Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
J Appl Microbiol ; 129(6): 1552-1565, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32544260

RESUMEN

AIMS: Although a link between agricultural cephalosporin use and resistance in Salmonella has been demonstrated with the drug ceftiofur, the underlying mechanism of the correlation is unclear. This study investigated the impact of ceftiofur exposure in S. Saintpaul on ceftriaxone resistance, the gene expression and the conjugative transfer of the blaCTX-M-65 gene. METHODS AND RESULTS: Prior ceftiofur exposure caused a twofold increase in MIC from 1024 to 2048 µg ml-1 towards ceftriaxone and increased the enzymatic activity of BlaCTX-M-65 2·2 folds from 3·46 to 7·67 nmol nitrocefin hydrolysed min-1 . A threefold upregulation in gene expression of the blaCTX-M-65 gene was also observed. Donors exposed to ceftiofur subsequently demonstrated a 2·5-fold decrease in transfer efficiency. CONCLUSIONS: Prior exposure of S. Saintpaul to ceftiofur led to increased phenotypic resistance towards ceftriaxone while its ability to spread the cephalosporin resistance through conjugation, conversely, was impaired. SIGNIFICANCE AND IMPACT OF THE STUDY: Findings from this study shed light on one possible mechanism in which agricultural cephalosporin exposure in Salmonella may subsequently impact clinical treatment. The finding that cephalosporin exposure in donors may hinder the subsequent spread of resistance instead of aiding it up was counter-intuitive.


Asunto(s)
Resistencia a las Cefalosporinas/efectos de los fármacos , Cefalosporinas/farmacología , Conjugación Genética/efectos de los fármacos , Plásmidos/efectos de los fármacos , Salmonella enterica/efectos de los fármacos , Agricultura , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ceftriaxona/farmacología , Resistencia a las Cefalosporinas/genética , Humanos , Plásmidos/genética , Salmonella enterica/genética
2.
Ecotoxicol Environ Saf ; 205: 111300, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32961492

RESUMEN

Bacterial resistance caused by the abuse of antibiotics has attracted worldwide attention. However, there are few studies exploring bacterial resistance under the environmental exposure condition of antibiotics that is featured by low-dose and mixture. In this study, sulfonamides (SAs), sulfonamide potentiators (SAPs) and tetracyclines (TCs) were used to determine the effects of antibiotics on plasmid RP4 conjugative transfer of Escherichia coli (E. coli) under single or combined exposure, and the relationship between the effects of antibiotics on conjugative transfer and growth was investigated. The results show that the effects of single or binary antibiotics on plasmid RP4 conjugative transfer all exhibit a hormetic phenomenon. The linear regression reveals that the concentrations of the three antibiotics promoting conjugative transfer are correlated with the concentrations promoting growth and the physicochemical properties of the compounds. The combined effects of SAs-SAPs and SAs-TCs on plasmid conjugative transfer are mainly synergistic and antagonistic. While SAPs provide more effective concentrations for the promotion of conjugative transfer in SAs-SAPs mixtures, SAs play a more important role in promoting conjugative transfer in SAs-TCs mixtures. Mechanism explanation shows that SAs, SAPs and TCs inhibit bacterial growth by acting on their target proteins DHPS, DHFR and 30S ribosomal subunit, respectively. This study indicates that toxic stress stimulates the occurrence of conjugative transfer and promotes the development of bacterial resistance, which will provide a reference for resistance risk assessment of antibiotic exposure.


Asunto(s)
Antibacterianos/toxicidad , Conjugación Genética/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Escherichia coli/efectos de los fármacos , Hormesis , Plásmidos , Antagonismo de Drogas , Sinergismo Farmacológico , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Plásmidos/efectos de los fármacos , Plásmidos/genética , Sulfonamidas/toxicidad , Tetraciclinas/toxicidad
3.
J Biol Chem ; 293(43): 16923-16930, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30201608

RESUMEN

Bacterial conjugation is a key mechanism by which bacteria acquire antibiotic resistance. Therefore, conjugation inhibitors (COINs) are promising compounds in the fight against the spread of antibiotic resistance genes among bacteria. Unsaturated fatty acids (uFAs) and alkynoic fatty acid derivatives, such as 2-hexadecanoic acid (2-HDA), have been reported previously as being effective COINs. The traffic ATPase TrwD, a VirB11 homolog in plasmid R388, is the molecular target of these compounds, which likely affect binding of TrwD to bacterial membranes. In this work, we demonstrate that COINs are abundantly incorporated into Escherichia coli membranes, replacing palmitic acid as the major component of the membrane. We also show that TrwD binds palmitic acid, thus facilitating its interaction with the membrane. Our findings also suggest that COINs bind TrwD at a site that is otherwise occupied by palmitic acid. Accordingly, molecular docking predictions with palmitic acid indicated that it shares the same binding site as uFAs and 2-HDA, although it differs in the contacts involved in this interaction. We also identified 2-bromopalmitic acid, a palmitate analog that inhibits many membrane-associated enzymes, as a compound that effectively reduces TrwD ATPase activity and bacterial conjugation. Moreover, we demonstrate that 2-bromopalmitic and palmitic acids both compete for the same binding site in TrwD. Altogether, these detailed findings open up a new avenue in the search for effective synthetic inhibitors of bacterial conjugation, which may be pivotal for combating multidrug-resistant bacteria.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Alquinos/farmacología , Antibacterianos/farmacología , Conjugación Genética/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácidos Grasos Insaturados/farmacología , Ácido Palmítico/farmacología , Alquinos/química , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Simulación del Acoplamiento Molecular
4.
Microb Pathog ; 135: 103611, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31247256

RESUMEN

Class 1 integrons (Int1) contribute to antibiotic multiresistance in Gram-negative bacteria. Being frequently carried by conjugative plasmids, their spread would depend to some extent on their horizontal transfer to other bacteria. This was the main issue that was addressed in this work: the analysis of Int1 lateral transfer in the presence of different antibiotic pressures. Strains from a previously obtained collection of Escherichia coli K12 carrying natural Int1+ conjugative plasmids were employed as Int1 donors in conjugation experiments. Two recipient strains were used: an E. coli K12 and an uropathogenic E. coli isolate. The four antibiotics employed to select transconjugants in LB solid medium were ampicillin, trimethoprim, sulfamethoxazole, and co-trimoxazole. For this purpose, adequate final concentrations of the three last antibiotics had to be determined. Abundant transconjugants resulted from the mating experiments and appeared in most -but not all-selective plates. In those supplemented with sulfamethoxazole or co-trimoxazole, transconjugants grew or not depending on the genetic context of the recipient strain and on the type of gene conferring sulfonamide resistance (sul1 or sul2) carried by the Int1+ plasmid. The horizontal transfer of a recombinant plasmid bearing an Int1 was also assayed by transformation and these experiments provided further information on the viability of the Int1+ clones. Overall, results point to the existence of constraints for the lateral transfer of Int1 among E. coli bacteria, which are particularly evidenced under the antibiotic pressure of sulfamethoxazole or of its combined formula co-trimoxazole.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Transferencia de Gen Horizontal/genética , Integrones/genética , Sulfonamidas/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Conjugación Genética/efectos de los fármacos , Combinación de Medicamentos , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli K12/efectos de los fármacos , Genes Bacterianos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Plásmidos/genética , Sulfametoxazol/farmacología , Combinación Trimetoprim y Sulfametoxazol/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/genética
5.
Plasmid ; 102: 71-82, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30844419

RESUMEN

Genetic transfer among bacteria propels rapid resistance to antibiotics and decreased susceptibility to antiseptics. Staphylococcus aureus is a common culprit of hospital and community acquired infections, and S. aureus plasmids have been shown to carry a multitude of antimicrobial resistance genes. We previously identified a novel conjugative, multidrug resistance plasmid, pC02, from the clinical S. aureus isolate C02. This plasmid contained the chlorhexidine resistance gene qacA, and we were able to demonstrate that conjugative transfer of pC02 imparted decreased chlorhexidine susceptibility to recipient strains. In silico sequence analysis of pC02 suggested that the plasmid is part of the pWBG749-family of conjugative plasmids and that it contains three predicted origins of transfer (oriT), two of which we showed were functional and could mediate plasmid transfer. Furthermore, depending on which oriT was utilized, partial transfer of pC02 was consistently observed. To define the ability of the pC02 plasmid to utilize different oriT sequences, we examined the mobilization ability of nonconjugative plasmid variants that were engineered to contain a variety of oriT family inserts. The oriT-OTUNa family was transferred at the highest frequency; additional oriT families were also transferred but at lower frequencies. Plasmid stability was examined, and the copy number of pC02 was defined using droplet digital PCR (ddPCR). pC02 was stably maintained at approximately 4 copies per cell. Given the conjugative plasticity of pC02, we speculate that this plasmid could contribute to the spread of antimicrobial resistance across Staphylococcal strains and species.


Asunto(s)
Conjugación Genética , Replicación del ADN/genética , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Staphylococcus aureus/genética , Secuencia de Bases , Cadmio/farmacología , Conjugación Genética/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Eritromicina/farmacología , Dosificación de Gen , Cinética , Staphylococcus aureus/efectos de los fármacos , Factores de Tiempo
6.
Ecotoxicol Environ Saf ; 169: 662-668, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30496999

RESUMEN

Due to their antimicrobial properties, copper nanoparticles (CuNPs) have been proposed to be used in agriculture for pest control. Pesticides removal is mainly done by microorganisms, whose genes usually are found in conjugative catabolic plasmids (CCP). The aim of this work was to evaluate if CuNPs at subinhibitory concentrations modify the conjugation frequency (CF) of two CCP (pJP4 and pADP1). CuNPs were characterized by scanning electron microscopy with an X-ray detector, dynamic light scattering and X-ray diffraction. Mating assays were done in LB broth supplemented with CuNPs (10, 20, 50 and 100 µg mL-1) or equivalent concentrations of CuSO4. Interestingly, we observed that in LB, Cu+2 release from CuNPs is fast as evaluated by atomic absorption spectrophotometry. Donor and recipient strains were able to grow in all copper concentrations assayed, but CF of mating pairs was reduced to 10% in the presence of copper at 20 or 50 µg Cu mL-1 compared to control. Thus, our results indicated that both copper forms, CuNPs or CuSO4, negatively affected the transfer of catabolic plasmids by conjugation. Since dissemination of degradative genes by conjugation contribute to degradation of pesticides by microorganisms, this work improves our understanding of the risks of using copper in agriculture soils, which could affect the biodegradative potential of microbial communities.


Asunto(s)
Antiinfecciosos/toxicidad , Conjugación Genética/efectos de los fármacos , Cobre/toxicidad , Nanopartículas del Metal/toxicidad , Microbiota/efectos de los fármacos , Plásmidos/efectos de los fármacos , Microbiología del Suelo , Biodegradación Ambiental , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microbiota/genética , Microscopía Electrónica de Rastreo , Microbiología del Suelo/normas , Difracción de Rayos X
7.
Ecotoxicol Environ Saf ; 186: 109781, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31622879

RESUMEN

Nanomaterials of Al2O3 and TiO2 have been proved to promote the spread of antibiotic resistance genes (ARGs) by horizontal gene transfer. In this work, we found that Fe2O3@MoS2 nanocomposite inhibited the horizontal gene transfer (HGT) by inhibiting the conjugative transfer mediated by RP4-7 plasmid. To discover the mechanism of Fe2O3@MoS2 inhibiting HGT, the bacterial cells were collected under the optimal mating conditions. The collected bacterial cells were used for analyzing the expression levels of genes unique to the plasmid and the bacterial chromosome in the conjugation system by qPCR. The results of genes expression demonstrated that the mechanism of Fe2O3@MoS2 inhibited conjugation by promoting the expression of global regulatory gene (trbA) and inhibiting the expression of conjugative transfer genes involved in mating pair formation (traF, trbB) and DNA replication (trfA). The risk assessment of Fe2O3@MoS2 showed that it had very low toxicity to organisms. The findings of this paper showed that Fe2O3@MoS2, as an inhibitor of horizontal gene transfer, is an environment-friendly material.


Asunto(s)
Conjugación Genética/efectos de los fármacos , Disulfuros/química , Farmacorresistencia Microbiana/efectos de los fármacos , Compuestos Férricos/química , Transferencia de Gen Horizontal/efectos de los fármacos , Molibdeno/química , Nanocompuestos/química , Antibacterianos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Conjugación Genética/genética , Disulfuros/farmacología , Farmacorresistencia Microbiana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Compuestos Férricos/farmacología , Genes Microbianos , Molibdeno/farmacología , Plásmidos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
8.
Drug Dev Res ; 80(1): 19-23, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30343487

RESUMEN

Antibiotic resistance, especially in gram-negative bacteria, is spreading globally and rapidly. Development of new antibiotics lags behind; therefore, novel approaches to the problem of antibiotic resistance are sorely needed and this commentary highlights one relatively unexplored target for drug development: conjugation. Conjugation is a common mechanism of horizontal gene transfer in bacteria that is instrumental in the spread of antibiotic resistance among bacteria. Most resistance genes are found on mobile genetic elements and primarily spread by conjugation. Furthermore, conjugative elements can act as a reservoir to maintain antibiotic resistance in the bacterial population even in the absence of antibiotic selection. Thus, conjugation can spread antibiotic resistance quickly between bacteria of the microbiome and pathogens when selective pressure (antibiotics) is introduced. Potential drug targets include the plasmid-encoded conjugation system and the host-encoded proteins important for conjugation. Ideally, a conjugation inhibitor will be used alongside antibiotics to prevent the spread of resistance to or within pathogens while not acting as a growth inhibitor itself. Inhibiting conjugation will be an important addition to our arsenal of strategies to combat the antibiotic resistance crisis, allowing us to extend the usefulness of antibiotics.


Asunto(s)
Antibacterianos/farmacología , Conjugación Genética/fisiología , Farmacorresistencia Microbiana/fisiología , Animales , Conjugación Genética/efectos de los fármacos , Farmacorresistencia Microbiana/efectos de los fármacos , Humanos , Plásmidos/genética , Plásmidos/metabolismo
9.
Microbiology (Reading) ; 164(1): 20-27, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29185954

RESUMEN

The incompatibility (Inc) P-7 group plasmid pCAR1 can be efficiently transferred among bacteria in artificial microcosms in the presence of divalent cations Ca2+ and Mg2+. One-on-one mating assays between Pseudomonas strains with different plasmids showed that the promotion of conjugation efficiency by divalent cations was exhibited in other plasmids, including pB10 and NAH7; however, this effect was larger in IncP-7 plasmids. The impact on pCAR1 conjugation differed according to donor-recipient pairs, and conjugation efficiency promotion was clearly detected between the donors P. resinovorans CA10dm4 and P. fluorescens Pf0-1 and the recipients P. putida KT2440 and CA10dm4. Transcriptome analyses showed that pCAR1 gene expression did not respond to cation changes, including the tra/trh genes involved in its transfer. However, the transcription of oprH genes, encoding putative outer-membrane proteins in both the donor and the recipient, were commonly upregulated under cation-limited conditions. The conjugation frequency of pCAR1 in the KT2440 oprH mutant was found not to respond to cations. This effect was partially recovered by complementation with the oprH gene, suggesting that OprH is involved in the increase of pCAR1 conjugation efficiency by divalent cations.


Asunto(s)
Cationes Bivalentes/farmacología , Conjugación Genética/efectos de los fármacos , Plásmidos/genética , Pseudomonas/efectos de los fármacos , Pseudomonas/genética , Proteínas de la Membrana Bacteriana Externa/genética , ADN Bacteriano , Perfilación de la Expresión Génica , Mutación , ARN Bacteriano , Especificidad de la Especie
10.
Mol Microbiol ; 100(5): 912-21, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26915347

RESUMEN

Bacterial conjugation is the main mechanism responsible for the dissemination of antibiotic resistance genes. Hence, the search for specific conjugation inhibitors is paramount in the fight against the spread of these genes. In this pursuit, unsaturated fatty acids have been found to specifically inhibit bacterial conjugation. Despite the growing interest on these compounds, their mode of action and their specific target remain unknown. Here, we identified TrwD, a Type IV secretion traffic ATPase, as the molecular target for fatty acid-mediated inhibition of conjugation. Moreover, 2-alkynoic fatty acids, which are also potent inhibitors of bacterial conjugation, are also powerful inhibitors of the ATPase activity of TrwD. Characterization of the kinetic parameters of ATPase inhibition has led us to identify the catalytic mechanism by which fatty acids exert their activity. These results open a new avenue for the rational design of inhibitors of bacterial conjugation in the fight against the dissemination of antibiotic resistance genes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Conjugación Genética/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Ácidos Grasos Insaturados/farmacología , Ácido Linoleico/farmacología , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/química , Ácidos Grasos Insaturados/síntesis química , Cinética , Simulación del Acoplamiento Molecular , Plásmidos
11.
Artículo en Inglés | MEDLINE | ID: mdl-28993333

RESUMEN

The effect of antibiotics on horizontal gene transfer (HGT) is controversial, and the underlying mechanism remains poorly understood. Here, using Escherichia coli SM10λπ as the donor strain, which carries a chromosomally integrated RP4 plasmid, we investigated the effect of antibiotics on conjugational transfer of a mobilizable gentamicin (Gm) resistance plasmid. The results showed that an exposure to gentamicin that restricted the survival of recipient cells significantly enhanced SM10λπ-Pseudomonas aeruginosa PAO1 conjugation, which was attenuated by a deficiency of lasI-rhlI, genes associated with the generation of the quorum sensing signals N-acyl homoserine lactones (AHLs) in PAO1, or the deletion of the AHL receptor SdiA in SM10λπ. Subsequent mechanistic investigations revealed that a treatment with Gm repressed the mRNA expression of lasI and rhlI in PAO1 and upregulated traI expression in SM10λπ. Moreover, PAO1 treated with other quorum sensing (QS)-inhibiting antibiotics such as azithromycin or chloramphenicol also showed a conjugation-promoting ability. On the other hand, when using non-AHL-producing E. coli strain EC600 as the recipient cells, the promoting effect of Gm on conjugation could not be observed. These data suggest that AHL-SdiA contributes to the effectiveness of antibiotics on plasmid conjugation. Collectively, our findings highlight the HGT-promoting effect of antibiotics and suggest quorum sensing as a promising target for controlling antibiotic resistance dissemination. These findings have implications for assessing the risks of antibiotic use and developing advisable antibiotic treatment protocols.


Asunto(s)
Antibacterianos/farmacología , Conjugación Genética/efectos de los fármacos , Escherichia coli/metabolismo , Transferencia de Gen Horizontal/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum/efectos de los fármacos , Azitromicina/farmacología , Proteínas Bacterianas/genética , Cloranfenicol/farmacología , ADN Helicasas/genética , Escherichia coli/efectos de los fármacos , Gentamicinas/farmacología , Ligasas/genética , Plásmidos/genética , Plásmidos/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Transactivadores/genética , Factores de Transcripción/genética
12.
Wei Sheng Wu Xue Bao ; 56(4): 643-50, 2016 Apr 14.
Artículo en Zh | MEDLINE | ID: mdl-29717854

RESUMEN

Objective: We studied the effects of nalidixic acid, norfloxacin and kanamycin on the transfer frequency of SXT/R391 element ICEValA056-1 in Vibrio alginolyticus. Methods: The circular ICEValA056-1 in V. alginolyticus A056 was detected by PCR. Conjugation experiments were conducted between V. alginolyticus A056 and Escherichia coli VB111 to explore the frequency variation of the integrating conjugative elements transfer after donor strain A056 was cultured in Luria Broth containing nalidixic acid or norfloxacin or kanamycin in different concentrations for 15 min or 30 min. Results: Circular ICEValA056-1 was detected in V. alginolyticus A056, indicating that ICEValA056-1 had the potential to transfer. Treatment with 40 µg/mL nalidixic acid for 30 min increased the transfer frequency of ICEValA056-1 to19.59 folds. Treatment with 50 µg/mL norfloxacin for 15 min increased the transfer frequency of ICEValA056-1 to 31.25 folds. The transfer frequency of ICEValA056-1 had no significant changes under treatment with different concentrations of kanamycin for 30 min. Conclusion: This study indicates that some antibiotics can obviously increase the transfer frequency of ICEValA056-1, and that antibiotics abuse and arbitrarily discharge might intensify dissemination of integrating conjugative elements from V. alginolyticus to other bacteria.


Asunto(s)
Antibacterianos/farmacología , Conjugación Genética/efectos de los fármacos , Elementos Transponibles de ADN/efectos de los fármacos , Vibrio alginolyticus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Ácido Nalidíxico/farmacología , Vibrio alginolyticus/genética
13.
Mol Genet Genomics ; 290(1): 173-85, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25204792

RESUMEN

Ecl1 family genes (ecl1 (+), ecl2 (+), and ecl3 (+)) have been identified as extenders of the chronological lifespan in Schizosaccharomyces pombe. Here, we found that the triple-deletion mutant (∆ecl1/2/3) had a defect in sexual development after entry into the stationary phase, although the mutant essentially showed normal mating and sporulation under nitrogen starvation or carbon limitation. In this study, we showed that limitation of zinc or iron can be a signal for sexual development of S. pombe cells grown in Edinburgh minimal medium until the stationary phase and that Ecl1 family genes are important for this process. Because the ∆ecl1/2/3 mutant diminishes the zinc depletion-dependent gene expression, Ecl1 family proteins may function as zinc sensors in the process of sexual development.


Asunto(s)
Genes Fúngicos , Deficiencias de Hierro , Familia de Multigenes , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/fisiología , Zinc/farmacología , Conjugación Genética/efectos de los fármacos , Ácido Edético/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes del Tipo Sexual de los Hongos , Mutación/genética , Nitrógeno/deficiencia , Proteínas Nucleares/metabolismo , Schizosaccharomyces/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/fisiología , Transcripción Genética/efectos de los fármacos
14.
Environ Sci Technol ; 49(14): 8731-40, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26120784

RESUMEN

The dissemination and propagation of antibiotic resistance genes (ARGs) is an emerging global health concern. In our previous study, the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) had been proven to facilitate the dissemination of ARGs via horizontal gene transfer. In this study, we further confirm that this compound facilitates the horizontal transfer of plasmid RP4 through a conjugation mechanism and not by natural transformation. The mechanisms for [BMIm][PF6] promoting conjugative transfer are attributable to enhancing the mRNA expression levels of conjugative and global regulatory genes, as well as by inhibiting the genes that are responsible for the vertical transfer of cell growth. [BMIm][PF6] significantly enhanced the expression of the outer membrane porin proteins (OMPs) OmpC and OmpA and the corresponding mRNA expression levels of ompC and ompA genes in recipient bacteria, which contributed to pore formation and increased cell membrane permeability. The increased expression of pilin and pili allowed the donor pilus to attach to and access the recipient cells, thereby assisting cell-to-cell contact to facilitate the conjugative transfer of plasmid RP4. To the best of our knowledge, this is the first insightful exploration of [BMIm][PF6] facilitating the conjugative transfer of ARGs mediated by plasmid RP4 and of several other ILs with different cations or anions that are capable of promoting plasmid transfer. It is therefore suggested that the application of some ILs in industrial processes should be carefully evaluated before their bulk emission into the environment.


Asunto(s)
Farmacorresistencia Microbiana/genética , Transferencia de Gen Horizontal/efectos de los fármacos , Líquidos Iónicos/farmacología , Plásmidos/metabolismo , Antibacterianos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Conjugación Genética/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas Fimbrias/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos , Imidazoles/farmacología , Porinas/genética , Porinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética
15.
Proc Natl Acad Sci U S A ; 109(13): 4944-9, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22411796

RESUMEN

Antibiotic resistance is a worldwide public health concern. Conjugative transfer between closely related strains or species of bacteria is an important method for the horizontal transfer of multidrug-resistance genes. The extent to which nanomaterials are able to cause an increase in antibiotic resistance by the regulation of the conjugative transfer of antibiotic-resistance genes in bacteria, especially across genera, is still unknown. Here we show that nanomaterials in water can significantly promote the horizontal conjugative transfer of multidrug-resistance genes mediated by the RP4, RK2, and pCF10 plasmids. Nanoalumina can promote the conjugative transfer of the RP4 plasmid from Escherichia coli to Salmonella spp. by up to 200-fold compared with untreated cells. We also explored the mechanisms behind this phenomenon and demonstrate that nanoalumina is able to induce oxidative stress, damage bacterial cell membranes, enhance the expression of mating pair formation genes and DNA transfer and replication genes, and depress the expression of global regulatory genes that regulate the conjugative transfer of RP4. These findings are important in assessing the risk of nanomaterials to the environment, particularly from water and wastewater treatment systems, and in the estimation of the effect of manufacture and use of nanomaterials on the environment.


Asunto(s)
Óxido de Aluminio/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Transferencia de Gen Horizontal/efectos de los fármacos , Plásmidos/genética , Salmonella/genética , Antioxidantes/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Conjugación Genética/efectos de los fármacos , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/ultraestructura , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Transferencia de Gen Horizontal/genética , Genes Bacterianos/genética , Nanoestructuras/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Salmonella/citología , Salmonella/efectos de los fármacos
16.
J Antimicrob Chemother ; 69(2): 343-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24092655

RESUMEN

OBJECTIVES: Large amounts of biocides are used to reduce and control bacterial growth in the healthcare sector, food production and agriculture. This work explores the effect of subinhibitory concentrations of four commonly used biocides (ethanol, hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite) on the conjugative transposition of the mobile genetic element Tn916. METHODS: Conjugation assays were carried out between Bacillus subtilis strains. The donor containing Tn916 was pre-exposed to subinhibitory concentrations of each biocide for a defined length of time, which was determined by an analysis of the transcriptional response of the promoter upstream of tet(M) using ß-glucuronidase reporter assays. RESULTS: Ethanol significantly (P = 0.01) increased the transfer of Tn916 by 5-fold, whereas hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite did not significantly affect the transfer frequency. CONCLUSIONS: These results suggest that exposure to subinhibitory concentrations of ethanol may induce the transfer of Tn916-like elements and any resistance genes they contain.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Conjugación Genética/efectos de los fármacos , Conjugación Genética/genética , Desinfectantes/administración & dosificación , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Resultado del Tratamiento
17.
J Hazard Mater ; 477: 135403, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096644

RESUMEN

Drug resistance poses a high risk to human health. Extensive use of non-antibiotic drugs contributes to antibiotic resistance genes (ARGs) transfer. However, how they affect the spread of broad-host plasmids in complex biological systems remains unknown. This study investigated the effect of metoprolol on the transfer frequency and host range of ARGs in both intrageneric and intergeneric pure culture systems, as well as in anammox microbiome. The results showed that environmental concentrations of metoprolol significantly promoted the intrageneric and intergeneric conjugative transfer. Initially, metoprolol induced excessive oxidative stress, resulting in high cell membrane permeability and bacterial SOS response. Meanwhile, more pili formation increased the adhesion and contact between bacteria, and the abundance of conjugation-related genes also increased significantly. Activation of the electron transport chain provided more ATP for this energy-consuming process. The underlying mechanism was further verified in the complex anammox conjugative system. Metoprolol induced the enrichment of ARGs and mobile genetic elements. The enhanced bacterial interaction and energy generation facilitated the high conjugative transfer frequency of ARGs. In addition, plasmid-borne ARGs tended to transfer to opportunistic pathogens. This work raises public concerns about the health and ecological risks of non-antibiotic drugs.


Asunto(s)
Conjugación Genética , Metoprolol , Plásmidos , Plásmidos/genética , Conjugación Genética/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Antagonistas Adrenérgicos beta/farmacología , Transferencia de Gen Horizontal , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Antibacterianos/farmacología , Genes MDR/genética , Microbiota/efectos de los fármacos
18.
J Hazard Mater ; 478: 135436, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39141944

RESUMEN

Plasmid-mediated conjugative transfer has emerged as a major driver accounting for the dissemination of antibiotic resistance genes (ARGs). In addition to the use of antimicrobial agents, there is growing evidence that non-antibiotic factors also play an important role. Pesticides are widely used to protect crops against vectors of diseases, and are indispensable agents in agricultural production, whereas the impact of pesticide pollution on the transmission of antimicrobial resistance remains poorly understood. Here we reveal that the pesticides at environmentally relevant concentrations, especially cyromazine (Cyr) and kresoxim-methyl (Kre), greatly facilitate the conjugative transfer of antibiotic-resistance plasmids carrying clinically important ARGs. Mechanistic studies indicate that Cyr and Kre treatments trigger reactive oxygen species (ROS) production and SOS response, increase membrane permeability, upregulate bacterial proton motive force (PMF) and promote ATP supply. Further non-targeted metabolomics and biochemical analysis demonstrate that the addition of Cyr and Kre accelerates tricarboxylic acid (TCA) cycle and electron transport chain (ETC), thereby activating bacterial energy metabolism. In the constructed soil model, we prove that two pesticides contribute to the dissemination of resistance plasmids in the soil microbiota. 16S rRNA sequencing analyses indicate that pesticides alter transconjugant microbial communities, and enable more opportunistic pathogens, such as Pseudomonas and Enterobacter, to acquire the multidrug resistance plasmids. Collectively, our work indicates the potential risk in accelerating the spread of antimicrobial resistance owing to pesticide pollution, highlighting the importance of continuous surveillance of pesticide residues in complex environmental settings.


Asunto(s)
Plaguicidas , Plásmidos , Plásmidos/genética , Plaguicidas/toxicidad , Microbiología del Suelo , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Conjugación Genética/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/toxicidad , Antibacterianos/farmacología , Microbiota/efectos de los fármacos
19.
J Hazard Mater ; 471: 134257, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38636236

RESUMEN

The widespread use of disinfectants during the global response to the 2019 coronavirus pandemic has increased the co-occurrence of disinfection byproducts (DBPs) and antibiotic resistance genes (ARGs). Although DBPs pose major threats to public health globally, there is limited knowledge regarding their biological effects on ARGs. This study aimed to investigate the effects of two inorganic DBPs (chlorite and bromate) on the conjugative transfer of RP4 plasmid among Escherichia coli strains at environmentally relevant concentrations. Interestingly, the frequency of conjugative transfer was initially inhibited when the exposure time to chlorite or bromate was less than 24 h. However, this inhibition transformed into promotion when the exposure time was extended to 36 h. Short exposures to chlorite or bromate were shown to impede the electron transport chain, resulting in an ATP shortage and subsequently inhibiting conjugative transfer. Consequently, this stimulates the overproduction of reactive oxygen species (ROS) and activation of the SOS response. Upon prolonged exposure, the resurgent energy supply promoted conjugative transfer. These findings offer novel and valuable insights into the effects of environmentally relevant concentrations of inorganic DBPs on the conjugative transfer of ARGs, thereby providing a theoretical basis for the management of DBPs.


Asunto(s)
Bromatos , Cloruros , Escherichia coli , Estrés Oxidativo , Plásmidos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Bromatos/toxicidad , Plásmidos/genética , Cloruros/farmacología , Desinfectantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Conjugación Genética/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Respuesta SOS en Genética/efectos de los fármacos
20.
J Bacteriol ; 195(24): 5431-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24078614

RESUMEN

CTnDOT is a 65-kb conjugative transposon (CTn) in Bacteroides spp. that confers resistance to the antibiotics erythromycin and tetracycline (Tc). Conjugative transfer of CTnDOT is regulated upon exposure of cells to Tc. In the absence of Tc, no transfer is detectable; however, a cascade of regulatory events results in the conjugative transfer of CTnDOT upon Tc induction. Previous studies addressing regulation of CTnDOT conjugative transfer focused primarily on the 13-kb transfer (tra) operon, which encodes the proteins required for assembly of the mating apparatus. We report here that the mob operon that encodes the relaxase and coupling proteins required for mobilization of CTnDOT are regulated at the transcriptional level upon Tc induction. The Xis2d and Exc excision proteins are required for the upregulation of mob transcription upon Tc induction, and yet a deletion of xis2c has no effect. We also show preliminary evidence suggesting that the integrase, IntDOT, may play a regulatory role, as pLYL72 transfer is not detectable when intDOT is provided in trans.


Asunto(s)
Bacteroides/efectos de los fármacos , Conjugación Genética/efectos de los fármacos , Elementos Transponibles de ADN/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Transferencia de Gen Horizontal/efectos de los fármacos , Tetraciclina/metabolismo , Transcripción Genética/efectos de los fármacos , Bacteroides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA