Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
BMC Genomics ; 25(1): 385, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641598

RESUMEN

BACKGROUND: The C2H2 zinc finger protein family plays important roles in plants. However, precisely how C2H2s function in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear. RESULTS: In this study, a total of 69 OpC2H2 zinc finger protein genes were identified and clustered into five Groups. Seven tandem and ten fragment repeats were found in OpC2H2s, which underwent robust purifying selection. Of the identified motifs, motif 1 was present in all OpC2H2s and conserved at important binding sites. Most OpC2H2s possessed few introns and exons that could rapidly activate and react when faced with stress. The OpC2H2 promoter sequences mainly contained diverse regulatory elements, such as ARE, ABRE, and LTR. Under salt stress, two up-regulated OpC2H2s (OpC2H2-1 and OpC2H2-14) genes and one down-regulated OpC2H2 gene (OpC2H2-7) might serve as key transcription factors through the ABA and JA signaling pathways to regulate the growth and development of Opisthopappus species. CONCLUSION: The above results not only help to understand the function of C2H2 gene family but also drive progress in genetic improvement for the salt tolerance of Opisthopappus species.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Dedos de Zinc CYS2-HIS2/genética , Estrés Salino/genética , Genoma de Planta , Factores de Transcripción/metabolismo , Dedos de Zinc/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
2.
BMC Genomics ; 25(1): 648, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943098

RESUMEN

BACKGROUND: Lotus (Nelumbo nucifera G.) is an important aquatic plant with high ornamental, economic, cultural and ecological values, but abiotic stresses seriously affect its growth and distribution. Q-type C2H2 zinc finger proteins (ZFPs) play an important role in plant growth development and environmental stress responses. Although the Q-type C2H2 gene family has been identified in some plants, limited reports has been carried out it in lotus. RESULTS: In this study, we identified 45 Q-type NnZFP members in lotus. Based on the phylogenetic tree, these Q-type NnZFP gene family members were divided into 4 groups, including C1-1i, C1-2i, C1-3i and C1-4i. Promoter cis-acting elements analysis indicated that most Q-type NnZFP gene family members in lotus were associated with response to abiotic stresses. Through collinearity analyses, no tandem duplication gene pairs and 14 segmental duplication gene pairs were identified, which showed that duplication events might play a key role in the expansion of the Q-type NnZFP gene family. The synteny results suggested that 54 and 28 Q-type NnZFP genes were orthologous to Arabidopsis and rice, respectively. The expression patterns of these Q-type NnZFP genes revealed that 30 Q-type NnZFP genes were expressed in at least one lotus tissue. Nn5g30550 showed relatively higher expression levels in all tested tissues. 12 genes were randomly selected with at least one gene from each phylogenetic clade, and the expression of these selected genes were confirmed by qRT-PCR (quantitative real-time polymerase chain reaction). The results indicated that Q-type NnZFP genes were extensively involved in cadmium, drought, salt and cold stresses responses. Among them, 11 genes responded to at least three different stress treatments, especially Nn2g12894, which induced by all four treatments. CONCLUSIONS: These results could increase our understanding of the characterization of the Q-type NnZFP gene family and provide relevant information for further functional analysis of Q-type NnZFP genes in plant development, and abiotic stress tolerance in lotus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Nelumbo , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nelumbo/genética , Dedos de Zinc CYS2-HIS2/genética , Lotus/genética , Lotus/metabolismo , Lotus/crecimiento & desarrollo , Genoma de Planta , Perfilación de la Expresión Génica
3.
BMC Plant Biol ; 23(1): 298, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268918

RESUMEN

BACKGROUND: C2H2 zinc finger proteins (C2H2-ZFPs), one of the largest transcription factors, play a variety of roles in plant development and growth as well as stress response. While, the evolutionary history and expression profile of the C2H2-ZFP genes in Larix kaempferi (LkZFPs) have not been reported so far. RESULTS: In this study, the whole genome of the LkZFPs was identified and characterized, including physicochemical properties, phylogenetic relationships, conservative motifs, the promoter cis-elements and Gene Ontology (GO) annotation. We identified 47 LkZFPs and divided them into four subfamilies based on phylogenetic analysis and conserved motifs. Subcellular localization prediction showed that most of the LkZFPs were located in the nucleus. Promoter cis-element analysis suggested that the LkZFPs may be involved in the regulation of stress responses. Moreover, Real-time quantitative PCR (RT-qPCR) results showed that Q-type LkZFP genes were involved in the response to abiotic stress, such as salt, drought and hormone stresses. Subcellular localization results showed that LkZFP7 and LkZFP37 were located in the nucleus, LkZFP32 was located in both cytoplasm and nucleus. CONCLUSION: The identification and functional analysis of LkZFPs suggested that some LkZFP genes might play important roles in coping with both biological and abiotic stresses. These results could further increase understanding of the function of the LkZFPs, and provide some research direction and theoretical support.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Larix , Dedos de Zinc CYS2-HIS2/genética , Estudio de Asociación del Genoma Completo , Larix/genética , Larix/metabolismo , Filogenia , Regiones Promotoras Genéticas , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
4.
Plant Cell ; 32(2): 392-413, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31806675

RESUMEN

The spikelet is an inflorescence structure unique to grasses. The molecular mechanisms underlying spikelet development and evolution are unclear. In this study, we characterized three allelic recessive mutants in rice (Oryza sativa): nonstop glumes 1-1 (nsg1-1), nsg1-2, and nsg1-3 In these mutants, organs such as the rudimentary glume, sterile lemma, palea, lodicule, and filament were elongated and/or widened, or transformed into lemma- and/or marginal region of the palea-like organs. NSG1 encoded a member of the C2H2 zinc finger protein family and was expressed mainly in the organ primordia of the spikelet. In the nsg1-1 mutant spikelet, LHS1 DL, and MFO1 were ectopically expressed in two or more organs, including the rudimentary glume, sterile lemma, palea, lodicule, and stamen, whereas G1 was downregulated in the rudimentary glume and sterile lemma. Furthermore, the NSG1 protein was able to bind to regulatory regions of LHS1 and then recruit the corepressor TOPLESS-RELATED PROTEIN to repress expression by downregulating histone acetylation levels of the chromatin. The results suggest that NSG1 plays a pivotal role in maintaining organ identities in the spikelet by repressing the expression of LHS1, DL, and MFO1.


Asunto(s)
Dedos de Zinc CYS2-HIS2/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Ingeniería Genética , Inflorescencia , Mutación , Fenotipo , Transcriptoma
5.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894862

RESUMEN

Q-type C2H2 zinc finger proteins (ZFPs), the largest family of transcription factors, have been extensively studied in plant genomes. However, the genes encoding this transcription factor family have not been explored in grapevine genomes. Therefore, in this study, we conducted a genome-wide identification of ZFP genes in three species of grapevine, namely Vitis vinifera, Vitis riparia, and Vitis amurensis, based on the sequence databases and phylogenetic and their conserved domains. We identified 52, 54, and 55 members of Q-type C2H2 ZFPs in V. vinifera, V. riparia, and V. amurensis, respectively. The physical and chemical properties of VvZFPs, VrZFPs, and VaZFPs were examined. The results showed that these proteins exhibited differences in the physical and chemical properties and that they all were hydrophobic proteins; the instability index showed that the four proteins were stable. The subcellular location of the ZFPs in the grapevine was predicted mainly in the nucleus. The phylogenetic tree analysis of the amino acid sequences of VvZFP, VaZFP, VrZFP, and AtZFP proteins showed that they were closely related and were divided into six subgroups. Chromosome mapping analysis showed that VvZFPs, VrZFPs, and VaZFPs were unevenly distributed on different chromosomes. The clustered gene analysis showed that the motif distribution was similar and the sequence of genes was highly conserved. Exon and intron structure analysis showed that 118 genes of ZFPs were intron deletion types, and the remaining genes had variable numbers of introns, ranging from 2 to 15. Cis-element analysis showed that the promoter of VvZFPs contained multiple cis-elements related to plant hormone response, stress resistance, and growth, among which the stress resistance elements were the predominant elements. Finally, the expression of VvZFP genes was determined using real-time quantitative PCR, which confirmed that the identified genes were involved in response to methyl jasmonate (MeJA), abscisic acid (ABA), salicylic acid (SA), and low-temperature (4 °C) stress. VvZFP10-GFP and VvZFP46-GFP fusion proteins were localized in the nucleus of tobacco cells, and VvZFP10 is the most responsive gene among all VvZFPs with the highest relative expression level to MeJA, ABA, SA and low-temperature (4 °C) stress. The present study provides a theoretical basis for exploring the mechanism of response to exogenous hormones and low-temperature tolerance in grapes and its molecular breeding in the future.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Dedos de Zinc CYS2-HIS2/genética , Filogenia , Proteínas de Plantas/metabolismo , Genoma de Planta , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Dedos de Zinc/genética
6.
Genome ; 65(4): 189-203, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35104149

RESUMEN

The C2H2-type zinc finger protein (ZFP) family is one of the largest transcription factor families in the plant kingdom and its members are involved in plant growth, development, and stress responses. As an economically valuable perennial graminaceous forage crop, orchardgrass (Dactylis glomerata) is an important feedstuff resource owing to its high yield and quality. In this study, 125 C2H2-type ZFPs in orchardgrass (Dg-ZFPs) were identified and further classified by phylogenetic analysis. The members with similar gene structures were generally clustered into the same groups, with proteins containing the conserved QALGGH motif being concentrated in groups VIII and IX. Gene ontology and miRNA target analyses indicated that Dg-ZFPs likely perform diverse biological functions through their gene interactions. The RNA-seq data revealed differentially expressed genes across tissues and development phases, suggesting that some Dg-ZFPs might participate in growth and development regulation. Abiotic stress responses of Dg-ZFP genes were verified by qPCR and Saccharomyces cerevisiae transformation, revealing that Dg-ZFP125 could enhance the tolerance of yeasts to osmotic and salt stresses. Our study performed a novel systematic analysis of Dg-ZFPs in orchardgrass, providing a reference for this gene family in other grasses and revealing new insights for enhancing gene utilization.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Dactylis , Dedos de Zinc CYS2-HIS2/genética , Dactylis/genética , Dactylis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Dedos de Zinc/genética
7.
Nucleic Acids Res ; 48(2): e9, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31777934

RESUMEN

We are now in an era where protein-DNA interactions have been experimentally assayed for thousands of DNA-binding proteins. In order to infer DNA-binding specificities from these data, numerous sophisticated computational methods have been developed. These approaches typically infer DNA-binding specificities by considering interactions for each protein independently, ignoring related and potentially valuable interaction information across other proteins that bind DNA via the same structural domain. Here we introduce a framework for inferring DNA-binding specificities by considering protein-DNA interactions for entire groups of structurally similar proteins simultaneously. We devise both constrained optimization and label propagation algorithms for this task, each balancing observations at the individual protein level against dataset-wide consistency of interaction preferences. We test our approaches on two large, independent Cys2His2 zinc finger protein-DNA interaction datasets. We demonstrate that jointly inferring specificities within each dataset individually dramatically improves accuracy, leading to increased agreement both between these two datasets and with a fixed external standard. Overall, our results suggest that sharing protein-DNA interaction information across structurally similar proteins is a powerful means to enable accurate inference of DNA-binding specificities.


Asunto(s)
Dedos de Zinc CYS2-HIS2/genética , Proteínas de Unión al ADN/genética , Homología Estructural de Proteína , Sitios de Unión , Fenómenos Bioquímicos , Fenómenos Biofísicos , Proteínas de Unión al ADN/química , Unión Proteica/genética
8.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269875

RESUMEN

Abiotic stresses have already exhibited the negative effects on crop growth and development, thereby influencing crop quality and yield. Therefore, plants have developed regulatory mechanisms to adopt against such harsh changing environmental conditions. Recent studies have shown that zinc finger protein transcription factors play a crucial role in plant growth and development as well as in stress response. C2H2 zinc finger proteins are one of the best-studied types and have been shown to play diverse roles in the plant abiotic stress responses. However, the C2H2 zinc finger network in plants is complex and needs to be further studied in abiotic stress responses. Here in this review, we mainly focus on recent findings on the regulatory mechanisms, summarize the structural and functional characterization of C2H2 zinc finger proteins, and discuss the C2H2 zinc finger proteins involved in the different signal pathways in plant responses to abiotic stress.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Dedos de Zinc CYS2-HIS2/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Estrés Fisiológico , Dedos de Zinc
9.
Int J Mol Sci ; 23(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628380

RESUMEN

C2H2 zinc finger protein (C2H2-ZFP) is one of the most important transcription factor families in higher plants. In this study, a total of 145 C2H2-ZFPs was identified in Sorghum bicolor and randomly distributed on 10 chromosomes. Based on the phylogenetic tree, these zinc finger gene family members were divided into 11 clades, and the gene structure and motif composition of SbC2H2-ZFPs in the same clade were similar. SbC2H2-ZFP members located in the same clade contained similar intron/exon and motif patterns. Thirty-three tandem duplicated SbC2H2-ZFPs and 24 pairs of segmental duplicated genes were identified. Moreover, synteny analysis showed that sorghum had more collinear regions with monocotyledonous plants such as maize and rice than did dicotyledons such as soybean and Arabidopsis. Furthermore, we used quantitative RT-PCR (qRT-PCR) to analyze the expression of C2H2-ZFPs in different organs and demonstrated that the genes responded to cold and drought. For example, Sobic.008G088842 might be activated by cold but is inhibited in drought in the stems and leaves. This work not only revealed an important expanded C2H2-ZFP gene family in Sorghum bicolor but also provides a research basis for determining the role of C2H2-ZFPs in sorghum development and abiotic stress resistance.


Asunto(s)
Arabidopsis , Dedos de Zinc CYS2-HIS2 , Sorghum , Arabidopsis/genética , Dedos de Zinc CYS2-HIS2/genética , Sequías , Grano Comestible , Filogenia , Sorghum/genética , Dedos de Zinc/genética
10.
Plant J ; 101(5): 1075-1090, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31628879

RESUMEN

Wheat awn plays a vital role in photosynthesis, grain production, and drought tolerance. However, the systematic identification or cloning of genes controlling wheat awn development is seldom reported. Here, we conducted a genome-wide association study (GWAS) with 364 wheat accessions and identified 26 loci involved in awn length development, including previously characterized B1, B2, Hd, and several rice homologs. The dominant awn suppressor B1 was fine mapped to a 125-kb physical interval, and a C2 H2 zinc finger protein Awn Length Inhibitor 1 (ALI-1) was confirmed to be the underlying gene of the B1 locus through the functional complimentary test with native awnless allele. ALI-1 expresses predominantly in the developing spike of awnless individuals, transcriptionally suppressing downstream genes. ALI-1 reduces cytokinin content and simultaneously restrains cytokinin signal transduction, leading to a stagnation of cell proliferation and reduction of cell numbers during awn development. Polymorphisms of four single nucleotide polymorphisms (SNPs) located in ALI-1 promoter region are diagnostic for the B1/b1 genotypes, and these SNPs are associated with awn length (AL), grain length (GL) and thousand-grain weight (TGW). More importantly, ali-1 was observed to increase grain length in wheat, which is a valuable attribute of awn on grain weight, aside from photosynthesis. Therefore, ALI-1 pleiotropically regulates awn and grain development, providing an alternative for grain yield improvement and addressing future climate changes.


Asunto(s)
Variación Genética , Proteínas de Plantas/genética , Triticum/genética , Alelos , Dedos de Zinc CYS2-HIS2/genética , Citocininas/análisis , Grano Comestible , Estudio de Asociación del Genoma Completo , Genotipo , Regiones Promotoras Genéticas/genética , Triticum/crecimiento & desarrollo
11.
BMC Plant Biol ; 21(1): 380, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34407757

RESUMEN

BACKGROUND: The C2H2-type zinc finger proteins (C2H2-ZFPs) are one of major classes of transcription factors that play important roles in plant growth, development and stress responses. Limit information about the C2H2-ZF genes hinders the molecular breeding in bread wheat (Triticum aestivum). RESULTS: In this study, 457 C2H2-ZFP proteins (including 253 splice variants), which contain four types of conserved domain (named Q, M, Z, and D), could be further classified into ten subsets. They were identified to be distributed in 21 chromosomes in T. aestivum. Subset-specific motifs, like NPL-, SFP1-, DL- (EAR-like-motif), R-, PL-, L- and EK-, might make C2H2-ZFP diverse multifunction. Interestingly, NPL- and SFP1-box were firstly found to be located in C2H2-ZFP proteins. Synteny analyses showed that only 4 pairs of C2H2 family genes in T. aestivum, 65 genes in B. distachyon, 66 genes in A. tauschii, 68 genes in rice, 9 genes in Arabidopsis, were syntenic relationships respectively. It indicated that TaZFPs were closely related to genes in Poaceae. From the published transcriptome data, totally 198 of 204 TaC2H2-ZF genes have expression data. Among them, 25 TaC2H2-ZF genes were certificated to be significantly differentially expressed in 5 different organs and 15 different development stages by quantitative RT-PCR. The 18 TaC2H2-ZF genes were verified in response to heat, drought, and heat & drought stresses. According to expression pattern analysis, several TaZFPs, like Traes_5BL_D53A846BE.1, were not only highly expressed in L2DAAs, RTLS, RMS, but also endowed tolerance to drought and heat stresses, making them good candidates for molecular breeding. CONCLUSIONS: This study systematically characterized the TaC2H2-ZFPs and their potential roles in T. aestivum. Our findings provide new insights into the C2H2-ZF genes in T. aestivum as well as a foundation for further studies on the roles of TaC2H2-ZF genes in T. aestivum molecular breeding.


Asunto(s)
Dedos de Zinc CYS2-HIS2/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Triticum/genética , Triticum/metabolismo , Dedos de Zinc/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Filogenia
12.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919599

RESUMEN

The C2H2-zinc finger protein (C2H2-ZFP) is essential for the regulation of plant development and widely responsive to diverse stresses including drought, cold and salt stress, further affecting the late flavonoid accumulation in higher plants. Tea is known as a popular beverage worldwide and its quality is greatly dependent on the physiological status and growing environment of the tea plant. To date, the understanding of C2H2-ZFP gene family in Camellia sinensis [L.] O. Kuntze is not yet available. In the present study, 134 CsC2H2-ZFP genes were identified and randomly distributed on 15 chromosomes. The CsC2H2-ZFP gene family was classified into four clades and gene structures and motif compositions of CsC2H2-ZFPs were similar within the same clade. Segmental duplication and negative selection were the main forces driving the expansion of the CsC2H2-ZFP gene family. Expression patterns suggested that CsC2H2-ZFPs were responsive to different stresses including drought, salt, cold and methyl jasmonate (MeJA) treatment. Specially, several C2H2-ZFPs showed a significant correlation with the catechins content and responded to the MeJA treatment, which might contribute to the tea quality and specialized astringent taste. This study will lay the foundations for further research of C2H2-type zinc finger proteins on the stress responses and quality-related metabolites accumulation in C. sinensis.


Asunto(s)
Dedos de Zinc CYS2-HIS2/fisiología , Camellia sinensis/metabolismo , Catequina/metabolismo , Proteínas de Plantas/metabolismo , Dedos de Zinc CYS2-HIS2/genética , Catequina/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética
13.
Plant Mol Biol ; 102(1-2): 123-141, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31776846

RESUMEN

KEY MESSAGE: Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation. Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.


Asunto(s)
Brassica rapa/genética , Dedos de Zinc CYS2-HIS2/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Secuencias de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica rapa/metabolismo , Dedos de Zinc CYS2-HIS2/fisiología , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Glucuronidasa/metabolismo , Filogenia , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Mapas de Interacción de Proteínas
14.
BMC Plant Biol ; 20(1): 359, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727369

RESUMEN

BACKGROUNDS: C2H2-type zinc finger protein (ZFPs) form a relatively large family of transcriptional regulators in plants, and play many roles in plant growth, development, and stress response. However, the comprehensive analysis of C2H2 ZFPs in cucumber (CsZFPs) and their regulation function in cucumber are still lacking. RESULTS: In the current study, the whole genome identification and characterization of CsZFPs, including the gene structure, genome localization, phylogenetic relationship, and gene expression were performed. Functional analysis of 4 selected genes by transient transformation were also conducted. A total of 129 full-length CsZFPs were identified, which could be classified into four groups according to the phylogenetic analysis. The 129 CsZFPs unequally distributed on 7 chromosomes. Promoter cis-element analysis showed that the CsZFPs might involve in the regulation of phytohormone and/or abiotic stress response, and 93 CsZFPs were predicted to be targeted by one to 20 miRNAs. Moreover, the subcellular localization analysis indicated that 10 tested CsZFPs located in the nucleus and the transcriptome profiling analysis of CsZFPs demonstrated that these genes are involved in root and floral development, pollination and fruit spine. Furthermore, the transient overexpression of Csa1G085390 and Csa7G071440 into Nicotiana benthamiana plants revealed that they could decrease and induce leave necrosis in response to pathogen attack, respectively, and they could enhance salt and drought stresses through the initial induction of H2O2. In addition, Csa4G642460 and Csa6G303740 could induce cell death after 5 days transformation. CONCLUSIONS: The identification and function analysis of CsZFPs demonstrated that some key individual CsZFPs might play essential roles in response to biotic and abiotic stresses. These results could lay the foundation for understanding the role of CsZFPs in cucumber development for future genetic engineering studies.


Asunto(s)
Dedos de Zinc CYS2-HIS2/genética , Cucumis sativus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Muerte Celular/genética , Mapeo Cromosómico , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Sequías , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Peróxido de Hidrógeno/metabolismo , MicroARNs , Filogenia , Células Vegetales , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Nicotiana/genética , Nicotiana/microbiología
15.
BMC Plant Biol ; 20(1): 401, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867687

RESUMEN

BACKGROUND: C2H2 zinc finger proteins (C2H2 ZFPs) play vital roles in shaping many aspects of plant growth and adaptation to the environment. Plant genomes harbor hundreds of C2H2 ZFPs, which compose one of the most important and largest transcription factor families in higher plants. Although the C2H2 ZFP gene family has been reported in several plant species, it has not been described in the model leguminous species Medicago truncatula. RESULTS: In this study, we identified 218 C2H2 type ZFPs with 337 individual C2H2 motifs in M. truncatula. We showed that the high rate of local gene duplication has significantly contributed to the expansion of the C2H2 gene family in M. truncatula. The identified ZFPs exhibit high variation in motif arrangement and expression pattern, suggesting that the short C2H2 zinc finger motif has been adopted as a scaffold by numerous transcription factors with different functions to recognize cis-elements. By analyzing the public expression datasets and quantitative RT-PCR (qRT-PCR), we identified several C2H2 ZFPs that are specifically expressed in certain tissues, such as the nodule, seed, and flower. CONCLUSION: Our genome-wide work revealed an expanded C2H2 ZFP gene family in an important legume M. truncatula, and provides new insights into the diversification and expansion of C2H2 ZFPs in higher plants.


Asunto(s)
Dedos de Zinc CYS2-HIS2/genética , Duplicación de Gen , Genes de Plantas/genética , Estudio de Asociación del Genoma Completo , Medicago truncatula/genética , Familia de Multigenes
16.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326652

RESUMEN

Aluminum (Al) toxicity limits plant growth and has a major impact on the agricultural productivity in acidic soils. The zinc-finger protein (ZFP) family plays multiple roles in plant development and abiotic stresses. Although previous reports have confirmed the function of these genes, their transcriptional mechanisms in wild soybean (Glycine soja) are unclear. In this study, GsGIS3 was isolated from Al-tolerant wild soybean gene expression profiles to be functionally characterized in Arabidopsis. Laser confocal microscopic observations demonstrated that GsGIS3 is a nuclear protein, containing one C2H2 zinc-finger structure. Our results show that the expression of GsGIS3 was of a much higher level in the stem than in the leaf and root and was upregulated under AlCl3, NaCl or GA3 treatment. Compared to the control, overexpression of GsGIS3 in Arabidopsis improved Al tolerance in transgenic lines with more root growth, higher proline and lower Malondialdehyde (MDA) accumulation under concentrations of AlCl3. Analysis of hematoxylin staining indicated that GsGIS3 enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. Moreover, GsGIS3 expression in Arabidopsis enhanced the expression of Al-tolerance-related genes. Taken together, our findings indicate that GsGIS3, as a C2H2 ZFP, may enhance tolerance to Al toxicity through positive regulation of Al-tolerance-related genes.


Asunto(s)
Aluminio/toxicidad , Arabidopsis/metabolismo , Dedos de Zinc CYS2-HIS2/genética , Glycine max/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Cloruro de Aluminio/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/farmacología , Microscopía Confocal , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/farmacología , Factores de Transcripción/genética , Regulación hacia Arriba
17.
PLoS Comput Biol ; 14(6): e1006290, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29953437

RESUMEN

A major goal of cancer genomics is to identify somatic mutations that play a role in tumor initiation or progression. Somatic mutations within transcription factors are of particular interest, as gene expression dysregulation is widespread in cancers. The substantial gene expression variation evident across tumors suggests that numerous regulatory factors are likely to be involved and that somatic mutations within them may not occur at high frequencies across patient cohorts, thereby complicating efforts to uncover which ones are cancer-relevant. Here we analyze somatic mutations within the largest family of human transcription factors, namely those that bind DNA via Cys2His2 zinc finger domains. Specifically, to hone in on important mutations within these genes, we aggregated somatic mutations across all of them by their positions within Cys2His2 zinc finger domains. Remarkably, we found that for three classes of cancers profiled by The Cancer Genome Atlas (TCGA)-Uterine Corpus Endometrial Carcinoma, Colon and Rectal Adenocarcinomas, and Skin Cutaneous Melanoma-two specific, functionally important positions within zinc finger domains are mutated significantly more often than expected by chance, with alterations in 18%, 10% and 43% of tumors, respectively. Numerous zinc finger genes are affected, with those containing Krüppel-associated box (KRAB) repressor domains preferentially targeted by these mutations. Further, the genes with these mutations also have high overall missense mutation rates, are expressed at levels comparable to those of known cancer genes, and together have biological process annotations that are consistent with roles in cancers. Altogether, we introduce evidence broadly implicating mutations within a diverse set of zinc finger proteins as relevant for cancer, and propose that they contribute to the widespread transcriptional dysregulation observed in cancer cells.


Asunto(s)
Dedos de Zinc CYS2-HIS2/genética , Dedos de Zinc/genética , Poliposis Adenomatosa del Colon/genética , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Dedos de Zinc CYS2-HIS2/fisiología , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Masculino , Neoplasias/genética , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido , Neoplasias Cutáneas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Uterinas/genética , Dedos de Zinc/fisiología
18.
Biometals ; 31(6): 1019-1042, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30288657

RESUMEN

C2H2 type of zinc finger transcription factors (C2H2-ZFP TFs) play crucial roles in plant developments and stress response. Regarding its importance, genome-wide study of C2H2-ZFs were performed in multiple important plant species, but any such investigation was not fulfilled in Triticum turgidum ssp. Durum (durum wheat) as an important nutritional crop. The present study identified 122 C2H2-ZFs in durum wheat and physically mapped them onto the genome. The phylogenetic analysis classified these TFs into six major groups. Genes structure and conserved motifs assay showed TtC2H2-ZF involvement in the important cellular functions. Comparative phylogeny between durum wheat TtC2H2-ZF genes and the orthologs in rice revealed the evolutionary relationships of C2H2-ZF proteins. The gene ontology and promoter cis-element analysis indicated that most of TtC2H2-ZF genes are involved in multiple molecular functions including metal ion-binding and various stimuli responses. Further, the miRNAs targeting TtC2H2-ZF transcripts, homology modeling and proteins interaction network were also demonstrated, suggesting the vital cellular functions of TtC2H2-ZFs during various circumstances. The expression heatmap demonstrated differential and tissue-specific expression patterns of these genes. Expression profiling of this gene family members in response to dehydration and heat stresses showed differential expression pattern of these genes at multiple time points of stresses. This study can prepare a comprehensive overview of the durum wheat C2H2-ZF gene family and may provide a new perspective on the evolution of them, which will form the basis for further investigation of the roles of this family members and future genetic engineering studies in crops.


Asunto(s)
Dedos de Zinc CYS2-HIS2/genética , Estrés Fisiológico/genética , Triticum/genética , Ingeniería Genética , Triticum/metabolismo
19.
Biochemistry (Mosc) ; 82(10): 1103-1117, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29037131

RESUMEN

Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc CYS2-HIS2/genética , Relojes Circadianos/fisiología , Frío , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Transducción de Señal/fisiología , Estrés Fisiológico , Factores de Transcripción/genética
20.
Physiol Plant ; 158(3): 297-311, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27194419

RESUMEN

Transcription factors (TFs) play critical roles in mediating defense of plants to abiotic stresses through regulating downstream defensive genes. In this study, a wheat C2H2-ZFP (zinc finger protein) type TF gene designated as TaZAT8 was functionally characterized in mediating tolerance to the inorganic phosphate (Pi)-starvation stress. TaZAT8 bears conserved motifs harboring in the C2H2-ZFP type counterparts across vascular plant species. The expression of TaZAT8 was shown to be induced in roots upon Pi deprivation, with a Pi concentration- and temporal-dependent manner. Overexpression of TaZAT8 in tobacco conferred plants improved tolerance to Pi deprivation; the transgenic lines exhibited enlarged phenotype and elevated biomass and phosphorus (P) accumulation relative to wild-type (WT) after Pi-starvation treatment. NtPT1 and NtPT2, the tobacco phosphate transporter (PT) genes, showed increased transcripts in the Pi-deprived transgenic lines, indicative of their transcriptional regulation by TaZAT8. Overexpression analysis of these PT genes validated their function in mediating Pi acquisition under the Pi deprivation conditions. Additionally, the TaZAT8-overexpressing lines also behaved enhanced antioxidant enzyme (AE) activities and enlarged root system architecture (RSA) with respect to WT. Evaluation of the transcript abundance of tobacco genes encoding AE and PIN proteins, including NtMnSOD1, NtSOD1, NtPOD1;2, NtPOD1;5, NtPOD1;6, and NtPOD1;9, and NtPIN1 and NtPIN4 are upregulated in the TaZAT8-overexpressing lines. Overexpression of NtPIN1 and NtPIN4 conferred plants to enlarged RSA and elevated biomass under the Pi-starvation stress conditions. Our investigation provides insights into plant adaptation to the Pi-starvation stress mediated by distinct ZFP TFs through modulation of Pi acquisition and cellular ROS detoxicity.


Asunto(s)
Dedos de Zinc CYS2-HIS2/fisiología , Fosfatos/metabolismo , Proteínas de Plantas/fisiología , Raíces de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/fisiología , Triticum/fisiología , Dedos de Zinc CYS2-HIS2/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Homeostasis , Fosfatos/deficiencia , Fosfatos/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Triticum/genética , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA