Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Inorg Chem ; 63(23): 10455-10465, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38743433

RESUMEN

Organomercurials (RHg+), especially methylmercury (MeHg+) and ethylmercury (EtHg+), are considered to be more neurotoxic than the inorganic counterpart (Hg2+). They cause massive DNA damage in cells, especially in neurons, where cellular glutathione (GSH) levels are significantly low. However, the mechanism by which RHg+ exerts massive DNA damage at cytotoxic concentrations in brain cells remains obscure. In this study, we investigated the effect of RHg+ on the structural and electronic properties of nucleosides and its effects on DNA damage. The direct interaction of RHg+ with the nucleoside significantly weakens N-glycosidic bonds, decreases the C-H bond energy of sugar moieties, and increases the electrophilicity of the C8-center of purine bases. As a consequence, RHg+-conjugated DNA molecules are extremely labile and highly sensitive to any nucleophiles/radicals present in GSH-depleted cells and, thus, undergo enhanced oxidative and unusual alkylative DNA damage. We also report a functional model of organomercurial lyase, which showed excellent cytoprotective effect against RHg+-induced cytotoxicity; this reverses the activity of glutathione reductase inhibited by MeHgCl and ceases oxidative and alkylating DNA damage. This intriguing finding provides new mechanistic insight into the mode of action of organomercurials in GSH-depleted cells and their adverse effects on individuals with neurodegenerative disorders associated with oxidative stress.


Asunto(s)
Daño del ADN , Glutatión , Compuestos de Metilmercurio , Compuestos de Metilmercurio/farmacología , Compuestos de Metilmercurio/química , Glutatión/metabolismo , Glutatión/química , Daño del ADN/efectos de los fármacos , Humanos , ADN/química , ADN/efectos de los fármacos , Estructura Molecular , Animales , Supervivencia Celular/efectos de los fármacos , Teoría Funcional de la Densidad
2.
Environ Sci Technol ; 58(32): 14410-14420, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39082216

RESUMEN

Complexes with low-molecular-weight thiols are crucial species of methylmercury (MeHg) excreted by anaerobic Hg-methylating microbes, notably, MeHg-cysteine (MeHg-Cys). As MeHg-Cys diffuses into surface water, it would undergo a ligand exchange process with dissolved organic matter (DOM) under nonsulfidic conditions, inevitably altering MeHg speciation and bioavailability to phytoplankton. In this study, we investigated the competitive binding kinetics between MeHg-Cys and Suwannee River natural organic matter, and their influence on the adsorption and uptake of MeHg by the cyanobacterium, Synechocystis sp. PCC6803. Liquid chromatography-inductively coupled plasma mass spectrometry was employed to monitor the kinetics processes involving competition of DOM with Cys for MeHg binding, which revealed that competitive binding kinetics were dictated by the abundance of thiol moieties in DOM. Thiol concentrations of 0.97 and 49.34 µmol of thiol (g C)-1 resulted in competitive binding rate constant (k values) of 0.30 and 3.47 h-1, respectively. Furthermore, the time-dependent competitive binding of DOM toward MeHg-Cys significantly inhibited MeHg adsorption and uptake by cyanobacteria, an effect that was amplified by an increased thiol abundance in DOM. These findings offer valuable insights into the kinetic characteristics of MeHg's fate and transport, as well as their impact on bioconcentration in aquatic organisms within natural aquatic ecosystems.


Asunto(s)
Compuestos de Metilmercurio , Compuestos de Sulfhidrilo , Compuestos de Metilmercurio/metabolismo , Compuestos de Metilmercurio/química , Adsorción , Cinética , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Sulfhidrilo/química , Cisteína/metabolismo , Cisteína/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química
3.
Environ Sci Technol ; 57(21): 8149-8160, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37194595

RESUMEN

Methylmercury (MeHg) contamination in rice via paddy soils is an emerging global environmental issue. An understanding of mercury (Hg) transformation processes in paddy soils is urgently needed in order to control Hg contamination of human food and related health impacts. Sulfur (S)-regulated Hg transformation is one important process that controls Hg cycling in agricultural fields. In this study, Hg transformation processes, such as methylation, demethylation, oxidation, and reduction, and their responses to S input (sulfate and thiosulfate) in paddy soils with a Hg contamination gradient were elucidated simultaneously using a multi-compound-specific isotope labeling technique (200HgII, Me198Hg, and 202Hg0). In addition to HgII methylation and MeHg demethylation, this study revealed that microbially mediated reduction of HgII, methylation of Hg0, and oxidative demethylation-reduction of MeHg occurred under dark conditions; these processes served to transform Hg between different species (Hg0, HgII, and MeHg) in flooded paddy soils. Rapid redox recycling of Hg species contributed to Hg speciation resetting, which promoted the transformation between Hg0 and MeHg by generating bioavailable HgII for fuel methylation. Sulfur input also likely affected the microbial community structure and functional profile of HgII methylators and, therefore, influenced HgII methylation. The findings of this study contribute to our understanding of Hg transformation processes in paddy soils and provide much-needed knowledge for assessing Hg risks in hydrological fluctuation-regulated ecosystems.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Humanos , Compuestos de Metilmercurio/química , Mercurio/análisis , Ecosistema , Suelo/química , Oxidación-Reducción
4.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836605

RESUMEN

The anthropogenic release of Hg is associated with an increased human exposure risk. Since Hg2+ and MeHg+ have a high affinity for thiols, their interaction with L-glutathione (GSH) within mammalian cells is fundamentally involved in their toxicological chemistry and excretion. To gain insight into the interaction of these mercurials with multiple small molecular weight thiols, we have investigated their competitive interactions with GSH and N-acetylcysteine (NAC) at near-physiological conditions, using a liquid chromatographic approach. This approach involved the injection of each mercurial onto a reversed-phase (RP)-HPLC column (37 °C) using a PBS buffer mobile phase containing 5.0 mM GSH to simulate cytosolic conditions with Hg being detected in the column effluent by an inductively coupled plasma atomic emission spectrometer (ICP-AES). When the 5.0 mM GSH mobile phase was amended with up to 10 mM NAC, gradually increasing retention times of both mercurials were observed. To explain this behavior, the experiment with 5.0 mM NAC and 5.0 mM GSH was replicated using 50 mM Tris buffer (pH 7.4), and the Hg-containing fractions were analyzed by electrospray ionization mass spectrometry. The results revealed the presence of Hg(GS)(NAC) and Hg(NAC)2 for Hg2+ and MeHg(GS) and MeHg(NAC) for MeHg+, which suggests that the coordination/displacement of GS-moieties from each mercurial by the more hydrophobic NAC can explain their retention behavior. Since the biotransformations of both mercurials were observed at near-physiological conditions, they are of toxicological relevance as they provide a biomolecular explanation for some results that were obtained when animals were administered with each mercurial and NAC.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Animales , Humanos , Acetilcisteína , Compuestos de Metilmercurio/química , Mercurio/análisis , Glutatión/análisis , Compuestos de Sulfhidrilo , Mamíferos
5.
Bull Environ Contam Toxicol ; 111(1): 5, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349509

RESUMEN

It is urgent to detect the major controlling factors and establish predictive models of mercury (Hg) accumulation in rice. A pot trial was conducted, exogenous Hg was added to 19 paddy soils at 4 concentration levels in this study. The major controlling factors of total Hg (THg) in brown rice were soil THg, pH and organic matter (OM) content, while those of methylmercury (MeHg) in brown rice were soil MeHg and OM. THg and MeHg in brown rice could be well predicted by soil THg, pH and clay content. The data from previous studies were collected to validate the predictive models of Hg in brown rice. The predicted values of Hg in brown rice were within the twofold prediction intervals of the observations, which demonstrated the predictive models in this study were reliable. The results could provide theoretical foundation for the risk assessment of Hg in paddy soils.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Compuestos de Metilmercurio/química , Mercurio/análisis , Oryza/química , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Suelo/química
6.
Chem Res Toxicol ; 35(1): 77-88, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34905692

RESUMEN

Metabolic effects of methylmercury (MeHg) are gaining wider attention. We have previously shown that MeHg causes lipid dysregulation in Caenorhabditis elegans (C. elegans), leading to altered gene expression, increased triglyceride levels and lipid storage, and altered feeding behaviors. Transcriptional regulators, such as transcription factors and microRNAs (miRNAs), have been shown to regulate lipid storage, serum triglycerides, and adipogenic gene expression in human and rodent models of metabolic diseases. As we recently investigated adipogenic transcription factors induced by MeHg, we were, therefore, interested in whether MeHg may also regulate miRNA sequences to cause metabolic dysfunction. Lipid dysregulation, as measured by triglyceride levels, lipid storage sites, and feeding behaviors, was assessed in wild-type (N2) worms and in transgenic worms that either were sensitive to miRNA expression or were unable to process miRNAs. Worms that were sensitive to the miRNA expression were protected from MeHg-induced lipid dysregulation. In contrast, the mutant worms that were unable to process miRNAs had exacerbated MeHg-induced lipid dysregulation. Concurrent with differential lipid homeostasis, miRNA-expression mutants had altered MeHg-induced mitochondrial toxicity as compared to N2, with the miRNA-sensitive mutants showing mitochondrial protection and the miRNA-processing mutants showing increased mitotoxicity. Taken together, our data demonstrate that the expression of miRNAs is an important determinant in MeHg toxicity and MeHg-induced metabolic dysfunction in C. elegans.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Compuestos de Metilmercurio/farmacología , MicroARNs/genética , Mitocondrias/efectos de los fármacos , Animales , Caenorhabditis elegans/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/genética , Metabolismo de los Lípidos , Compuestos de Metilmercurio/química , Mitocondrias/metabolismo , Relación Estructura-Actividad
7.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615211

RESUMEN

The toxicity of all species of mercury makes it necessary to implement analytical procedures capable of quantifying the different forms this element presents in the environment, even at very low concentrations. In addition, due to the assorted environmental and health consequences caused by each mercury species, it is desirable that the procedures are able to distinguish these forms. In nature, mercury is mainly found as Hg0, Hg2+ and methylmercury (MeHg), with the latter being rapidly assimilated by living organisms in the aquatic environment and biomagnified through the food chain. In this work, a dispersive solid-phase microextraction of Hg2+ and MeHg is proposed using as the adsorbent a magnetic hybrid material formed by graphene oxide and ferrite (Fe3O4@GO), along with a subsequent determination by electrothermal atomic absorption spectrometry (ETAAS). On the one hand, when dithizone at a pH = 5 is used as an auxiliary agent, both Hg(II) and MeHg are retained on the adsorbent. Next, for the determination of both species, the solid collected by the means of a magnet is suspended in a mixture of 50 µL of HNO3 (8% v/v) and 50 µL of H2O2 at 30% v/v by heating for 10 min in an ultrasound thermostatic bath at 80 °C. On the other hand, when the sample is set at a pH = 9, Hg(II) and MeHg are also retained, but if the solid collected is washed with N-acetyl-L-cysteine only, then the Hg(II) remains on the adsorbent, and can be determined as indicated above. The proposed procedure exhibits an enrichment factor of 49 and the determination presents a linear range between 0.1 and 10 µg L-1 of mercury. The procedure has been applied to the determination of mercury in water samples from different sources.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Compuestos de Metilmercurio/química , Espectrofotometría Atómica , Peróxido de Hidrógeno , Mercurio/análisis , Indicadores y Reactivos , Fenómenos Magnéticos
8.
Bull Environ Contam Toxicol ; 110(1): 26, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36571620

RESUMEN

Due to their natural geochemistry, intertidal estuarine ecosystems are vulnerable to bioaccumulation of methylmercury (MeHg), a neurotoxin that readily bioaccumulates in organisms. Determining MeHg concentrations in intertidal invertebrates at the base of the food web is crucial in determining MeHg exposure in higher trophic level organisms like fish and birds. The processes that govern the production of MeHg in coastal ecosystems are influenced by many geochemical factors including sulfur species, organic matter, and salinity. The interactions of these factors with mercury are complex, and a wide variety of results have been reported in the literature. This paper reviews conceptual models to better clarify the various geochemical and physical factors that impact MeHg production and bioavailability in intertidal ecosystems.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Compuestos de Metilmercurio/química , Ecosistema , Bioacumulación , Contaminantes Químicos del Agua/análisis , Mercurio/análisis , Cadena Alimentaria , Peces , Monitoreo del Ambiente/métodos
9.
Chem Res Toxicol ; 34(6): 1655-1663, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34077192

RESUMEN

Experimental studies have indicated that electrophilic mercury forms (e.g., methylmercury, MeHg+) can accelerate the breakage of selenocysteine in vitro. Particularly, in 2009, Khan et al. (Environ. Toxicol. Chem. 2009, 28, 1567-1577) proposed a mechanism for the degradation of a free methylmercury selenocysteinate complex that was theoretically supported by Asaduzzaman et al. (Inorg. Chem. 2010, 50, 2366-2372). However, little is known about the fate of methylmercury selenocysteinate complexes embedded in an enzyme, especially in conditions of oxidative stress in which methylmercury target enzymes operate. Here, an accurate computational study on molecular models (level of theory: COSMO-ZORA-BLYP-D3(BJ)/TZ2P) was carried out to investigate the formation of dehydroalanine (Dha) in selenoenzymes, which irreversibly impairs their function. Methylselenocysteine as well as methylcysteine and methyltellurocysteine were included to gain insight on the peculiar behavior of selenium. Dha forms in a two-step process, i.e., the oxidation of the chalcogen nucleus followed by a syn-elimination leading to the alkene and the chalcogenic acid. The effect of an excess of hydrogen peroxide, which may lead to the formation of chalcogenones before the elimination, and of MeHg+, a severe toxicant targeting selenoproteins, which leads to the formation of methylmercury selenocysteinate, are also studied with the aim of assessing whether these pathological conditions facilitate the formation of Dha. Indeed, elimination occurs after chalcogen oxidation and MeHg+ facilitates the process. These results indicate a possible mechanism of toxicity of MeHg+ in selenoproteins.


Asunto(s)
Alanina/análogos & derivados , Teoría Funcional de la Densidad , Compuestos de Metilmercurio/metabolismo , Selenoproteínas/metabolismo , Alanina/biosíntesis , Alanina/química , Compuestos de Metilmercurio/química , Modelos Moleculares , Estructura Molecular
10.
Inorg Chem ; 60(7): 4646-4656, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33587617

RESUMEN

Methylmercury (CH3Hg+) binding to catalytically fundamental cysteine and selenocysteine of peroxide-reducing enzymes has long been postulated as the origin of its toxicological activity. Only very recently, CH3Hg+ binding to the selenocysteine of thioredoxin reductase has been directly observed [Pickering, I. J. Inorg. Chem., 2020, 59, 2711-2718], but the precise influence of the toxicant on the peroxide-reducing potential of such a residue has never been investigated. In this work, we employ state-of-the-art density functional theory calculations to study the reactivity of molecular models of the free and toxified enzymes. Trends in activation energies are discussed with attention to the biological consequences and are rationalized within the chemically intuitive framework provided by the activation strain model. With respect to the free, protonated amino acids, CH3Hg+ binding promotes oxidation of the S or Se nucleus, suggesting that chalcogenoxide formation might occur in the toxified enzyme, even if the actual rate of peroxide reduction is almost certainly lowered as suggested by comparison with fully deprotonated amino acids models.


Asunto(s)
Cisteína/química , Compuestos de Metilmercurio/química , Peróxidos/química , Sitios de Unión , Cisteína/análogos & derivados , Teoría Funcional de la Densidad , Estructura Molecular , Oxidación-Reducción
11.
J Comput Chem ; 41(23): 2045-2054, 2020 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-32656797

RESUMEN

Methylmercury is a highly toxic compound and human exposure is mainly related to consumption of polluted fish and seafood. The inactivation of thiol-based enzymes, promoted by the strong affinity binding of electrophilic mercuric ions to thiol and selenol groups of proteins, is likely an important factor explaining its toxicity. A key role is played by the chemistry and reactivity of the mercury-chalcogens bond, particularly HgS and HgSe, which is the focus of this computational work (level of theory: (COSMO)-ZORA-BLYP-D3(BJ)/TZ2P). We analyze nine ligand-exchange model reactions (the so-called Rabenstein's reactions) involving an entering ligand (methylchalcogenolate) and a substrate (methylchalcogenolatemethylmercury). Trends in reaction and activation energies are discussed and a change in mechanism is reported for all cases when going from gas phase to water, that is, from a single-well potential energy surface (PES) to a canonical SN 2-like mechanism. The reasons accounting for the biochemically challenging and desired displacement of methylmercury from a seleno/thiol protein can be found already in these model reactions, as can be seen from the similarities of the ligand exchange reactions in solution in thermodynamics and kinetics.


Asunto(s)
Calcógenos/química , Química Computacional , Compuestos de Metilmercurio/química , Modelos Químicos , Teoría Funcional de la Densidad , Cinética , Conformación Molecular , Termodinámica
12.
Inorg Chem ; 59(5): 2711-2718, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32049511

RESUMEN

Selenoenzymes, containing a selenocysteine (Sec) residue, fulfill important roles in biology. The mammalian thioredoxin reductase selenoenzymes are key regulators of antioxidant defense and redox signaling and are inhibited by methylmercury species and by the gold-containing drug auranofin. It has been proposed that such inhibition is mediated by metal binding to Sec in the enzyme. However, direct structural observations of these classes of inhibitors binding to selenoenzymes have been few to date. Here we therefore have used extended X-ray absorption fine structure as a direct structural probe to investigate binding to the selenium site in recombinant rat thioredoxin reductase 1 (TrxR1). The results demonstrate for the first time the direct and complete binding of the metal atom of the inhibitors to the selenium atom in TrxR1 for both methylmercury and auranofin, indicating that TrxR1 inhibition indeed can be attributed to such direct metal-selenium binding.


Asunto(s)
Auranofina/química , Auranofina/farmacología , Compuestos de Metilmercurio/química , Compuestos de Metilmercurio/farmacología , Selenocisteína/química , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/química , Animales , Sitios de Unión/efectos de los fármacos , Ratas , Selenocisteína/metabolismo , Tiorredoxinas/metabolismo
13.
Ecotoxicol Environ Saf ; 188: 109888, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31706242

RESUMEN

Eutrophication can induce hypoxia/anoxia and rich organic matter at the sediment-water interface in surface waters. When eutrophic waters are impacted with mercury (Hg) pollution, methylmercury (MeHg) production ability (MPA) of surface sediment would increase and more MeHg might be produced. To tackle this risk, this study firstly collected samples of surface sediment and overlying water from a typical eutrophic lake-Taihu Lake. Then from a sediment-water simulation system, we demonstrated that eutrophic waters were able to methylate Hg spontaneously, and that sediment is the major Hg sink in the system. After the addition of HgCl2 solution (approximately 1 mg L-1 in the slurry), MeHg concentrations in the sediment increased by 11.7 times after 48 h. The subsequent column experiments proved that O2 nanobubbles could significantly decrease the MPA of surface sediment, by up to 48%. Furthermore, we found that O2 nanobubbles could remediate anoxia mainly by increasing dissolved oxygen (from 0 to 2.1 mg L-1), oxidation-reduction potentials (by 37% on average), and sulfate (by 31% on average) in the overlying water. In addition, O2 nanobubbles could also help decrease organic matter concentration, as was revealed by the decline of dissolved organic carbon in the overlying water (by up to 57%) and total organic carbon in surface sediment (by up to 37%). The remediation of anoxia and reduction of organic matter could contribute to the decrease of hgcA gene abundance (by up to 86%), and thus result in the reduction of MPA after the addition of O2 nanobubbles. This study revealed the risk of MeHg production in case Hg pollution occurs in eutrophic waters and proposed a feasible solution for MeHg remediation.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Sedimentos Geológicos/química , Compuestos de Metilmercurio/química , Oxígeno/química , Contaminantes Químicos del Agua/química , Eutrofización , Lagos/química , Mercurio/análisis , Mercurio/química , Compuestos de Metilmercurio/análisis , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Oxidación-Reducción , Oxígeno/análisis , Contaminantes Químicos del Agua/análisis
14.
Molecules ; 25(3)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991662

RESUMEN

The interactions of epinephrine ((R)-(-)-3,4-dihydroxy-α-(methylaminomethyl)benzyl alcohol; Eph-) with different toxic cations (methylmercury(II): CH3Hg+; dimethyltin(IV): (CH3)2Sn2+; dioxouranium(VI): UO22+) were studied in NaClaq at different ionic strengths and at T = 298.15 K (T = 310.15 K for (CH3)2Sn2+). The enthalpy changes for the protonation of epinephrine and its complex formation with UO22+ were also determined using isoperibolic titration calorimetry: HHL = -39 ± 1 kJ mol-1, HH2L = -67 ± 1 kJ mol-1 (overall reaction), HML = -26 ± 4 kJ mol-1, and HM2L2(OH)2 = 39 ± 2 kJ mol-1. The results were that UO22+ complexation by Eph- was an entropy-driven process. The dependence on the ionic strength of protonation and the complex formation constants was modeled using the extended Debye-Hückel, specific ion interaction theory (SIT), and Pitzer approaches. The sequestering ability of adrenaline toward the investigated cations was evaluated using the calculation of pL0.5 parameters. The sequestering ability trend resulted in the following: UO22+ >> (CH3)2Sn2+ > CH3Hg+. For example, at I = 0.15 mol dm-3 and pH = 7.4 (pH = 9.5 for CH3Hg+), pL0.5 = 7.68, 5.64, and 2.40 for UO22+, (CH3)2Sn2+, and CH3Hg+, respectively. Here, the pH is with respect to ionic strength in terms of sequestration.


Asunto(s)
Epinefrina/química , Compuestos de Metilmercurio/química , Óxidos/química , Termodinámica , Uranio/química
15.
Toxicol Appl Pharmacol ; 362: 59-66, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30352208

RESUMEN

Methylmercury (MeHg+) is an extremely toxic organomercury cation that can induce severe neurological damage. Once it enters the body, methylmercury binds to amino acids or proteins containing free sulfhydryl groups. In particular, methylmercury is known to bind with human serum albumin (HSA) in human plasma; however, the effects of methylmercury-HSA conjugate (MeHg-HSA) on the central nervous system (CNS) are not fully understood. In the present study, we used the microglial cell line N9 as the target cells to evaluate the effect of MeHg-HSA on physiological function of the CNS preliminarily. The various factors in the cell culture were monitored by MTT assay, total lactate dehydrogenase assay, ELISA, qPCR, Western blot and flow cytometry techniques. The results showed that low-dose treatment with MeHg-HSA activated N9 cells, promoting cell proliferation and total cell number, enhancing NO and intracellular Ca2+ levels, and suppressing the release of TNFα and IL1ß without cytotoxic effects; while high-dose MeHg-HSA exhibited cytotoxic effects on N9 cells, including promoting cell death and increasing the secretion of TNFα and IL1ß. These results indicate that MeHg-HSA causes hormesis in microglia N9 cells. Furthermore, ERK/MAPKs and STAT3 signaling pathways related to the hormesis of MeHg-HSA on N9 cells. In addition, low dose of MeHg-HSA might be viewed as something very close to a lowest observed adverse effect level (LOAEL) for N9 cells. These findings will be useful for investigating the hormesis mechanism of MeHg+ and exploring the specific functions of MeHg-sulfhydryl conjugates on the central nervous system.


Asunto(s)
Compuestos de Metilmercurio/farmacología , Microglía/efectos de los fármacos , Albúmina Sérica Humana/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Hormesis/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Compuestos de Metilmercurio/química , Ratones , Microglía/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Factor de Transcripción STAT3/metabolismo , Albúmina Sérica Humana/química , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Ecotoxicol Environ Saf ; 186: 109787, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31629907

RESUMEN

Municipal sewage has been identified to be an important source of mercury (Hg) to the environment. However, as the major sink of sewage-borne Hg, sewage sludge (SS) remains unresolved in terms of the occurrence status of Hg species. We presented here, a nation-wide survey on the speciation of Hg in SS of China. Total Hg (THg) and methylmercury (MeHg) were detected in all SS samples, within ranges of 0.4-12.4 mg/kg and 0.1-27.0 µg/kg, respectively. Sludge-borne Hg mainly occurred in the mercury sulfide and organo-chelated phases, with only tiny portions occurring as soluble Hg. The mass loadings of sludge-borne THg and MeHg in China for year 2016 were estimated to be 12.2 metric tons and 19.9 kg, respectively. Landfill was the most important sink of sludge-borne Hg, followed by incineration, land application, and building materials.


Asunto(s)
Monitoreo del Ambiente , Mercurio/análisis , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , China , Mercurio/química , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/química , Contaminantes Químicos del Agua/química
17.
Water Environ Res ; 91(2): 132-143, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30735297

RESUMEN

This study evaluated the ability of hydrous ferric oxide reactive filtration (HFO-RF) to remove mercury (Hg) from municipal secondary effluent at four study sites. Pilot HFO-RF systems (136 m3 /day) at two sites demonstrated total Hg concentration removal efficiencies of 96% (inflow/outflow mean total Hg: 43.6/1.6  ng/L) and 80% (4.2/0.8 ng/L). A lightly loaded medium-scale HFO-RF system (950 m3 /day) had a concentration removal efficiency of 53% (0.98/0.46 ng/L) and removed 0.52 mg/day of total Hg and 2.2 µg/day of methyl-Hg. A full-scale HFO-RF system (11,400 m3 /day) yielded a total Hg concentration removal efficiency of 97% (87/2.7 ng/L) and removed an estimated 0.36 kg/year of Hg. Results suggest that the quality of secondary effluent, including dissolved organic matter content, affects achievable minimum total Hg concentrations in effluent from HFO-RF systems. Low HFO-RF effluent concentrations (<1 ng/L) can be expected when treating secondary effluent from suspended-growth biological treatment systems. PRACTITIONER POINTS: Trace levels of mercury in municipal secondary effluent can negatively impact receiving waters. Hydrous ferric oxide reactive filtration (HFO-RF) can remove mercury from municipal secondary effluent to levels below the Great Lakes Initiative discharge standard of 1.3 ng/L. Mercury removal to low concentrations (< 1 ng/L) using HFO-RF appears to be associated with secondary effluents with low dissolved organic matter content. HFO-RF can also remove total phosphorus and turbidity to low concentrations.


Asunto(s)
Ciudades , Compuestos Férricos/química , Filtración/métodos , Mercurio/química , Mercurio/aislamiento & purificación , Purificación del Agua/métodos , Compuestos de Metilmercurio/química , Compuestos de Metilmercurio/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
18.
Bull Environ Contam Toxicol ; 102(5): 635-642, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31053868

RESUMEN

The biogeochemistry of mercury (Hg) in rice-paddy soil systems raises concerns, given that (1) the redox potential in paddy soil favors Hg methylation and (2) rice plants have a strong ability to accumulate methylmercury (MeHg), making rice an important source for MeHg exposure to humans. Therefore, all factors affecting the behavior of Hg in rice-paddy soils might impact Hg accumulation in rice, with its subsequent potential risks. As a typical wetland, paddy soils are managed by humans and affected by anthropogenic activities, such as agronomic measures, which would impact soil properties and thus Hg biogeochemistry. In this paper, we reviewed recent advances in the effects of farming activities including water management, fertilizer application and rotation on Hg biogeochemistry, trying to elucidate the factors controlling Hg behavior and thus the ecological risks in rice-paddy soil systems. This review might provide new thoughts on Hg remediation and suggest avenues for further studies.


Asunto(s)
Productos Agrícolas/química , Fertilizantes , Mercurio/química , Oryza/química , Contaminantes del Suelo/análisis , Suelo/química , Riego Agrícola , Restauración y Remediación Ambiental , Granjas , Humanos , Metilación , Compuestos de Metilmercurio/química
19.
Bull Environ Contam Toxicol ; 102(5): 686-694, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30859245

RESUMEN

The Three Gorges Reservoir (TGR) is a relatively large reservoir, and its water level management actions produce a widespread water level fluctuation zone (WLFZ), which has characteristics of both terrestrial and aquatic ecosystems. Here, an integrated overview of current knowledge on Hg behaviors in the TGR, especially the WLFZ, as well as exposure risk to local residents was presented. Hg levels in the TGR were comparable with other natural aquatic systems. WLFZ in the TGR was confirmed to be an environment favorable for Hg methylation by enhancing microbial activity, promoting sulfur cycling and increasing the level of low-molecular-weight organic matters. However, elevated fish Hg concentrations did not follow the impoundment of TGR, indicating no obvious reservoir effect, while it is still noteworthy that frequently consuming fish is likely to be a methylmercury (MeHg) exposure pathway for specific populations e.g. fishermen around the TGR.


Asunto(s)
Monitoreo del Ambiente/métodos , Mercurio/química , Compuestos de Metilmercurio/química , Contaminantes del Suelo/química , Contaminantes Químicos del Agua/química , Animales , China , Exposición Dietética , Peces/metabolismo , Humanos , Metilación , Compuestos de Metilmercurio/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes Químicos del Agua/metabolismo
20.
Proteomics ; 18(17): e1700479, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30009483

RESUMEN

Recent studies of microbial mercury (Hg) methylation revealed a key gene pair, hgcAB, which is essential for methylmercury (MeHg) production in the environment. However, many aspects of the mechanism and biological processes underlying Hg methylation, as well as any additional physiological functions of the hgcAB genes, remain unknown. Here, quantitative proteomics are used to identify changes in potential functional processes related to hgcAB gene deletion in the Hg-methylating bacterium Desulfovibrio desulfuricans ND132. Global proteomics analyses indicate that the wild type and ΔhgcAB strains are similar with respect to the whole proteome and the identified number of proteins, but differ significantly in the abundance of specific proteins. The authors observe changes in the abundance of proteins related to the glycolysis pathway and one-carbon metabolism, suggesting that the hgcAB gene pair is linked to carbon metabolism. Unexpectedly, the authors find that the deletion of hgcAB significantly impacts a range of metal transport proteins, specifically membrane efflux pumps such as those associated with heavy metal copper (Cu) export, leading to decreased Cu uptake in the ΔhgcAB mutant. This observation indicates possible linkages between this set of proteins and metal homeostasis in the cell. However, hgcAB gene expression is not induced by Hg, as evidenced by similarly low abundance of HgcA and HgcB proteins in the absence or presence of Hg (500 nm). Taken together, these results suggest an apparent link between HgcAB, one-carbon metabolism, and metal homeostasis, thereby providing insights for further exploration of biochemical mechanisms and biological functions of microbial Hg methylation.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Desulfovibrio desulfuricans/metabolismo , Eliminación de Gen , Compuestos de Metilmercurio/química , Proteoma/análisis , Proteoma/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fenómenos Biológicos , Desulfovibrio desulfuricans/genética , Desulfovibrio desulfuricans/crecimiento & desarrollo , Redes y Vías Metabólicas , Metilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA