Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nature ; 565(7739): 356-360, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626971

RESUMEN

The development of neural circuits relies on axon projections establishing diverse, yet well-defined, connections between areas of the nervous system. Each projection is formed by growth cones-subcellular specializations at the tips of growing axons, encompassing sets of molecules that control projection-specific growth, guidance, and target selection1. To investigate the set of molecules within native growth cones that form specific connections, here we developed growth cone sorting and subcellular RNA-proteome mapping, an approach that identifies and quantifies local transcriptomes and proteomes from labelled growth cones of single projections in vivo. Using this approach on the developing callosal projection of the mouse cerebral cortex, we mapped molecular enrichments in trans-hemispheric growth cones relative to their parent cell bodies, producing paired subcellular proteomes and transcriptomes from single neuron subtypes directly from the brain. These data provide generalizable proof-of-principle for this approach, and reveal molecular specializations of the growth cone, including accumulations of the growth-regulating kinase mTOR2, together with mRNAs that contain mTOR-dependent motifs3,4. These findings illuminate the relationships between subcellular distributions of RNA and protein in developing projection neurons, and provide a systems-level approach for the discovery of subtype- and stage-specific molecular substrates of circuit wiring, miswiring, and the potential for regeneration.


Asunto(s)
Axones/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Animales , Axones/enzimología , Procesos de Crecimiento Celular , Movimiento Celular , Separación Celular , Femenino , Conos de Crecimiento/enzimología , Conos de Crecimiento/metabolismo , Masculino , Ratones , Proteoma/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
Genes Dev ; 25(18): 1968-81, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21937714

RESUMEN

Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs.


Asunto(s)
Axones/fisiología , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Axones/enzimología , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/genética , Conos de Crecimiento/enzimología , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Neuronas/citología , Unión Proteica
3.
Dev Biol ; 430(1): 41-51, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28844905

RESUMEN

Arginylation is an emerging protein modification mediated by arginyltransferase ATE1, shown to regulate embryogenesis and actin cytoskeleton, however its functions in different physiological systems are not well understood. Here we analyzed the role of ATE1 in brain development and neuronal growth by producing a conditional mouse knockout with Ate1 deletion in the nervous system driven by Nestin promoter (Nes-Ate1 mice). These mice were weaker than wild type, resulting in low postnatal survival rates, and had abnormalities in the brain that suggested defects in neuronal migration. Cultured Ate1 knockout neurons showed a reduction in the neurite outgrowth and the levels of doublecortin and F-actin in the growth cones. In wild type, ATE1 prominently localized to the growth cones, in addition to the cell bodies. Examination of the Ate1 mRNA sequence reveals the existence of putative zipcode-binding sequences involved in mRNA targeting to the cell periphery and local translation at the growth cones. Fluorescence in situ hybridization showed that Ate1 mRNA localized to the tips of the growth cones, likely due to zipcode-mediated targeting, and this localization coincided with spots of localization of arginylated ß-actin, which disappeared in the presence of protein synthesis inhibitors. We propose that zipcode-mediated co-targeting of Ate1 and ß-actin mRNA leads to localized co-translational arginylation of ß-actin that drives the growth cone migration and neurite outgrowth.


Asunto(s)
Aminoaciltransferasas/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Conos de Crecimiento/enzimología , Neuritas/enzimología , Proyección Neuronal , Actinas/metabolismo , Animales , Arginina/metabolismo , Encéfalo/anomalías , Encéfalo/patología , Movimiento Celular , Proteínas de Dominio Doblecortina , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Neuropéptidos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Mol Cell Biochem ; 444(1-2): 1-13, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29159770

RESUMEN

The JNK-interacting protein 3 (JIP3) is a molecular scaffold, expressed predominantly in neurons, that serves to coordinate the activation of the c-Jun N-terminal kinase (JNK) by binding to JNK and the upstream kinases involved in its activation. The JNK pathway is involved in the regulation of many cellular processes including the control of cell survival, cell death and differentiation. JIP3 also associates with microtubule motor proteins such as kinesin and dynein and is likely an adapter protein involved in the tethering of vesicular cargoes to the motors involved in axonal transport in neurons. We have used immunofluorescence microscopy and biochemical fractionation to investigate the subcellular distribution of JIP3 in relation to JNK and to vesicular and organelle markers in rat pheochromocytoma cells (PC12) differentiating in response to nerve growth factor. In differentiated PC12 cells, JIP3 was seen to accumulate in growth cones at the tips of developing neurites where it co-localised with both JNK and the JNK substrate paxillin. Cellular fractionation of PC12 cells showed that JIP3 was associated with a subpopulation of vesicles in the microsomal fraction, distinct from synaptic vesicles, likely to be an anterograde-directed exocytic vesicle pool. In differentiated PC12 cells, JIP3 did not appear to associate with retrograde endosomal vesicles thought to be involved in signalling axonal injury. Together, these observations indicate that JIP3 may be involved in transporting vesicular cargoes to the growth cones of PC12 cells, possibly targeting JNK to its substrate paxillin, and thus facilitating neurite outgrowth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular , Conos de Crecimiento/enzimología , Proteínas del Tejido Nervioso/metabolismo , Neuritas/enzimología , Vesículas Secretoras/enzimología , Vesículas Sinápticas/enzimología , Animales , Células PC12 , Ratas
5.
PLoS Biol ; 10(12): e1001439, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226105

RESUMEN

Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.


Asunto(s)
Conos de Crecimiento/enzimología , MAP Quinasa Quinasa 7/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuritas/metabolismo , Transporte de ARN , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Genoma/genética , Hipocampo/citología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Modelos Biológicos , Neuritas/enzimología , Fosforilación , Fosfotreonina/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo
6.
J Biol Chem ; 288(29): 20837-20842, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23775074

RESUMEN

Negatively targeting the tumor suppressor and phosphoinositide phosphatase PTEN (phosphatase and tensin homologue) promotes axon regrowth after injury. How PTEN functions in axon guidance has remained unknown. Here we report the differential role of PTEN in chemotactic guidance of axonal growth cones. Down-regulating PTEN expression in Xenopus laevis spinal neurons selectively abolished growth cone chemorepulsion but permitted chemoattraction. These findings persisted during cAMP-dependent switching of turning behaviors. Live cell imaging using a GFP biosensor revealed rapid PTEN-dependent depression of phosphatidylinositol 3,4,5-trisphosphate levels in the growth cone induced by the repellent myelin-associated glycoprotein. Moreover, down-regulating PTEN expression blocked negative remodeling of ß1-integrin adhesions triggered by myelin-associated glycoprotein, yet permitted integrin clustering by a positive chemotropic treatment. Thus, PTEN negatively regulates growth cone phosphatidylinositol 3,4,5-trisphosphate levels and mediates chemorepulsion, whereas chemoattraction is PTEN-independent. Regenerative therapies targeting PTEN may therefore suppress growth cone repulsion to soluble cues while permitting attractive guidance, an essential feature for re-forming functional neural circuits.


Asunto(s)
Quimiotaxis , Conos de Crecimiento/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Quimiotaxis/efectos de los fármacos , Análisis por Conglomerados , AMP Cíclico/farmacología , Regulación hacia Abajo/efectos de los fármacos , Endocitosis/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Integrina beta1/metabolismo , Glicoproteína Asociada a Mielina/farmacología , Fosfatos de Fosfatidilinositol/metabolismo
7.
J Cell Sci ; 125(Pt 12): 2918-29, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22393238

RESUMEN

There is biochemical, imaging and functional evidence that Rho GTPase signaling is a crucial regulator of actin-based structures such as lamellipodia and filopodia. However, although Rho GTPases are believed to serve similar functions in growth cones, the spatiotemporal dynamics of Rho GTPase signaling has not been examined in living growth cones in response to known axon guidance cues. Here we provide the first measurements of Cdc42 activity in living growth cones acutely stimulated with both growth-promoting and growth-inhibiting axon-guidance cues. Interestingly, we find that both permissive and repulsive factors can work by modulating Cdc42 activity, but in opposite directions. We find that the growth-promoting factors laminin and BDNF activate Cdc42, whereas the inhibitor Slit2 reduces Cdc42 activity in growth cones. Remarkably, we find that regulation of focal adhesion kinase (FAK) activity is a common upstream modulator of Cdc42 by BDNF, laminin and Slit. These findings suggest that rapid modulation of Cdc42 signaling through FAK by receptor activation underlies changes in growth cone motility in response to permissive and repulsive guidance cues.


Asunto(s)
Axones/enzimología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Axones/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Movimiento Celular , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Conos de Crecimiento/enzimología , Conos de Crecimiento/metabolismo , Humanos , Laminina/metabolismo , Transducción de Señal , Xenopus laevis , Proteína de Unión al GTP cdc42/genética
8.
J Neurosci ; 32(19): 6587-99, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22573681

RESUMEN

Axonal outgrowth is a coordinated process of cytoskeletal dynamics and membrane trafficking; however, little is known about proteins responsible for regulating the membrane supply. LMTK1 (lemur kinase 1)/AATYK1 (apoptosis-associated tyrosine kinase 1) is a serine/threonine kinase that is highly expressed in neurons. We recently reported that LMTK1 plays a role in recycling endosomal trafficking in CHO-K1 cells. Here we explore the role of LMTK1 in axonal outgrowth and its regulation by Cdk5 using mouse brain cortical neurons. LMTK1 was expressed and was phosphorylated at Ser34, the Cdk5 phosphorylation site, at the time of axonal outgrowth in culture and colocalized with Rab11A, the small GTPase that regulates recycling endosome traffic, at the perinuclear region and in the axon. Overexpression of the unphosphorylated mutant LMTK1-S34A dramatically promoted axonal outgrowth in cultured neurons. Enhanced axonal outgrowth was diminished by the inactivation of Rab11A, placing LMTK1 upstream of Rab11A. Unexpectedly, the downregulation of LMTK1 by knockdown or gene targeting also significantly enhanced axonal elongation. Rab11A-positive vesicles were transported anterogradely more quickly in the axons of LMTK1-deficient neurons than in those of wild-type neurons. The enhanced axonal outgrowth was reversed by LMTK1-WT or the LMTK1-S34D mutant, which mimics the phosphorylated state, but not by LMTK1-S34A. Thus, LMTK1 can negatively control axonal outgrowth by regulating Rab11A activity in a Cdk5-dependent manner, and Cdk5-LMTK1-Rab11 is a novel signaling pathway involved in axonal outgrowth.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Axones/fisiología , Quinasa 5 Dependiente de la Ciclina/fisiología , Conos de Crecimiento/fisiología , Proteínas Tirosina Quinasas/fisiología , Proteínas de Unión al GTP rab/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Axones/enzimología , Células COS , Células Cultivadas , Chlorocebus aethiops , Femenino , Conos de Crecimiento/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Fosforilación/fisiología , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/genética , Proteínas de Unión al GTP rab/antagonistas & inhibidores
9.
Mol Cell Neurosci ; 50(1): 82-92, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22521536

RESUMEN

In addition to its role as a morphogen, Sonic hedgehog (Shh) has also been shown to function as a guidance factor that directly acts on the growth cones of various types of axons. However, the noncanonical signaling pathways that mediate the guidance effects of Shh protein remain poorly understood. We demonstrate that a novel signaling pathway consisting of protein kinase Cα (PKCα) and integrin-linked kinase (ILK) mediates the negative guidance effects of high concentration of Shh on retinal ganglion cell (RGC) axons. Shh rapidly increased Ca(2+) level and activated PKCα and ILK in the growth cones of RGC axons. By in vitro kinase assay, PKCα was found to directly phosphorylate ILK on threonine-173 and -181. Inhibition of PKCα or expression of a mutant ILK with the PKCα phosphorylation sites mutated (ILK-DM), abolished the Shh-induced macropinocytosis, growth cone collapse and repulsive axon turning. In vivo, expression of a dominant negative PKCα or ILK-DM disrupted RGC axon pathfinding at the optic chiasm but not the projection toward the optic disk, supporting that this signaling pathway plays a specific role in Shh-mediated negative guidance effects.


Asunto(s)
Axones/enzimología , Proteínas Hedgehog/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Acetofenonas/farmacología , Animales , Axones/fisiología , Benzopiranos/farmacología , Calcio/metabolismo , Células Cultivadas , Embrión de Pollo , Inhibidores Enzimáticos/farmacología , Conos de Crecimiento/enzimología , Mutación , Fosforilación , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/genética , Proteínas Serina-Treonina Quinasas/genética , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/enzimología , Treonina
10.
Neurobiol Dis ; 41(2): 421-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20971191

RESUMEN

Axon regeneration in the adult central nervous system (CNS) is prevented by inhibitory molecules present in myelin, which bind to a receptor complex that leads to downstream RhoGTP activation and axon growth cone collapse. Here, we compared expression of Citron kinase (Citron-K), a target molecule of RhoGTP in non-regenerating dorsal root ganglion neurons (DRGN) after dorsal column (DC) injury, and in regenerating DRGN after either sciatic nerve (SN) injury or preconditioning SN+DC lesion models. We show by microarray that Citron-K mRNA levels in DRGN of a non-regenerating DC injury model were elevated 2-fold compared to those of intact control DRGN. Conversely, Citron-K levels were reduced by 2 and 2.4-fold at 10 days post lesion in the regenerating SN and preconditioning SN+DC lesion models, respectively, compared to levels in control intact DRGN. Western blotting and immunohistochemistry confirmed these observations and localised Citron-K immunostaining to both DRGN and satellite glia. In dissociated, adult rat DRG cell cultures, 80% knockdown of Citron-K, in the presence of inhibitory concentrations of CNS myelin extract (CME), promoted significant disinhibited DRGN neurite outgrowth, only when cells were stimulated with neurotrophic factors. The levels of RhoGTP remained unchanged after Citron-K knockdown in the presence of CME while enhanced cofilin levels correlated with disinhibited DRGN neurite outgrowth. This observation suggests that Citron-K plays a role in axon growth downstream of Rho activation. We conclude that Citron-K regulates actin polymerisation downstream of RhoA and may offer a potentially novel therapeutic approach for promoting CNS axon regeneration.


Asunto(s)
Axones/enzimología , Cofilina 1/metabolismo , Conos de Crecimiento/enzimología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Regeneración Nerviosa/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Animales , Axones/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Regulación hacia Abajo/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasas Lim/fisiología , Masculino , Regeneración Nerviosa/genética , Polimerizacion , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Quinasas Asociadas a rho/fisiología
11.
Alcohol Clin Exp Res ; 35(7): 1321-30, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21676004

RESUMEN

BACKGROUND: The effects of ethanol on development of postmitotic neurons include altered neurite outgrowth and differentiation, which may contribute to neuropathology associated with fetal alcohol spectrum disorders. We previously reported that ethanol exposure alters axon growth dynamics in dissociated cultures of rat hippocampal pyramidal neurons. Given the important regulatory role of small Rho guanosine triphosphatases (GTPases) in cytoskeletal reorganization associated with axon growth, and reports that ethanol alters whole cell Rho GTPase activity in other cell types, this study explored the hypothesis that ethanol alters Rho GTPase activity specifically in axonal growth cones. METHODS: Fetal rat hippocampal pyramidal neurons were maintained in dissociated cultures for 1 day in control medium or medium containing 11 to 43 mM ethanol. Some cultures were also treated with brain-derived neurotrophic factor (BDNF), an activator of Rac1 and Cdc42 GTPases that promotes axon extension. Levels of active Rho GTPases in growth cones were measured using in situ binding assays for GTP-bound Rac1, Cdc42, and RhoA. Axon length, growth cone area, and growth cone surface expression of tyrosine kinase B (TrkB), the receptor for BDNF, were assessed by digital morphometry and immunocytochemistry. RESULTS: Although ethanol increased the surface area of growth cones, the levels of active Rho GTPases in axonal growth cones were not affected in the absence of exogenous BDNF. In contrast, ethanol exposure inhibited BDNF-induced Rac1/Cdc42 activation in a dose-dependent manner and increased RhoA activation at the highest concentration tested. Similar TrkB expression was observed on the surface of axonal growth cones of control and ethanol-treated neurons. CONCLUSIONS: These results reveal an inhibitory effect of ethanol on growth cone signaling via small Rho GTPases during early stages of hippocampal development in vitro, and suggest a mechanism whereby ethanol may disrupt neurotrophic factor regulation of axon growth and guidance.


Asunto(s)
Axones/enzimología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Etanol/farmacología , Conos de Crecimiento/enzimología , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo , Animales , Axones/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Conos de Crecimiento/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Hipocampo/crecimiento & desarrollo , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
Mol Cell Neurosci ; 45(4): 439-48, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20692345

RESUMEN

The Ca(2+)-stimulated adenylate cyclase 1 (AC1) is a key mediator of retinotopic map refinement and is required for the retraction response of retinal growth cones to the guidance cue ephrin-A5. We show here that AC1 is dynamically expressed in subpopulations of motor neurons in the spinal cord and sensory neurons of the dorsal root ganglia during development. AC1 was first detected around E12.5 in motoneurons of the medial aspect of the lateral motor column (LMCm) and the lateral region of the medial motor column (MMCl), which project to the ventral limb and body wall musculature, respectively. Expression levels gradually increased until they reached a maximum at a time when peripheral sensory and motor axons branch and establish connections with their targets. In barrelless mice, where a mutation inactivates the AC1 gene, sensory projections to the skin in the limbs and trunk region as well as innervations of the intercostal musculature provided by MMCl axons show increased branching. These results suggest a function of AC1 in the formation of peripheral nerve trajectories such as branching and pruning, after the initial projections have been laid down.


Asunto(s)
Adenilil Ciclasas/metabolismo , Ganglios Espinales/crecimiento & desarrollo , Conos de Crecimiento/enzimología , Neurogénesis/fisiología , Adenilil Ciclasas/genética , Animales , Ganglios Espinales/enzimología , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Mutantes , Neuronas Motoras/enzimología , ARN Mensajero/análisis , Células Receptoras Sensoriales/enzimología , Piel/inervación , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo
13.
Neuron ; 50(5): 683-95, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16731508

RESUMEN

The initial migration of motor growth cones from the spinal cord into the periphery requires extrinsic cues, yet their identities are largely unknown. In zebrafish diwanka mutants, motor growth cones are motile but fail to pioneer into the periphery. Here, we report on the positional cloning of diwanka and show that it encodes LH3, a myotomally expressed multifunctional enzyme with lysyl hydroxylase and glycosyltransferase domains. Cloning, expression analysis, and ubiquitous overexpression of other LH family members reveals that only diwanka (lh3) possesses a critical role in growth cone migration. We show that this unique role depends critically on the LH3 glycosyltransferase domain, and provide compelling evidence that diwanka (lh3) acts through myotomal type XVIII collagen, a ligand for neural-receptor protein tyrosine phosphatases that guide motor axons. Together, our results provide the first genetic evidence that glycosyltransferase modifications of the ECM play a critical role during vertebrate motor axon migration.


Asunto(s)
Movimiento Celular/fisiología , Colágeno Tipo XVIII/fisiología , Glicosiltransferasas/genética , Glicosiltransferasas/fisiología , Conos de Crecimiento/enzimología , Neuronas Motoras/enzimología , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Animales , Clonación Molecular , Colágeno Tipo XVIII/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Matriz Extracelular/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glicosiltransferasas/química , Conos de Crecimiento/ultraestructura , Células HeLa , Humanos , Microscopía Electrónica , Datos de Secuencia Molecular , Neuronas Motoras/ultraestructura , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/química , Estructura Terciaria de Proteína , Pez Cebra , Proteínas de Pez Cebra/química
14.
Neuron ; 51(1): 57-69, 2006 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-16815332

RESUMEN

Highwire is an extremely large, evolutionarily conserved E3 ubiquitin ligase that negatively regulates synaptic growth at the Drosophila NMJ. Highwire has been proposed to restrain synaptic growth by downregulating a synaptogenic signal. Here we identify such a downstream signaling pathway. A screen for suppressors of the highwire synaptic overgrowth phenotype yielded mutations in wallenda, a MAP kinase kinase kinase (MAPKKK) homologous to vertebrate DLK and LZK. wallenda is both necessary for highwire synaptic overgrowth and sufficient to promote synaptic overgrowth, and synaptic levels of Wallenda protein are controlled by Highwire and ubiquitin hydrolases. highwire synaptic overgrowth requires the MAP kinase JNK and the transcription factor Fos. These results suggest that Highwire controls structural plasticity of the synapse by regulating gene expression through a MAP kinase signaling pathway. In addition to controlling synaptic growth, Highwire promotes synaptic function through a separate pathway that does not require wallenda.


Asunto(s)
Sistema Nervioso Central/embriología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Conos de Crecimiento/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/enzimología , Animales , Diferenciación Celular/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Mapeo Cromosómico , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Conos de Crecimiento/ultraestructura , Inhibidores de Crecimiento/genética , Inhibidores de Crecimiento/metabolismo , Hidrolasas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/aislamiento & purificación , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sinapsis/ultraestructura , Ubiquitina-Proteína Ligasas/metabolismo
15.
J Neurosci ; 29(44): 13981-91, 2009 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-19890008

RESUMEN

Adhesion controls growth cone motility, yet the effects of axon guidance cues on adhesion site dynamics are poorly understood. Here we show that ephrin-A1 reduces retinal ganglion cell (RGC) axon outgrowth by stabilizing existing adhesions and inhibiting new adhesion assembly. Ephrin-A1 activates focal adhesion kinase (FAK) in an integrin- and Src-dependent manner and the effects of ephrin-A1 on growth cone motility require FAK activation. We also find that FAK is expressed in a high temporal to low nasal gradient in RGCs, similar to EphA receptors, and that balanced FAK activation is necessary for optimal axon outgrowth. Last, we find that FAK is required for proper topographic positioning of retinal axons along the anterior-posterior axis of the optic tectum in both Xenopus and zebrafish, a guidance decision mediated in part by A-type ephrins. Together, our data suggest that ephrin-A1 controls growth cone advance by modulating adhesive point contacts through FAK activation and that graded FAK signaling is an important component of ephrin-A-mediated retinotopic mapping.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Conos de Crecimiento/fisiología , Retina/fisiología , Animales , Animales Modificados Genéticamente , Adhesión Celular/fisiología , Células Cultivadas , Pollos , Activación Enzimática/fisiología , Conos de Crecimiento/enzimología , Retina/enzimología , Xenopus laevis , Pez Cebra
16.
J Neurosci ; 29(16): 5183-92, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19386914

RESUMEN

The transcription factor p53 suppresses tumorgenesis by regulating cell proliferation and migration. We investigated whether p53 could also control cell motility in postmitotic neurons. p53 isoforms recognized by phospho-p53-specific (at Ser-15) or "mutant" conformation-specific antibodies were highly and specifically expressed in axons and axonal growth cones in primary hippocampal neurons. Inhibition of p53 function by inhibitors, small interfering RNAs, or by dominant-negative forms, induced axonal growth cone collapse, whereas p53 overexpression led to larger growth cones. Furthermore, deletion of the p53 nuclear export signal blocked its axonal distribution and induced growth cone collapse. p53 inhibition-induced axonal growth cone collapse was significantly reduced by the Rho kinase (ROCK) inhibitor, Y27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide]. Our results reveal a new function for p53 as a critical regulator of axonal growth cone behavior by suppressing ROCK activity.


Asunto(s)
Movimiento Celular/fisiología , Conos de Crecimiento/fisiología , Proteína p53 Supresora de Tumor/fisiología , Quinasas Asociadas a rho/metabolismo , Animales , Movimiento Celular/genética , Células Cultivadas , Conos de Crecimiento/enzimología , Conos de Crecimiento/metabolismo , Ratones , Ratones Endogámicos BALB C , Neurogénesis/genética , Neurogénesis/fisiología , Unión Proteica/genética , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/fisiología
17.
Neurosignals ; 18(4): 246-58, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21358174

RESUMEN

Syntrophins are scaffold proteins that can bind several signaling molecules and localize them to the plasma membrane. We demonstrate here that in neuroblastoma SH-SY5Y cells, brain-specific γ1-syntrophin binds the neurotrophic factor γ-enolase through its PDZ domain, and translocates it to the plasma membrane, as shown by immunoprecipitation, surface plasmon resonance, fluorescence colocalization and flow cytometry. Extensive colocalization of γ1-syntrophin and γ-enolase was observed in neurite growth cones in differentiated SH-SY5Y cells. Silencing of the γ1-syntrophin gene by RNA interference significantly reduced the re-distribution of γ-enolase to the plasma membrane and impaired its neurotrophic effects. We demonstrated that an intact C-terminal end of γ-enolase is essential for its γ1-syntrophin-assisted trafficking. The cleavage of two amino acids at the C-terminal end of γ-enolase by the carboxypeptidase cathepsin X prevents binding with the γ1-syntrophin PDZ domain. Collectively, these data demonstrate that γ1-syntrophin participates in γ-enolase translocation towards the plasma membrane, a pre-requisite for its neurotrophic activity. By disrupting this γ1-syntrophin-guided subcellular distribution, cathepsin X reduces γ-enolase-induced neurotrophic signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Membrana Celular/metabolismo , Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Regulación hacia Arriba/fisiología , Secuencia de Aminoácidos , Diferenciación Celular/fisiología , Línea Celular Tumoral , Membrana Celular/enzimología , Membrana Celular/patología , Conos de Crecimiento/enzimología , Conos de Crecimiento/patología , Humanos , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/fisiología , Neuroblastoma/enzimología , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosfopiruvato Hidratasa/fisiología , Transporte de Proteínas/fisiología
18.
Mol Cell Neurosci ; 41(3): 373-82, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19332125

RESUMEN

Inhibitors of the enzyme prolyl oligopeptidase (PO) improve performance in rodent learning and memory tasks. PO inhibitors are also implicated in the action of drugs used to treat bipolar disorder: they reverse the effects of three mood stabilizers on the dynamic behaviour of neuronal growth cones. PO cleaves prolyl bonds in short peptides, suggesting that neuropeptides might be its brain substrates. PO is located in the cytosol, however, where it would not contact neuropeptides. Here, we show that mice with a targeted PO null-mutation have altered growth cone dynamics. The wild-type phenotype is restored by PO cDNAs encoding either native or a catalytically-dead enzyme. In addition, we show that PO binds to the growth-associated protein GAP-43, which is a key regulator of synaptic plasticity. Taken together, our results show that peptidase activity is not required for PO function in neurons and suggest that PO instead acts by binding to cytosolic proteins that control growth cone and synaptic function.


Asunto(s)
Proteína GAP-43/metabolismo , Conos de Crecimiento/enzimología , Serina Endopeptidasas/metabolismo , Animales , Antimaníacos/farmacología , Carbamazepina/farmacología , Técnicas de Cultivo de Célula , ADN Complementario/biosíntesis , ADN Complementario/genética , Conos de Crecimiento/efectos de los fármacos , Humanos , Indoles/farmacología , Lamotrigina , Cloruro de Litio/farmacología , Ratones , Ratones Noqueados , Fosfatidilinositoles/metabolismo , Prolil Oligopeptidasas , Ratas , Serina Endopeptidasas/genética , Tiazolidinas/farmacología , Triazinas/farmacología , Ácido Valproico/farmacología
19.
Dev Biol ; 313(1): 384-97, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18037397

RESUMEN

Growth cones are dynamic membrane structures that migrate to target tissue by rearranging their cytoskeleton in response to environmental cues. The lipid phosphatidylinositol (4,5) bisphosphate (PIP(2)) resides on the plasma membrane of all eukaryotic cells and is thought to be required for actin cytoskeleton rearrangements. Thus PIP(2) is likely to play a role during neuron development, but this has never been tested in vivo. In this study, we have characterized the PIP(2) synthesizing enzyme Type I PIP kinase (ppk-1) in Caenorhabditis elegans. PPK-1 is strongly expressed in the nervous system, and can localize to the plasma membrane. We show that PPK-1 purified from C. elegans can generate PIP(2)in vitro and that overexpression of the kinase causes an increase in PIP(2) levels in vivo. In developing neurons, PPK-1 overexpression leads to growth cones that become stalled, produce ectopic membrane projections, and branched axons. Once neurons are established, PPK-1 overexpression results in progressive membrane overgrowth and degeneration during adulthood. These data suggest that overexpression of the Type I PIP kinase inhibits growth cone collapse, and that regulation of PIP(2) levels in established neurons may be important to maintain structural integrity and prevent neuronal degeneration.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Conos de Crecimiento/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
20.
Dev Biol ; 320(1): 215-25, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18582860

RESUMEN

Receptor protein tyrosine phosphatases (RPTPs) have been shown to play key roles in regulating axon guidance and synaptogenesis. HmLAR2, one of two closely related LAR-like RPTPs in the embryonic leech, is expressed in a few central neurons and in a unique segmentally-iterated peripheral cell, the comb cell (CC). Here we show that tagged HmLAR2-EGFP has a punctate pattern of expression in the growth cones of the CC, particularly at the tips of extending filopodia. Moreover, although expression of the wild-type EGFP-tagged receptor does not affect CC growth cone morphology, expression of a putative dominant-negative mutant of the receptor, CS-HmLAR2, leads to the enlargement of the growth cones, a shortening of filopodia, and errors in cellular tiling. RNAi of several candidate substrate signaling proteins, Lena (leech Ena/Vasp), beta-integrin and paxillin, but not beta-catenin, phenocopies particular aspects of the effects of HmLAR2 RNAi. For paxillin, which co-localizes with HmLAR2 at growth cone puncta, knock-down led to a reduction in the number of such puncta. Together, our data suggests that HmLAR2 regulates the morphology of the growth cone by controlling F-actin polymerization and focal adhesion complexes.


Asunto(s)
Adhesiones Focales/enzimología , Conos de Crecimiento/enzimología , Sanguijuelas/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Seudópodos/enzimología , Animales , Células CHO , Catálisis , Cricetinae , Cricetulus , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Sanguijuelas/citología , Sanguijuelas/embriología , Sanguijuelas/genética , Mutación/genética , Paxillin/metabolismo , Fenotipo , Fosfotirosina/metabolismo , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA