Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
1.
Nature ; 594(7863): 398-402, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34012112

RESUMEN

Genetic risk variants that have been identified in genome-wide association studies of complex diseases are primarily non-coding1. Translating these risk variants into mechanistic insights requires detailed maps of gene regulation in disease-relevant cell types2. Here we combined two approaches: a genome-wide association study of type 1 diabetes (T1D) using 520,580 samples, and the identification of candidate cis-regulatory elements (cCREs) in pancreas and peripheral blood mononuclear cells using single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) of 131,554 nuclei. Risk variants for T1D were enriched in cCREs that were active in T cells and other cell types, including acinar and ductal cells of the exocrine pancreas. Risk variants at multiple T1D signals overlapped with exocrine-specific cCREs that were linked to genes with exocrine-specific expression. At the CFTR locus, the T1D risk variant rs7795896 mapped to a ductal-specific cCRE that regulated CFTR; the risk allele reduced transcription factor binding, enhancer activity and CFTR expression in ductal cells. These findings support a role for the exocrine pancreas in the pathogenesis of T1D and highlight the power of large-scale genome-wide association studies and single-cell epigenomics for understanding the cellular origins of complex disease.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Epigenómica , Predisposición Genética a la Enfermedad , Análisis de la Célula Individual , Cromatina/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Inmunidad/genética , Masculino , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología
2.
Genes Dev ; 33(11-12): 641-655, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048544

RESUMEN

Pancreatic adenocarcinoma (PDA) is an aggressive disease driven by oncogenic KRAS and characterized by late diagnosis and therapeutic resistance. Here we show that deletion of the ataxia-telangiectasia group D-complementing (Atdc) gene, whose human homolog is up-regulated in the majority of pancreatic adenocarcinoma, completely prevents PDA development in the context of oncogenic KRAS. ATDC is required for KRAS-driven acinar-ductal metaplasia (ADM) and its progression to pancreatic intraepithelial neoplasia (PanIN). As a result, mice lacking ATDC are protected from developing PDA. Mechanistically, we show ATDC promotes ADM progression to PanIN through activation of ß-catenin signaling and subsequent SOX9 up-regulation. These results provide new insight into PDA initiation and reveal ATDC as a potential target for preventing early tumor-initiating events.


Asunto(s)
Carcinogénesis , Carcinoma Ductal Pancreático/fisiopatología , Neoplasias Pancreáticas/fisiopatología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción/fisiología , Células Acinares/metabolismo , Células Acinares/patología , Animales , Carcinoma in Situ/patología , Carcinoma in Situ/fisiopatología , Carcinoma Ductal Pancreático/patología , Transdiferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Metaplasia , Ratones , Ratones Transgénicos , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Catenina/metabolismo
3.
J Physiol ; 602(6): 1065-1083, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38389307

RESUMEN

Type 1 diabetes is a disease of the endocrine pancreas; however, it also affects exocrine function. Although most studies have examined the effects of diabetes on acinar cells, much less is known regarding ductal cells, despite their important protective function in the pancreas. Therefore, we investigated the effect of diabetes on ductal function. Diabetes was induced in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice following an i.p. administration of streptozotocin. Pancreatic ductal fluid and HCO3 - secretion were determined using fluid secretion measurements and fluorescence microscopy, respectively. The expression of ion transporters was measured by real-time PCR and immunohistochemistry. Transmission electron microscopy was used for the morphological characterization of the pancreas. Serum secretin and cholecystokinin levels were measured by an enzyme-linked immunosorbent assay. Ductal fluid and HCO3 - secretion, CFTR activity, and the expression of CFTR, Na+ /H+ exchanger-1, anoctamine-1 and aquaporin-1 were significantly elevated in diabetic mice. Acute or chronic glucose treatment did not affect HCO3 - secretion, but increased alkalizing transporter activity. Inhibition of CFTR significantly reduced HCO3 - secretion in both normal and diabetic mice. Serum levels of secretin and cholecystokinin were unchanged, but the expression of secretin receptors significantly increased in diabetic mice. Diabetes increases fluid and HCO3 - secretion in pancreatic ductal cells, which is associated with the increased function of ion and water transporters, particularly CFTR. KEY POINTS: There is a lively interaction between the exocrine and endocrine pancreas not only under physiological conditions, but also under pathophysiological conditions The most common disease affecting the endocrine part is type-1 diabetes mellitus (T1DM), which is often associated with pancreatic exocrine insufficiency Compared with acinar cells, there is considerably less information regarding the effect of diabetes on pancreatic ductal epithelial cells, despite the fact that the large amount of fluid and HCO3 - produced by ductal cells is essential for maintaining normal pancreatic functions Ductal fluid and HCO3 - secretion increase in T1DM, in which increased cystic fibrosis transmembrane conductance regulator activation plays a central role. We have identified a novel interaction between T1DM and ductal cells. Presumably, the increased ductal secretion represents a defence mechanism in the prevention of diabetes, but further studies are needed to clarify this issue.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animales , Ratones , Bicarbonatos/metabolismo , Colecistoquinina/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Conductos Pancreáticos/metabolismo , Secretina/metabolismo
4.
Nature ; 561(7722): 201-205, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30177826

RESUMEN

Most adult carcinomas develop from noninvasive precursor lesions, a progression that is supported by genetic analysis. However, the evolutionary and genetic relationships among co-existing lesions are unclear. Here we analysed the somatic variants of pancreatic cancers and precursor lesions sampled from distinct regions of the same pancreas. After inferring evolutionary relationships, we found that the ancestral cell had initiated and clonally expanded to form one or more lesions, and that subsequent driver gene mutations eventually led to invasive pancreatic cancer. We estimate that this multi-step progression generally spans many years. These new data reframe the step-wise progression model of pancreatic cancer by illustrating that independent, high-grade pancreatic precursor lesions observed in a single pancreas often represent a single neoplasm that has colonized the ductal system, accumulating spatial and genetic divergence over time.


Asunto(s)
Conductos Pancreáticos/patología , Lesiones Precancerosas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Linaje de la Célula/genética , Progresión de la Enfermedad , Evolución Molecular , Humanos , Mutación INDEL/genética , Modelos Biológicos , Mutagénesis , Invasividad Neoplásica , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Polimorfismo de Nucleótido Simple/genética , Lesiones Precancerosas/genética , Factores de Tiempo , Secuenciación del Exoma
5.
Gastroenterology ; 162(2): 604-620.e20, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34695382

RESUMEN

BACKGROUND & AIMS: Acinar to ductal metaplasia (ADM) occurs in the pancreas in response to tissue injury and is a potential precursor for adenocarcinoma. The goal of these studies was to define the populations arising from ADM, the associated transcriptional changes, and markers of disease progression. METHODS: Acinar cells were lineage-traced with enhanced yellow fluorescent protein (EYFP) to follow their fate post-injury. Transcripts of more than 13,000 EYFP+ cells were determined using single-cell RNA sequencing (scRNA-seq). Developmental trajectories were generated. Data were compared with gastric metaplasia, KrasG12D-induced neoplasia, and human pancreatitis. Results were confirmed by immunostaining and electron microscopy. KrasG12D was expressed in injury-induced ADM using several inducible Cre drivers. Surgical specimens of chronic pancreatitis from 15 patients were evaluated by immunostaining. RESULTS: scRNA-seq of ADM revealed emergence of a mucin/ductal population resembling gastric pyloric metaplasia. Lineage trajectories suggest that some pyloric metaplasia cells can generate tuft and enteroendocrine cells (EECs). Comparison with KrasG12D-induced ADM identifies populations associated with disease progression. Activation of KrasG12D expression in HNF1B+ or POU2F3+ ADM populations leads to neoplastic transformation and formation of MUC5AC+ gastric-pit-like cells. Human pancreatitis samples also harbor pyloric metaplasia with a similar transcriptional phenotype. CONCLUSIONS: Under conditions of chronic injury, acinar cells undergo a pyloric-type metaplasia to mucinous progenitor-like populations, which seed disparate tuft cell and EEC lineages. ADM-derived EEC subtypes are diverse. KrasG12D expression is sufficient to drive neoplasia when targeted to injury-induced ADM populations and offers an alternative origin for tumorigenesis. This program is conserved in human pancreatitis, providing insight into early events in pancreas diseases.


Asunto(s)
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , Metaplasia/genética , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Células Acinares/citología , Plasticidad de la Célula/genética , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Metaplasia/metabolismo , Mucina 5AC/genética , Páncreas/citología , Páncreas/metabolismo , Conductos Pancreáticos/citología , Pancreatitis/genética , Pancreatitis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Análisis de la Célula Individual
6.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445810

RESUMEN

Intracellular pH (pHi) regulation is a challenge for the exocrine pancreas, where the luminal secretion of bicarbonate-rich fluid is accompanied by interstitial flows of acid. This acid-base transport requires a plethora of ion transporters, including bicarbonate transporters and the Na+/H+ exchanger isoform 1 (NHE1), which are dysregulated in Pancreatic Ductal Adenocarcinoma (PDAC). PDAC progression is favored by a Collagen-I rich extracellular matrix (ECM) which exacerbates the physiological interstitial acidosis. In organotypic cultures of normal human pancreatic cells (HPDE), parenchymal cancer cells (CPCs) and cancer stem cells (CSCs) growing on matrices reproducing ECM changes during progression, we studied resting pHi, the pHi response to fluxes of NaHCO3 and acidosis and the role of NHE1 in pHi regulation. Our findings show that: (i) on the physiological ECM, HPDE cells have the most alkaline pHi, followed by CSCs and CPCs, while a Collagen I-rich ECM reverses the acid-base balance in cancer cells compared to normal cells; (ii) both resting pHi and pHi recovery from an acid load are reduced by extracellular NaHCO3, especially in HPDE cells on a normal ECM; (iii) cancer cell NHE1 activity is less affected by NaHCO3. We conclude that ECM composition and the fluctuations of pHe cooperate to predispose pHi homeostasis towards the presence of NaHCO3 gradients similar to that expected in the tumor.


Asunto(s)
Acidosis , Neoplasias , Humanos , Concentración de Iones de Hidrógeno , Bicarbonatos/metabolismo , Matriz Extracelular/metabolismo , Colágeno Tipo I , Conductos Pancreáticos/metabolismo , Células Epiteliales/metabolismo , Intercambiadores de Sodio-Hidrógeno
7.
Cell Mol Life Sci ; 78(6): 3005-3020, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33237353

RESUMEN

Extracellular vesicles (EV) are considered as a promising diagnostic tool for pancreatic ductal adenocarcinoma (PDAC), a disease with a poor 5-year survival that has not improved in the past years. PDAC patient-derived 3D organoids maintain the intratumoral cellular heterogeneity, characteristic for the tumor in vivo.Thus, they represent an ideal in vitro model system to study human cancers. Here we show that the miRNA cargo of EVs from PDAC organoids largely differs among patients. However, we detected a common set of EV miRNAs that were present in matched organoids and blood plasma samples of individual patients. Importantly, the levels of EV miR-21 and miR-195 were higher in PDAC blood EV preparations than in healthy controls, albeit we found no difference compared to chronic pancreatitis (CP) samples. In addition, here we report that the accumulation of collagen I, a characteristic change in the extracellular matrix (ECM) in both CP and PDAC, largely increases EV release from pancreatic ductal organoids. This provides a possible explanation why both CP and PDAC patient-derived plasma samples have an elevated amount of CD63 + EVs. Collectively, we show that PDAC patient-derived organoids represent a highly relevant model to analyze the cargo of tumor cell-derived EVs. Furthermore, we provide evidence that not only driver mutations, but also changes in the ECM may critically modify EV release from pancreatic ductal cells.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Vesículas Extracelulares/genética , MicroARNs/metabolismo , Organoides/metabolismo , Neoplasias Pancreáticas/patología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacología , Citocinas/farmacología , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/sangre , Organoides/citología , Organoides/efectos de los fármacos , Conductos Pancreáticos/citología , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pancreatitis/genética , Pancreatitis/metabolismo , Pancreatitis/patología
8.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499343

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by intra-tumoral heterogeneity, and patients are always diagnosed after metastasis. Thus, finding out how to effectively estimate metastatic risk underlying PDAC is necessary. In this study, we proposed scMetR to evaluate the metastatic risk of tumor cells based on single-cell RNA sequencing (scRNA-seq) data. First, we identified diverse cell types, including tumor cells and other cell types. Next, we grouped tumor cells into three sub-populations according to scMetR score, including metastasis-featuring tumor cells (MFTC), transitional metastatic tumor cells (TransMTC), and conventional tumor cells (ConvTC). We identified metastatic signature genes (MSGs) through comparing MFTC and ConvTC. Functional enrichment analysis showed that up-regulated MSGs were enriched in multiple metastasis-associated pathways. We also found that patients with high expression of up-regulated MSGs had worse prognosis. Spatial mapping of MFTC showed that they are preferentially located in the cancer and duct epithelium region, which was enriched with the ductal cells' associated inflammation. Further, we inferred cell-cell interactions, and observed that interactions of the ADGRE5 signaling pathway, which is associated with metastasis, were increased in MFTC compared to other tumor sub-populations. Finally, we predicted 12 candidate drugs that had the potential to reverse expression of MSGs. Taken together, we have proposed scMetR to estimate metastatic risk in PDAC patients at single-cell resolution which might facilitate the dissection of tumor heterogeneity.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Regulación Neoplásica de la Expresión Génica , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas
9.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499358

RESUMEN

Pancreatic cancer (PC) is a devastating malignant tumor of gastrointestinal (GI) tumors characterized by late diagnosis, low treatment success and poor prognosis. The most common pathological type of PC is pancreatic ductal adenocarcinoma (PDAC), which accounts for approximately 95% of PC. PDAC is primarily driven by the Kirsten rat sarcoma virus (KRAS) oncogene. Ferroptosis was originally described as ras-dependent cell death but is now defined as a regulated cell death caused by iron accumulation and lipid peroxidation. Recent studies have revealed that ferroptosis plays an important role in the development and therapeutic response of tumors, especially PDAC. As the non-apoptotic cell death, ferroptosis may minimize the emergence of drug resistance for clinical trials of PDAC. This article reviews what has been learned in recent years about the mechanisms of ferroptosis in PDAC, introduces the association between ferroptosis and the KRAS target, and summarizes several potential strategies that are capable of triggering ferroptosis to suppress PDAC progression.


Asunto(s)
Carcinoma Ductal Pancreático , Ferroptosis , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Conductos Pancreáticos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas
10.
J Cell Mol Med ; 25(10): 4658-4670, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33682322

RESUMEN

Mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) are an established risk factor for cystic fibrosis (CF) and chronic pancreatitis. Whereas patients with CF usually develop complete exocrine pancreatic insufficiency, pancreatitis patients with CFTR mutations have mostly preserved exocrine pancreatic function. We therefore used a strain of transgenic mice with significant residual CFTR function (CFTRtm1HGU ) to induce pancreatitis experimentally by serial caerulein injections. Protease activation and necrosis were investigated in isolated acini, disease severity over 24h, pancreatic function by MRI, isolated duct stimulation and faecal chymotrypsin, and leucocyte function by ex vivo lipopolysaccharide (LPS) stimulation. Pancreatic and lung injury were more severe in CFTRtm1HGU but intrapancreatic trypsin and serum enzyme activities higher than in wild-type controls only at 8h, a time interval previously attributed to leucocyte infiltration. CCK-induced trypsin activation and necrosis in acini from CFTRtm1HGU did not differ from controls. Fluid and bicarbonate secretion were greatly impaired, whereas faecal chymotrypsin remained unchanged. LPS stimulation of splenocytes from CFTRtm1HGU resulted in increased INF-γ and IL-6, but decreased IL-10 secretion. CFTR mutations that preserve residual pancreatic function significantly increase the severity of experimental pancreatitis-mostly via impairing duct cell function and a shift towards a pro-inflammatory phenotype, not by rendering acinar cells more susceptible to pathological stimuli.


Asunto(s)
Células Acinares/citología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/complicaciones , Inflamación/patología , Mutación , Conductos Pancreáticos/patología , Pancreatitis/patología , Células Acinares/metabolismo , Animales , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Inflamación/etiología , Inflamación/metabolismo , Masculino , Ratones , Ratones Transgénicos , Conductos Pancreáticos/metabolismo , Pancreatitis/etiología , Pancreatitis/metabolismo , Índice de Severidad de la Enfermedad
11.
Lab Invest ; 101(2): 177-192, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009500

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States. Despite the high prevalence of Kras mutations in pancreatic cancer patients, murine models expressing the oncogenic mutant Kras (Krasmut) in mature pancreatic cells develop PDAC at a low frequency. Independent of cell of origin, a second genetic hit (loss of tumor suppressor TP53 or PTEN) is important for development of PDAC in mice. We hypothesized ectopic expression and elevated levels of oncogenic mutant Kras would promote PanIN arising in pancreatic ducts. To test our hypothesis, the significance of elevating levels of K-Ras and Ras activity has been explored by expression of a CAG driven LGSL-KrasG12V allele (cKras) in pancreatic ducts, which promotes ectopic Kras expression. We predicted expression of cKras in pancreatic ducts would generate neoplasia and PDAC. To test our hypothesis, we employed tamoxifen dependent CreERT2 mediated recombination. Hnf1b:CreERT2;KrasG12V (cKrasHnf1b/+) mice received 1 (Low), 5 (Mod) or 10 (High) mg per 20 g body weight to recombine cKras in low (cKrasLow), moderate (cKrasMod), and high (cKrasHigh) percentages of pancreatic ducts. Our histologic analysis revealed poorly differentiated aggressive tumors in cKrasHigh mice. cKrasMod mice had grades of Pancreatic Intraepithelial Neoplasia (PanIN), recapitulating early and advanced PanIN observed in human PDAC. Proteomics analysis revealed significant differences in PTEN/AKT and MAPK pathways between wild type, cKrasLow, cKrasMod, and cKrasHigh mice. In conclusion, in this study, we provide evidence that ectopic expression of oncogenic mutant K-Ras in pancreatic ducts generates early and late PanIN as well as PDAC. This Ras rheostat model provides evidence that AKT signaling is an important early driver of invasive ductal derived PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Tasa de Mutación , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Transgénicos , Conductos Pancreáticos/citología , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Recombinación Genética
12.
Cytopathology ; 32(4): 397-406, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33792980

RESUMEN

BACKGROUND: Intraductal papillary mucinous neoplasm (IPMN) constitutes up to 20% of all pancreatic resections, and has been increasing in recent years. Histomorphological findings of IPMN are well established; however, there are not many published papers regarding the cytological findings of IPMN on fine needle aspiration (FNA) specimens. We review the cytomorphological features, molecular profile, imaging findings, and prognosis of IPMN. METHODS: The English literature was thoroughly searched with key phrases containing IPMN. OBSERVATIONS: IPMN is a rare entity, affecting men and women equally and is usually diagnosed at the age of 60-70 years. The characteristic imaging features include a cystic lesion with associated dilatation of the main or branch pancreatic duct, and atrophy of surrounding pancreatic parenchyma. Cytomorphological features of IPMN include papillary fragments of mucinous epithelium in a background of abundant thick extracellular mucin, a hallmark feature. IPMNs should be evaluated for high-grade dysplasia, which manifests with nuclear atypia, nuclear moulding, prominent nucleoli, nuclear irregularity, and cellular crowding. Molecular profiling of IPMN along with carcinoembryonic antigen and amylase levels is useful in predicting malignancy or high-grade dysplasia arising in IPMN. Overall, the prognosis of IPMN is excellent except in those cases with high-grade dysplasia and malignant transformation. Postoperative surveillance is required for resected IPMNs. CONCLUSION: IPMN requires a multidisciplinary approach for management. Cytomorphological findings of IPMN on FNA, in conjunction with tumour markers in pancreatic fluid cytology and imaging findings, are of paramount importance in clinical decision-making for IPMN.


Asunto(s)
Adenocarcinoma Mucinoso , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático , Conductos Pancreáticos , Neoplasias Pancreáticas , Adenocarcinoma Mucinoso/diagnóstico por imagen , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patología , Anciano , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Conductos Pancreáticos/efectos de los fármacos , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
13.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445257

RESUMEN

The production of pancreatic ß cells is the most challenging step for curing diabetes using next-generation treatments. Adult pancreatic endocrine cells are thought to be maintained by the self-duplication of differentiated cells, and pancreatic endocrine neogenesis can only be observed when the tissue is severely damaged. Experimentally, this can be performed using a method named partial duct ligation (PDL). As the success rate of PDL surgery is low because of difficulties in identifying the pancreatic duct, we previously proposed a method for fluorescently labeling the duct in live animals. Using this method, we performed PDL on neurogenin3 (Ngn3)-GFP transgenic mice to determine the origin of endocrine precursor cells and evaluate their potential to differentiate into multiple cell types. Ngn3-activated cells, which were marked with GFP, appeared after PDL operation. Because some GFP-positive cells were aligned proximally to the duct, we hypothesized that Ngn3-positive cells arise from the pancreatic duct. Therefore, we next developed an in vitro pancreatic duct culture system using Ngn3-GFP mice and examined whether Ngn3-positive cells emerge from this duct. We observed GFP expressions in ductal organoid cultures. GFP expressions were correlated with Ngn3 expressions and endocrine cell lineage markers. Interestingly, tuft cell markers were also correlated with GFP expressions. Our results demonstrate that in adult mice, Ngn3-positive endocrine precursor cells arise from the pancreatic ducts both in vivo and in vitro experiments indicating that the pancreatic duct could be a potential donor for therapeutic use.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Conductos Pancreáticos/metabolismo , Células Madre/metabolismo , Animales , Antígenos de Diferenciación/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Secretoras de Insulina/citología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Organoides/citología , Organoides/metabolismo , Conductos Pancreáticos/citología , Células Madre/citología
14.
Am J Physiol Cell Physiol ; 318(4): C806-C816, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32130071

RESUMEN

Proper amounts of copper supplemented in livestock feed improve the physical growth and traits of farm animals. The pancreas is an important organ with both exocrine and endocrine portions. To investigate the role and mechanism of copper in the sheep pancreas, we first established sheep pancreatic duct organoids (sPDOs). We found that an appropriate amount of copper benefited the formation and growth of sPDOs, whereas excess or deficient copper damaged sPDOs. We found that the proliferation-stimulating effect of copper was related to the copper chaperone antioxidant protein 1 (ATOX1)-dependent activation of MEK-ERK1/2 signaling. Atox1 knockdown suppressed the cell proliferation of sPDOs, even in the presence of the MEK activator. These results indicate that moderate concentrations of copper promote sPDO growth through ATOX1-regulated cell proliferation by activation of MEK-ERK. Moreover, our study indicates that organoids may be a useful model to study organ growth mechanisms in livestock.


Asunto(s)
Cobre/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Conductos Pancreáticos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Proteínas de Transporte de Catión/metabolismo , Proliferación Celular/efectos de los fármacos , Cobre/metabolismo , Proteínas Transportadoras de Cobre/metabolismo , Organoides/metabolismo , Conductos Pancreáticos/metabolismo , Ovinos
15.
Carcinogenesis ; 41(4): 490-501, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31233118

RESUMEN

The organoid culture technique has been recently applied to modeling carcinogenesis in several organs. To further explore its potential and gain novel insights into tumorigenesis, we here investigated whether pancreatic ductal adenocarcinoma (PDA) could be generated as subcutaneous tumors in immunocompromised nude mice, by genetic engineering of normal organoids. As expected, acute induction of KrasG12Din vitro occasionally led to development of tiny nodules compatible with early lesions known as pancreatic intraepithelial neoplasia (PanIN). KrasG12D-expressing cells were enriched after inoculation in the subcutis, yet proved rather declined during culture, suggesting that its advantage might depend on surrounding environments. Depletion of growth factors or concurrent Trp53 deletion resulted in its robust enrichment, invariably leading to development of PanIN or large high-grade adenocarcinoma, respectively, consistent with in vivo mouse studies for the same genotype. Progression from PanIN was also recapitulated by subsequent knockdown of common tumor suppressors, whereas the impact of Tgfbr2 deletion was only partially recapitulated, illustrating genotype-dependent requirement of the pancreatic niche for tumorigenesis. Intriguingly, analysis of tumor-derived organoids revealed that KrasG12D-expressing cells with spontaneous deletion of wild-type Kras were positively selected and exhibited an aging-related mutation signature in nude mice, mirroring the pathogenesis of human PDA, and that the sphere-forming potential and orthotopic tumorigenicity in syngenic mice were significantly augmented. These observations highlighted the relevance of the subcutis of nude mice in promoting PDA development despite its ectopic nature. Taken together, pancreatic carcinogenesis could be considerably recapitulated with organoids, which would probably serve as a novel disease model.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/patología , Mutación , Organoides/patología , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Apoptosis , Carcinoma Ductal Pancreático/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Organoides/metabolismo , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
16.
Pancreatology ; 20(2): 217-222, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31862231

RESUMEN

BACKGROUND: Pancreaticogastrostomy (PG) has been widely used as an alternative to pancreatojejunostomy (PJ) in patients undergoing pancreaticoduodenectomy (PD), but its long-term exocrine function remains unclear. The present study aimed to measure the secretion of pancreatic α-amylase (p-AMY) into the gastric cavity in patients who underwent PG reconstruction after PD over 1 year after surgery and to evaluate the relationship between gastric p-AMY level and clinically available indirect tests. METHODS: Clinical records of 39 patients who underwent PG reconstruction after PD were reviewed. Pancreatic exocrine function was evaluated over 1 year after surgery using the following methods: 1) Measurement of p-AMY level in gastric fluids (gastric p-AMY level) during routine gastrointestinal endoscopy, 2) Qualitative faecal fat determination by Sudan III staining on faeces and 3) Pancreatic function diagnostic (PFD) test using oral administration of N-benzoyl-l-tyrosyl-p-aminobenzoic acid. RESULTS: Gastric p-AMY level was detectable in 31 of 39 patients (79%), and 12 patients (30.8%) had steatorrhea over a year after surgery. Patients with steatorrhea had significantly lower gastric p-AMY level, larger diameter of remnant main pancreatic duct (MPD) and larger pancreatic duct to parenchymal thickness ratio than those without steatorrhea (84 IU/L vs 7979 IU/L, respectively; P < 0.001, 5.3 mm vs 3.2 mm, respectively; P = 0.001, and 0.38 vs 0.23, respectively; P = 0.007). Receiver operating characteristic analysis showed that the cut-off value of the diameter of the remnant MPD to predict steatorrhea was 3.5 mm (sensitivity, 92.3%; specificity, 70.4%). PFD test was not associated with any clinical data. CONCLUSIONS: Pancreatic enzyme was detected in 79% of patients having PG reconstruction. Diameter of remnant MPD >3.5 mm and pancreatic parenchymal atrophy may be surrogate markers of postoperative exocrine insufficiency following PD.


Asunto(s)
Gastrostomía/métodos , Páncreas/metabolismo , Páncreas/cirugía , Pancreaticoduodenectomía/métodos , Procedimientos de Cirugía Plástica/métodos , Anciano , Anciano de 80 o más Años , Insuficiencia Pancreática Exocrina , Heces/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estado Nutricional , Páncreas/anatomía & histología , Páncreas Exocrino/metabolismo , Conductos Pancreáticos/anatomía & histología , Conductos Pancreáticos/metabolismo , Pruebas de Función Pancreática , Neoplasias Pancreáticas/cirugía , Estudios Retrospectivos , Esteatorrea/etiología , alfa-Amilasas/metabolismo
17.
PLoS Genet ; 13(4): e1006715, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28384194

RESUMEN

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF) and are associated with congenital bilateral absence of the vas deferens (CBAVD), which is the major cause of infertility in male patients with CF. However, most Taiwanese patients with CBAVD do not carry major CFTR mutations. Some patients have a single copy deletion of the solute carrier family 9 isoform 3 (SLC9A3) gene. SLC9A3 is a Na+/H+ exchanger, and depleted Slc9a3 in male mice causes infertility due to the abnormal dilated lumen of the rete testis and efferent ductules. Furthermore, SLC9A3 interacts with CFTR in the pancreatic duct and functions as a genetic modifier of CF. However, SLC9A3 function and its relation to CFTR expression in the male reproductive tract in vivo remain elusive. In the present study, we found that CFTR expression was dramatically decreased in the epididymis and vas deferens of Slc9a3 knockout mice. Adult Slc9a3-/- mice showed not only significantly decreased epididymis and vas deferens weight but also increased testis weight. Furthermore, Slc9a3-/- mice developed obstructive azoospermia because of abnormal abundant secretions and calcification in the lumen of the reproductive tract. Ultrastructural analysis of the epithelium in Slc9a3-/-epididymis and vas deferens displayed disorganized and reduced number of stereocilia and numerous secretory apparatuses. Our data revealed that interdependence between SLC9A3 and CFTR is critical for maintaining a precise microenvironment in the epithelial cytoarchitecture of the male reproductive tract. The Slc9a3-deficient mice with impaired male excurrent ducts in this study provide proof for our clinical findings that some Taiwanese of CBAVD carry SLC9A3 deletion but without major CFTR mutations.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Infertilidad Masculina/genética , Oligospermia/genética , Infecciones del Sistema Respiratorio/genética , Intercambiadores de Sodio-Hidrógeno/genética , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Noqueados , Mutación , Oligospermia/patología , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Infecciones del Sistema Respiratorio/patología , Intercambiador 3 de Sodio-Hidrógeno
18.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233448

RESUMEN

In recent decades, many studies on the treatment and prevention of pancreatic cancer have been conducted. However, pancreatic cancer remains incurable, with a high mortality rate. Although mouse models have been widely used for preclinical pancreatic cancer research, these models have many differences from humans. Therefore, large animals may be more useful for the investigation of pancreatic cancer. Pigs have recently emerged as a new model of pancreatic cancer due to their similarities to humans, but no pig pancreatic cancer cell lines have been established for use in drug screening or analysis of tumor biology. Here, we established and characterized an immortalized miniature pig pancreatic cell line derived from primary pancreatic cells and pancreatic cancer-like cells expressing K-rasG12D regulated by the human PTF1A promoter. Using this immortalized cell line, we analyzed the gene expression and phenotypes associated with cancer cell characteristics. Notably, we found that acinar-to-ductal transition was caused by K-rasG12D in the cell line constructed from acinar cells. This may constitute a good research model for the analysis of acinar-to-ductal metaplasia in human pancreatic cancer.


Asunto(s)
Páncreas/metabolismo , Neoplasias Pancreáticas/genética , Lesiones Precancerosas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Páncreas/patología , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Transducción de Señal/genética , Porcinos , Porcinos Enanos
19.
Vet Radiol Ultrasound ; 61(3): 255-260, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31895973

RESUMEN

Feline pancreatitis is a challenge to diagnose and no previously published study has described the CT characteristics of the pancreatic duct (PD) in cats. The current prospective analytical study was performed to identify and describe the CT characteristics of the PD in normal cats and to compare that to those cats with an elevated feline pancreatic lipase immunoreactivity (fPLI). Contrast-enhanced CT was performed in 16 normal cats and 13 cats with an elevated fPLI. Two ACVR-certified radiologists blinded to the fPLI status assessed whether or not the PD could be identified, contrast phase during which the PD was most conspicuous, and PD shape in the body, right and left lobes. A second-year radiology resident blinded to the fPLI status measured maximum PD diameter and PD:parenchyma. The PD was identified in 84 of 87 pancreatic segments, which was most conspicuous in the portal phase in 28 of 29 cats. The PD shape was tubular (48/84), tapered (34/84), or beaded (2/84) with no significant difference (P = 1.0 to .1615) between groups. Mean maximal PD diameters of normal cats were 1.5-1.7 mm, which was significantly larger in the body of the pancreas in cats with an elevated fPLI (2.4 mm, P = .0313). Mean PD:parenchyma was not significantly different between groups (P = .2001 to .949). In conclusion, the feline PD can be consistently identified on CT, for which the portal phase is preferred. Cats with an elevated fPLI are more likely to exhibit dilation of the PD in the body of the pancreas on CT.


Asunto(s)
Enfermedades de los Gatos/diagnóstico por imagen , Lipasa/metabolismo , Conductos Pancreáticos/diagnóstico por imagen , Pancreatitis/veterinaria , Animales , Estudios de Casos y Controles , Enfermedades de los Gatos/patología , Gatos , Masculino , Conductos Pancreáticos/metabolismo , Pancreatitis/diagnóstico por imagen , Pancreatitis/patología , Tomografía por Rayos X/veterinaria , Tomografía Computarizada por Rayos X/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA