate. We found that reducing the function of the proteasome, the APC, or Cdc20/Fizzy delayed spindle displacement. Conversely, inactivating CDK in prometaphase caused the spindle to displace early. The consequence of experimentally unlinking spindle displacement from this timing mechanism was the premature displacement of incompletely assembled components of the mitotic spindle. We conclude that in this system, asymmetric positioning of the mitotic spindle is normally delayed for a short time until the APC inactivates CDK, and that this delay ensures that the spindle does not begin to move until it is fully assembled. To our knowledge, this is the first demonstration that mitotic progression times spindle displacement in the asymmetric division of an animal cell. We speculate that this link between the cell cycle and asymmetric cell division might be evolutionarily conserved, because the mitotic spindle is displaced at a similar stage of mitosis during asymmetric cell divisions in diverse systems.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/fisiología , Ciclo Celular/fisiología , División Celular/fisiología , Mitosis/fisiología , Huso Acromático/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Caenorhabditis elegans/embriología , Cromosomas/fisiología , Quinasas Ciclina-Dependientes/fisiología , Ciclinas/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Cigoto/citología
20.
Cancer Cell ; 5(4): 305-6, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15093536

RESUMEN

Coordination of events required for cell cycle progression is orchestrated in large part by the ubiquitin (Ub)-mediated destruction of key regulatory proteins such as cyclins and their inhibitors. Until now, the G1/S and mitotic phases of the cell cycle were thought to be controlled by discrete families of multisubunit Ub-ligases: SCF ligases controlled the G1 to S transition, whereas APC ligases controlled the onset and exit from mitosis. New work, published in the March 11 issue of Nature, challenges this concept by revealing that an essential function of APC is to limit SCF activity during the G1 phase of the cell cycle.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA