Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.044
Filtrar
1.
Cell ; 161(3): 634-646, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910211

RESUMEN

Gestational vitamin A (retinol) deficiency poses a risk for ocular birth defects and blindness. We identified missense mutations in RBP4, encoding serum retinol binding protein, in three families with eye malformations of differing severity, including bilateral anophthalmia. The mutant phenotypes exhibit dominant inheritance, but incomplete penetrance. Maternal transmission significantly increases the probability of phenotypic expression. RBP normally delivers retinol from hepatic stores to peripheral tissues, including the placenta and fetal eye. The disease mutations greatly reduce retinol binding to RBP, yet paradoxically increase the affinity of RBP for its cell surface receptor, STRA6. By occupying STRA6 nonproductively, the dominant-negative proteins disrupt vitamin A delivery from wild-type proteins within the fetus, but also, in the case of maternal transmission, at the placenta. These findings establish a previously uncharacterized mode of maternal inheritance, distinct from imprinting and oocyte-derived mRNA, and define a group of hereditary disorders plausibly modulated by dietary vitamin A.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Mutación Missense , Proteínas Plasmáticas de Unión al Retinol/genética , Secuencia de Aminoácidos , Animales , Análisis Mutacional de ADN , Femenino , Genes Dominantes , Humanos , Masculino , Intercambio Materno-Fetal , Datos de Secuencia Molecular , Linaje , Penetrancia , Embarazo , Proteínas Plasmáticas de Unión al Retinol/química , Alineación de Secuencia , Deficiencia de Vitamina A/metabolismo
2.
Dev Biol ; 476: 68-78, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33774009

RESUMEN

Vitamin A deficiency can cause human pathologies that range from blindness to embryonic malformations. This diversity is due to the lack of two major vitamin A metabolites with very different functions: the chromophore 11-cis-retinal (vitamin A aldehyde) is a critical component of the visual pigment that mediates phototransduction, while the signaling molecule all-trans-retinoic acid regulates the development of various tissues and is required for the function of the immune system. Since animals cannot synthesize vitamin A de novo, they must obtain it either as preformed vitamin A from animal products or as carotenoid precursors from plant sources. Due to its essential role in the visual system, acute vitamin A deprivation impairs photoreceptor function and causes night blindness (poor vision under dim light conditions), while chronic deprivation results in retinal dystrophies and photoreceptor cell death. Chronic vitamin A deficiency is the leading cause of preventable childhood blindness according to the World Health Organization. Due to the requirement of vitamin A for retinoic acid signaling in development and in the immune system, vitamin A deficiency also causes increased mortality in children and pregnant women in developing countries. Drosophila melanogaster is an excellent model to study the effects of vitamin A deprivation on the eye because vitamin A is not essential for Drosophila development and chronic deficiency does not cause lethality. Moreover, genetic screens in Drosophila have identified evolutionarily conserved factors that mediate the production of vitamin A and its cellular uptake. Here, we review our current knowledge about the role of vitamin A in the visual system of mammals and Drosophila melanogaster. We compare the molecular mechanisms that mediate the uptake of dietary vitamin A precursors and the metabolism of vitamin A, as well as the consequences of vitamin A deficiency for the structure and function of the eye.


Asunto(s)
Visión Ocular/fisiología , Deficiencia de Vitamina A/fisiopatología , Vitamina A/metabolismo , Animales , Drosophila melanogaster/metabolismo , Mamíferos/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Retinaldehído/metabolismo , Tretinoina/metabolismo , Percepción Visual/fisiología , Vitamina A/fisiología , Deficiencia de Vitamina A/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163110

RESUMEN

A deficiency of vitamin A (VAD) and iron is the most common nutritional problem affecting people worldwide. Given the scale of the problem, the interactions between vitamin A and iron levels are widely studied. However, the exact mechanism of the impact of vitamin A on the regulation of iron metabolism remains unclear. An extremely significant issue becomes a better understanding of the nature of the studied biological phenomenon, which is possible by using a systems approach through developing and analyzing a mathematical model based on a Petri net. To study the considered system, the t-cluster analysis, the significance analysis, and the analysis of the average number of transition firings were performed. The used analyses have allowed distinguishing the most important mechanisms (both subprocesses and elementary processes) positively and negatively regulating an expression of hepcidin and allowed to distinguish elementary processes with a higher frequency of occurrence compared to others. The analysis also allowed to resolve doubts about the discrepancy in literature reports, where VAD leads to positive regulation of hepcidin expression or to negative regulation of hepcidin expression. The more detailed analyses have shown that VAD more frequently positively stimulates hepcidin expression and this mechanism is more significant than the mechanism inhibiting hepcidin expression indirectly by VAD.


Asunto(s)
Algoritmos , Anemia Ferropénica/metabolismo , Hepcidinas/metabolismo , Hierro/metabolismo , Análisis de Sistemas , Deficiencia de Vitamina A/metabolismo , Vitamina A/metabolismo , Anemia Ferropénica/complicaciones , Anemia Ferropénica/patología , Simulación por Computador , Humanos , Modelos Teóricos , Deficiencia de Vitamina A/complicaciones , Deficiencia de Vitamina A/patología
4.
Subcell Biochem ; 95: 1-26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32297294

RESUMEN

Vitamin A deficiency studies have been carried out since the early 1900s. Initially, these studies led to the identification of fat soluble A as a unique and essential component of the diet of rodents, birds, and humans. Continuing work established that vitamin A deficiency produces biochemical and physiological dysfunction in almost every vertebrate organ system from conception to death. This chapter begins with a review of representative historical and current studies that used the nutritional vitamin A deficiency research model to gain an understanding of the many roles vitamin A plays in prenatal and postnatal development and well-being. This is followed by a discussion of recent studies that show specific effects of vitamin A deficiency on prenatal development and postnatal maintenance of the olfactory epithelium, brain, and heart. Vitamin A deficiency studies have helped define the necessity of vitamin A for the health of all vertebrates, including farm animals, but the breadth of deficient states and their individual effects on health have not been fully determined. Future work is needed to develop tools to assess the complete vitamin A status of an organism and to define the levels of vitamin A that optimally support molecular and systems level processes during all ages and stages of life.


Asunto(s)
Desarrollo Infantil , Dieta , Deficiencia de Vitamina A/metabolismo , Vitamina A/fisiología , Animales , Dieta/veterinaria , Femenino , Humanos , Recién Nacido , Embarazo , Complicaciones del Embarazo/metabolismo , Vertebrados/crecimiento & desarrollo , Vertebrados/metabolismo
5.
Subcell Biochem ; 95: 27-55, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32297295

RESUMEN

The placenta, a hallmark of mammalian embryogenesis, allows nutrients to be exchanged between the mother and the fetus. Vitamin A (VA), an essential nutrient, cannot be synthesized by the embryo, and must be acquired from the maternal circulation through the placenta. Our understanding of how this transfer is accomplished is still in its infancy. In this chapter, we recapitulate the early studies about the relationship between maternal dietary/supplemental VA intake and fetal VA levels. We then describe how the discovery of retinol-binding protein (RBP or RBP4), the development of labeling and detection techniques, and the advent of knockout mice shifted this field from a macroscopic to a molecular level. The most recent data indicate that VA and its derivatives (retinoids) and the pro-VA carotenoid, ß-carotene, are transferred across the placenta by distinct proteins, some of which overlap with proteins involved in lipoprotein uptake. The VA status and dietary intake of the mother influence the expression of these proteins, creating feedback signals that control the uptake of retinoids and that may also regulate the uptake of lipids, raising the intriguing possibility of crosstalk between micronutrient and macronutrient metabolism. Many questions remain about the temporal and spatial patterns by which these proteins are expressed and transferred throughout gestation. The answers to these questions are highly relevant to human health, considering that those with either limited or excessive intake of retinoids/carotenoids during pregnancy may be at risk of obtaining improper amounts of VA that ultimately impact the development and health of their offspring.


Asunto(s)
Desarrollo Embrionario , Vitamina A/metabolismo , Animales , Femenino , Humanos , Embarazo , Complicaciones del Embarazo/metabolismo , Proteínas de Unión al Retinol/metabolismo , Deficiencia de Vitamina A/metabolismo , beta Caroteno/metabolismo
6.
Clin Exp Hypertens ; 43(2): 151-163, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33052059

RESUMEN

AIMS: Vitamin A (VA) deficiency triggers many diseases and is a worldwide nutrition problem. The Retinol acyltransferase (LRAT) is an indicator of VA storage function, and the relationship between LRAT and blood pressure level and the regulation mechanism will be elucidated. METHODS: 160 children aged 6-12 years were included, and the serum VA and, the transcription levels of LRAT and RARs, were measured. Spontaneously hypertensive rats (SHRs) and WKY rats were treated with VA deficiency (VAD) or normal (VAN) fodder for 20 weeks. LRAT, retinoic acid, renin angiotensin system (RAS) biomarkers, and the structure and function of the heart for SHRs were measured. RESULTS: The serum retinol and serum retinol/BMI levels were lower in children in the low LRAT group (LRAT

Asunto(s)
Aciltransferasas/metabolismo , Hipertensión , Sistema Renina-Angiotensina , Deficiencia de Vitamina A , Vitamina A , Animales , Biomarcadores/metabolismo , Presión Sanguínea/fisiología , Niño , Femenino , Humanos , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Masculino , Ratas , Ratas Endogámicas SHR , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Tretinoina/metabolismo , Vitamina A/sangre , Vitamina A/farmacología , Deficiencia de Vitamina A/diagnóstico , Deficiencia de Vitamina A/metabolismo , Deficiencia de Vitamina A/terapia , Vitaminas/sangre , Vitaminas/farmacología
7.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499199

RESUMEN

Corneal and conjunctival inflammation and dry eye develop in systemic vitamin A deficiency (VAD). The objective of this study was to investigate the lacrimal ocular surface retinoid axis, particularly immunomodulatory effects of retinoic acid (RA) and change in conjunctival myeloid cell number and phenotype in VAD. We discovered that ocular surface epithelial and myeloid cells express retinoid receptors. Both all trans- and 9-cis-RA suppressed production of dry eye relevant inflammatory mediators [interleukin(IL)-1ß, IL-12, regulated upon activation, normal T cell expressed and secreted (RANTES)] by myeloid cells. Systemic VAD was associated with significant goblet cell loss and an increased number of CD45+ immune cells in the conjunctiva. MHCII-CD11b+ classical monocytes were significantly increased in the conjunctiva of VAD C57BL/6 and RXR-α mutated Pinkie strains. RNA seq revealed significantly increased expression of innate immune/inflammatory genes in the Pinkie conjunctiva. These findings indicate that retinoids are essential for maintaining a healthy, well-lubricated ocular surface and have immunomodulatory effects in the conjunctiva that are mediated in part via RXR-α signaling. Perturbation of the homeostatic retinoid axis could potentiate inflammation on the ocular surface.


Asunto(s)
Ojo/efectos de los fármacos , Inflamación/fisiopatología , Aparato Lagrimal/metabolismo , Retinoides/metabolismo , Animales , Quimiocina CCL5/metabolismo , Conjuntiva/metabolismo , Córnea/metabolismo , Síndromes de Ojo Seco/metabolismo , Femenino , Células Caliciformes/metabolismo , Homeostasis , Inmunidad Innata , Subunidad p35 de la Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Tretinoina/química , Vitamina A/metabolismo , Deficiencia de Vitamina A/metabolismo
8.
Molecules ; 26(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067782

RESUMEN

Increasing urbanization in developing countries has resulted in busier lifestyles, accompanied by consumption of fast foods. The consequence is an increased prevalence in noncommunicable diseases (NCDs). Food-based approaches would be cheaper and more sustainable in reducing these NCDs compared to drugs, which may have side effects. Studies have suggested that consuming functional foods could potentially lower NCD risks. Sweetpotato is regarded as a functional food because it contains bioactive compounds. Recently, sweetpotato has gained attention in sub-Saharan Africa (SSA), but research has focused on its use in alleviating micronutrient deficiencies such as vitamin A deficiency, particularly the orange-fleshed variety of sweetpotato. Some studies conducted in other parts of the world have investigated sweetpotato as a functional food. There is a need to characterize the sweetpotato varieties in SSA and determine how processing affects their bioactive components. This review highlights some of the studies conducted in various parts of the world on the functionality of sweetpotato, its bioactive compounds, and how these are influenced by processing. In addition, the potential health benefits imparted by sweetpotato are expounded. The knowledge gaps that remain in these studies are also addressed, focusing on how they can direct sweetpotato research in SSA.


Asunto(s)
Alimentos Funcionales/economía , Ipomoea batatas/metabolismo , África del Sur del Sahara/epidemiología , Agricultura/métodos , Alimentos Funcionales/provisión & distribución , Humanos , Fitoquímicos/metabolismo , Deficiencia de Vitamina A/metabolismo , Deficiencia de Vitamina A/terapia
9.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G955-G965, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32200644

RESUMEN

Functional fermentable fibers are considered essential for a healthy diet. Recently, we demonstrated that gut microbiota dysbiotic mice fed an inulin-containing diet (ICD) developed hepatocellular carcinoma (HCC) within 6 mo. In particular, a subset of Toll-like receptor 5-deficient (T5KO) mice prone to HCC exhibited rapid onset of hyperbilirubinemia (HB) and cholemia; these symptoms provide rationale that ICD induces cholestasis. Our objective in the present study was to determine whether inulin-fed T5KO-HB mice exhibit other known consequences of cholestasis, including essential fatty acid and fat-soluble vitamin deficiencies. Here, we measured hepatic fatty acids and serum vitamin A and D levels from wild-type (WT), T5KO low bilirubin (LB) and T5KO-HB mice fed ICD for 4 wk. Additionally, hepatic RNAseq and proteomics were performed to ascertain other metabolic alterations. Compared with WT and T5KO-LB, T5KO-HB mice exhibited steatorrhea, i.e., ~50% increase in fecal lipids. This could contribute to the significant reduction of linoleate in hepatic neutral lipids in T5KO-HB mice. Additionally, serum vitamins A and D were ~50% reduced in T5KO-HB mice, which was associated with metabolic compromises. Overall, our study highlights that fermentable fiber-induced cholestasis is further characterized by depletion of macro-and micronutrients.NEW & NOTEWORTHY Feeding a dietary, fermentable fiber diet to a subset of Toll-like receptor 5 deficient (T5KO) mice induces early onset hyperbilirubinemia and cholemia that later manifests to hepatocellular carcinoma (HCC). Our study highlights that fermentable fiber-induced cholestasis is characterized with modest macro- and micronutrient deficiencies that may further contribute to hepatic biliary disease. Compared with chemical induction, immunization, surgery, or genetic manipulation, these findings provide a novel approach to study the cholestatic subtype of HCC.


Asunto(s)
Fibras de la Dieta , Hígado Graso/metabolismo , Absorción Intestinal , Inulina , Metabolismo de los Lípidos , Hígado/metabolismo , Síndromes de Malabsorción/metabolismo , Receptor Toll-Like 5/deficiencia , Deficiencia de Vitamina A/metabolismo , Deficiencia de Vitamina D/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Colestasis/genética , Colestasis/metabolismo , Colestasis/patología , Modelos Animales de Enfermedad , Hígado Graso/genética , Hígado Graso/patología , Fermentación , Hígado/patología , Síndromes de Malabsorción/genética , Síndromes de Malabsorción/patología , Masculino , Ratones Noqueados , Receptor Toll-Like 5/genética , Deficiencia de Vitamina A/genética , Deficiencia de Vitamina D/genética
10.
Fish Shellfish Immunol ; 107(Pt A): 346-356, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33068761

RESUMEN

This study was carried out to investigate the effects of dietary vitamin A (VA) on growth performance, antioxidant capacity, digestion, intestinal immune response, and mRNA expression of intestinal tight junction proteins for juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Six isonitrogenous and isolipidic experimental diets were formulated to obtain VA levels (317, 1136, 2038, 4142, 7715, 15204 IU/kg diet, respectively). The triplicate groups of fish (average weight of 9.01 ± 0.27 g) were fed twice daily (8:00 and 16:00) for 7 weeks. Based on the broken-line analysis model of WG and LYZ activity, the dietary VA requirement of hybrid grouper were estimated to be 2688.58 and 4096.36 IU/kg diet. The results showed that VA deficiency or excess could reduce Weight gain, specific growth rate, and protein efficiency ratio, and increase feed conversion ratio and hepatosomatic index (P < 0.05). In addition, VA deficiency could reduce the serum activities of acid phosphatase (ACP), superoxide dismutase, and total antioxidant capacity and increase the malondialdehyde content (P < 0.05). VA deficiency also could reduce intestinal activities of ACP, alkaline phosphatase, lysozyme, complement 3, complement 4 contents, and activities of alpha-amylase, lipase, and trypsin (P < 0.05). Meanwhile, VA deficiency could reduce villus height in proximal intestine (PI) and mid intestine (MI), as well as muscle thickness in PI and distal intestine (DI) (P < 0.05). Moreover, VA deficiency could down-regulated antimicrobial peptides (ß-defensin, Hepcidin [not in MI and DI], Epinecidin), anti-inflammatory cytokines (interleukin 10 and transforming growth factor ß1 [not in DI]), tight junction proteins (occluding and claudin3) mRNA levels in the PI, MI and DI, and up-regulated pro-inflammatory cytokines (tumor necrosis factor α [not in MI] and interleukin 1ß [not in MI]), signaling molecules c-Rel and p65 (P < 0.05). Collectively, VA deficiency could reduce growth performance because of a negative effect on intestinal health by depressing digestive abilities, intestinal morphology, immunity and tight junction function in the intestine.


Asunto(s)
Lubina , Enfermedades de los Peces/inmunología , Proteínas de Peces/metabolismo , Inmunidad Innata/fisiología , Intestinos/inmunología , Proteínas de Uniones Estrechas/metabolismo , Deficiencia de Vitamina A/veterinaria , Animales , Lubina/crecimiento & desarrollo , Enfermedades de los Peces/metabolismo , Distribución Aleatoria , Deficiencia de Vitamina A/inmunología , Deficiencia de Vitamina A/metabolismo
11.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759702

RESUMEN

Vitamin A is an important regulator of immune protection, but it is often overlooked in studies of infectious disease. Vitamin A binds an array of nuclear receptors (e.g., retinoic acid receptor, peroxisome proliferator-activated receptor, retinoid X receptor) and influences the barrier and immune cells responsible for pathogen control. Children and adults in developed and developing countries are often vitamin A-deficient or insufficient, characteristics associated with poor health outcomes. To gain a better understanding of the protective mechanisms influenced by vitamin A, we examined immune factors and epithelial barriers in vitamin A deficient (VAD) mice, vitamin D deficient (VDD) mice, double deficient (VAD+VDD) mice, and mice on a vitamin-replete diet (controls). Some mice received insults, including intraperitoneal injections with complete and incomplete Freund's adjuvant (emulsified with PBS alone or with DNA + Fus-1 peptide) or intranasal inoculations with Sendai virus (SeV). Both before and after insults, the VAD and VAD+VDD mice exhibited abnormal serum immunoglobulin isotypes (e.g., elevated IgG2b levels, particularly in males) and cytokine/chemokine patterns (e.g., elevated eotaxin). Even without insult, when the VAD and VAD+VDD mice reached 3-6 months of age, they frequently exhibited opportunistic ascending bacterial urinary tract infections. There were high frequencies of nephropathy (squamous cell hyperplasia of the renal urothelium, renal scarring, and ascending pyelonephritis) and death in the VAD and VAD+VDD mice. When younger VAD mice were infected with SeV, the predominant lesion was squamous cell metaplasia of respiratory epithelium in lungs and bronchioles. Results highlight a critical role for vitamin A in the maintenance of healthy immune responses, epithelial cell integrity, and pathogen control.


Asunto(s)
Deficiencia de Vitamina A/genética , Vitamina A/genética , Deficiencia de Vitamina D/genética , Vitamina D/genética , Animales , Enfermedades Transmisibles/genética , Enfermedades Transmisibles/inmunología , Enfermedades Transmisibles/metabolismo , Muerte , Modelos Animales de Enfermedad , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Ratones , Ratones Noqueados , Neoplasias de Células Escamosas/genética , Neoplasias de Células Escamosas/inmunología , Neoplasias de Células Escamosas/metabolismo , Proteínas Supresoras de Tumor/genética , Vitamina A/metabolismo , Deficiencia de Vitamina A/inmunología , Deficiencia de Vitamina A/metabolismo , Vitamina D/metabolismo , Deficiencia de Vitamina D/inmunología , Deficiencia de Vitamina D/metabolismo
12.
J Sci Food Agric ; 100(2): 634-647, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31591722

RESUMEN

BACKGROUND: Vitamin A deficiency (VAD) is widespread in sub-Saharan Africa (SSA). Unlike in developed countries, where the main source of vitamin A comes from meat, the diet of poor populations in SSA is largely plant based. It is thus important to identify local / popular plants with higher vitamin A content for combating VAD. Banana (including plantains) is an important staple food crop in this region. The identification and promotion of vitamin A-rich banana cultivars could contribute significantly to the alleviation of VAD in areas heavily dependent on the crop. We assessed pro-vitamin A carotenoid (pVACs) content in the fruit pulp of 48 local plantains from eastern Democratic Republic of Congo, to identify cultivars that could help reduce VAD, especially among young children and women of reproductive age. RESULTS: Mean pVACs content varied from 175-1756 µg/100 gfw in ripe fruits. Significant increases (P < 0.001) in total pVACs content occurred after ripening in all cultivars except 'UCG II'. Retinol activity equivalents (RAE) in ripe fruits ranged from 12-113 µg/100 gfw. Fifteen plantain cultivars, including 'Adili II', 'Nzirabahima', 'Mayayi', 'Buembe', and 'Sanza Tatu' (associated with RAE values of 44 µg/100 gfw and above) can be considered as good sources of pVACs. Modest consumption (250 or 500 gfw) of the fruit pulp of the five best plantain cultivars at ripening stage 5 meets between 39-71% and 44-81% of vitamin A dietary reference intake (DRI) respectively, for children below 5 years old and women of reproductive age. CONCLUSION: The 15 best plantain cultivars (especially the top 5) could potentially be introduced / promoted as alternative sources of pro-vitamin A in banana-dependent communities, and help to reduce cases of VAD substantially. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Carotenoides/análisis , Musa/química , Vitamina A/análisis , Adolescente , Adulto , Carotenoides/metabolismo , Preescolar , República Democrática del Congo , Femenino , Frutas/química , Frutas/metabolismo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Musa/clasificación , Musa/metabolismo , Provitaminas/análisis , Vitamina A/metabolismo , Deficiencia de Vitamina A/dietoterapia , Deficiencia de Vitamina A/metabolismo , Adulto Joven
13.
Genesis ; 57(7-8): e23326, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31299141

RESUMEN

While common in the general population, the developmental origins of "normal" anatomic variants of the aortic arch remain unknown. Aortic arch development begins with the establishment of the second heart field (SHF) that contributes to the pharyngeal arch arteries (PAAs). The PAAs remodel during subsequent development to form the mature aortic arch and arch vessels. Retinoic acid signaling involving the biologically active metabolite of vitamin A, plays a key role in multiple steps of this process. Recent work from our laboratory indicates that the E3 ubiquitin ligase Hectd1 is required for full activation of retinoic acid signaling during cardiac development. Furthermore, our study suggested that mild alterations in retinoic acid signaling combined with reduced gene dosage of Hectd1, results in a benign aortic arch variant where the transverse aortic arch is shortened between the brachiocephalic and left common carotid arteries. These abnormalities are preceded by hypoplasia of the fourth PAA. To further explore this interaction, we investigate whether reduced maternal dietary vitamin A intake can similarly influence aortic arch development. Our findings indicate that the incidence of hypoplastic fourth PAAs, as well as the incidence of shortened transverse arch are increased with reduced maternal vitamin A intake during pregnancy. These studies provide new insights as to the developmental origins of these benign aortic arch variants.


Asunto(s)
Aorta Torácica/embriología , Síndromes del Arco Aórtico/etiología , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Deficiencia de Vitamina A/metabolismo , Vitamina A/metabolismo , Animales , Aorta Torácica/anomalías , Aorta Torácica/anatomía & histología , Femenino , Ratones , Embarazo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
J Biol Chem ; 293(18): 6996-7007, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29567832

RESUMEN

Retinol dehydrogenase 11 (RDH11) is a microsomal short-chain dehydrogenase/reductase that recognizes all-trans- and cis-retinoids as substrates and prefers NADPH as a cofactor. Previous work has suggested that RDH11 contributes to the oxidation of 11-cis-retinol to 11-cis-retinaldehyde during the visual cycle in the eye's retinal pigment epithelium. However, the role of RDH11 in metabolism of all-trans-retinoids remains obscure. Here, we report that microsomes isolated from the testes and livers of Rdh11-/- mice fed a regular diet exhibited a 3- and 1.7-fold lower rate of all-trans-retinaldehyde conversion to all-trans-retinol, respectively, than the microsomes of WT littermates. Testes and livers of Rdh11-/- mice fed a vitamin A-deficient diet had ∼35% lower levels of all-trans-retinol than those of WT mice. Furthermore, the conversion of ß-carotene to retinol via retinaldehyde as an intermediate appeared to be impaired in the testes of Rdh11-/-/retinol-binding protein 4-/-(Rbp4-/-) mice, which lack circulating holo RBP4 and rely on dietary supplementation with ß-carotene for maintenance of their retinoid stores. Together, these results indicate that in mouse testis and liver, RDH11 functions as an all-trans-retinaldehyde reductase essential for the maintenance of physiological levels of all-trans-retinol under reduced vitamin A availability.


Asunto(s)
Microsomas Hepáticos/metabolismo , Microsomas/metabolismo , Oxidorreductasas/metabolismo , Testículo/metabolismo , Vitamina A/metabolismo , Animales , Dieta , Femenino , Expresión Génica , Homeostasis , Masculino , Ratones , Ratones Noqueados , Oxidorreductasas/genética , Retinaldehído/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Transducción de Señal , Deficiencia de Vitamina A/metabolismo , beta Caroteno/administración & dosificación , beta Caroteno/metabolismo
15.
Cell Biochem Funct ; 37(8): 578-590, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31495961

RESUMEN

Here, we tested a hypothesis that vitamin A and/or its metabolic pathways are involved in the high-fructose-mediated alteration in adipose tissue biology. For this purpose, weanling male Wistar rats were provided with one of the following diets: control (C), control with vitamin A deficiency (C-VAD), high fructose (HFr), and HFr with VAD (HFr-VAD) for 16 weeks, except that half of the C-VAD diet-fed rats were shifted to HFr diet (C-VAD(s)HFr), after 8-week period. Compared with control, feeding of HFr diet significantly increased the triglyceride content (P ≤ .01) and thus adipocyte size (hypertrophy) (P ≤ .001) in visceral adipose depot; retroperitoneal white adipose tissue (RPWAT) and these changes were corroborated with de novo lipogenesis, as evidenced by the increased glycerol-3-phosphate dehydrogenase activity (P ≤ .01) and up-regulation of lipogenic pathway transcripts, fructose transporter, and aldehyde dehydrogenase 1 A1. On the contrary, the absence of vitamin A in the HFr diet (HFr-VAD) failed to exert these changes; however, it induced adipocyte hyperplasia. Further, vitamin A deficiency-mediated changes were reversed by replenishment, as evident from the group that was shifted from C-VAD to HFr diet. In conclusion, vitamin A and its metabolic pathway play a key determinant role in the high-fructose-induced triglyceride accumulation and adipocyte hypertrophy of visceral white adipose depot. SIGNIFICANCE OF THE STUDY: Here, we report the metabolic impact of high-fructose feeding under vitamin A-sufficient and vitamin A-deficient conditions. Feeding of high-fructose diet induced triglyceride accumulation and adipocyte hypertrophy of the visceral white adipose depots. These changes corroborated with augmented expression of vitamin A and lipid metabolic pathway genes. Contrarily, absence of vitamin A in the high-fructose diet did not elicit such responses, while vitamin A replenishment reversed the changes exerted by vitamin A deficiency. To our knowledge, this is the first study to report the role of vitamin A and its metabolic pathway in the high-fructose-induced triglyceride synthesis and its accumulation in visceral adipose depot and thus provide a new insight and scope to understand these nutrients interaction in clinical conditions.


Asunto(s)
Fructosa/farmacología , Grasa Intraabdominal/efectos de los fármacos , Triglicéridos/metabolismo , Vitamina A/administración & dosificación , Adiponectina/análisis , Adiponectina/sangre , Animales , Diferenciación Celular/efectos de los fármacos , Dieta , Ácidos Grasos/análisis , Ácidos Grasos/química , Grasa Intraabdominal/citología , Grasa Intraabdominal/metabolismo , Leptina/análisis , Leptina/sangre , Lipogénesis/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Vitamina A/metabolismo , Deficiencia de Vitamina A/metabolismo , Deficiencia de Vitamina A/patología , Deficiencia de Vitamina A/veterinaria
16.
Indian J Med Res ; 150(6): 620-629, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-32048626

RESUMEN

Background & objectives: Stearoyl-CoA desaturase 1 (SCD1) is a key lipogenic enzyme responsible for endogenous synthesis of monounsaturated fatty acids (MUFA) and plays a key role in various pathophysiology, including fatty liver diseases. In this experimental study the impact of vitamin A deficiency was assessed on SCD1 regulation in relation to kidney biology, under high fructose (HFr) diet-fed condition in rats. Methods: Forty male weanling (21 day old) Wistar rats were divided into four groups control, vitamin A-deficient (VAD), HFr, VAD with HFr consisting of eight rats each, except 16 for the VAD group. The groups received one of the following diets: control, VAD, HFr and VAD with HFr for 16 wk, except half of the VAD diet-fed rats were shifted to HFr diet, after eight week period. Results: Feeding of VAD diet (alone or with HFr) significantly reduced the kidney retinol (0.51, 0.44 µg/g vs. 2.1 µg/g; P < 0.05), while increased oleic (C18:1) and total MUFA levels (23.3, 22.2% and 27.3, 25.4% respectively vs. 14.7 and 16.6%; P < 0.05) without affecting the SCD1, both at protein and mRNA levels, when compared with HFr. Comparable, immunohistological staining for SCD1 was observed in the distal convoluted tubules. Despite an increase in MUFA, morphology, triglyceride content and markers of kidney function were not affected by VAD diet feeding. Interpretation & conclusions: Feeding of VAD diet either alone or under HFr condition increased the kidney oleic acid (C18:1) levels and thus total MUFA, which corroborated with elevated SCD1 activity index, without affecting its expression status. However, these changes did not alter the kidney morphology and function. Thus, nutrient-gene regulation in kidney biology seems to be divergent.


Asunto(s)
Riñón/metabolismo , Ácido Oléico/metabolismo , Estearoil-CoA Desaturasa/genética , Deficiencia de Vitamina A/metabolismo , Animales , Dieta/efectos adversos , Ácidos Grasos Monoinsaturados/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Fructosa/efectos adversos , Fructosa/farmacología , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Riñón/patología , Ácido Oléico/genética , Ratas , Vitamina A/genética , Vitamina A/metabolismo , Deficiencia de Vitamina A/genética
17.
J Cell Physiol ; 233(1): 607-616, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28322443

RESUMEN

Activation of hepatic stellate cells (HSCs) is the effector factor of hepatic fibrosis and hepatocellular carcinoma (HCC) development. Accumulating evidence suggests that retinoic acids (RAs), derivatives of vitamin A, contribute to prevention of liver fibrosis and carcinogenesis, however, regulatory mechanisms of RAs still remain exclusive. To elucidate RA signaling pathway, we previously performed a genome-wide screening of RA-responsive genes by in silico analysis of RA-response elements, and identified 26 RA-responsive genes. We found that thioredoxin interacting protein (TXNIP), which inhibits antioxidant activity of thioredoxin (TRX), was downregulated by all-trans retinoic acid (ATRA). In the present study, we demonstrate that ATRA ameliorates activation of HSCs through TXNIP suppression. HSC activation was attenuated by TXNIP downregulation, whereas potentiated by TXNIP upregulation, indicating that TXNIP plays a crucial role in activation of HSCs. Notably, we showed that TXNIP-mediated HSC activation was suppressed by antioxidant N-acetylcysteine. In addition, ATRA treatment or downregulation of TXNIP clearly declined oxidative stress levels in activated HSCs. These data suggest that ATRA plays a key role in inhibition of HSC activation via suppressing TXNIP expression, which reduces oxidative stress levels.


Asunto(s)
Antioxidantes/farmacología , Proteínas Portadoras/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tiorredoxinas/metabolismo , Tretinoina/farmacología , Deficiencia de Vitamina A/prevención & control , Animales , Proteínas Portadoras/genética , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Ratones Endogámicos C57BL , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Tiorredoxinas/genética , Transfección , Deficiencia de Vitamina A/genética , Deficiencia de Vitamina A/metabolismo , Deficiencia de Vitamina A/patología
18.
Biochem Cell Biol ; 96(2): 148-160, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28982012

RESUMEN

Several models have been proposed to explain the neurodevelopmental syndrome induced by exposure of human embryos to alcohol, which is known as fetal alcohol spectrum disorder (FASD). One of the proposed models suggests a competition for the enzymes required for the biosynthesis of retinoic acid. The outcome of such competition is development under conditions of reduced retinoic acid signaling. Retinoic acid is one of the biologically active metabolites of vitamin A (retinol), and regulates numerous embryonic and differentiation processes. The developmental malformations characteristic of FASD resemble those observed in vitamin A deficiency syndrome as well as from inhibition of retinoic acid biosynthesis or signaling in experimental models. There is extensive biochemical and enzymatic overlap between ethanol clearance and retinoic acid biosynthesis. Several lines of evidence suggest that in the embryo, the competition takes place between acetaldehyde and retinaldehyde for the aldehyde dehydrogenase activity available. In adults, this competition also extends to the alcohol dehydrogenase activity. Ethanol-induced developmental defects can be ameliorated by increasing the levels of retinol, retinaldehyde, or retinaldehyde dehydrogenase. Acetaldehyde inhibits the production of retinoic acid by retinaldehyde dehydrogenase, further supporting the competition model. All of the evidence supports the reduction of retinoic acid signaling as the etiological trigger in the induction of FASD.


Asunto(s)
Embrión de Mamíferos/metabolismo , Etanol/farmacocinética , Trastornos del Espectro Alcohólico Fetal/metabolismo , Modelos Biológicos , Tretinoina/metabolismo , Deficiencia de Vitamina A/metabolismo , Animales , Embrión de Mamíferos/patología , Etanol/efectos adversos , Trastornos del Espectro Alcohólico Fetal/patología , Humanos , Síndrome , Deficiencia de Vitamina A/patología
19.
Development ; 142(9): 1582-92, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25858458

RESUMEN

Stem cells ensure tissue homeostasis through the production of differentiating and self-renewing progeny. In some tissues, this is achieved by the function of a definitive stem cell niche. However, the mechanisms that operate in mouse spermatogenesis are unknown because undifferentiated spermatogonia (Aundiff) are motile and intermingle with differentiating cells in an 'open' niche environment of seminiferous tubules. Aundiff include glial cell line-derived neurotrophic factor receptor α1 (GFRα1)(+) and neurogenin 3 (NGN3)(+) subpopulations, both of which retain the ability to self-renew. However, whereas GFRα1(+) cells comprise the homeostatic stem cell pool, NGN3(+) cells show a higher probability to differentiate into KIT(+) spermatogonia by as yet unknown mechanisms. In the present study, by combining fate analysis of pulse-labeled cells and a model of vitamin A deficiency, we demonstrate that retinoic acid (RA), which may periodically increase in concentration in the tubules during the seminiferous epithelial cycle, induced only NGN3(+) cells to differentiate. Comparison of gene expression revealed that retinoic acid receptor γ (Rarg) was predominantly expressed in NGN3(+) cells, but not in GFRα1(+) cells, whereas the expression levels of many other RA response-related genes were similar in the two populations. Ectopic expression of RARγ was sufficient to induce GFRα1(+) cells to directly differentiate to KIT(+) cells without transiting the NGN3(+) state. Therefore, RARγ plays key roles in the differentiation competence of NGN3(+) cells. We propose a novel mechanism of stem cell fate selection in an open niche environment whereby undifferentiated cells show heterogeneous competence to differentiate in response to ubiquitously distributed differentiation-inducing signals.


Asunto(s)
Diferenciación Celular/fisiología , Espermatogénesis/fisiología , Células Madre/fisiología , Tretinoina/farmacología , Deficiencia de Vitamina A/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hibridación in Situ , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Ácido Retinoico/metabolismo , Receptor de Ácido Retinoico gamma
20.
J Nutr ; 148(8): 1387-1396, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137477

RESUMEN

Background: Retinol isotope dilution (RID) indirectly estimates vitamin A (VA) status. Multicompartment modeling of RID data is used to refine study designs and equations to calculate VA stores. Previous studies suggest that VA in slowly turning over pools is not traced if follow-up is not long enough; however, shorter RID studies are being investigated. Few long-term models have been published. Objective: We determined the effect of time on mathematical models of VA kinetics, model parameters, and outcomes. Methods: In this longitudinal study, women (mean ± SD age: 22 ± 3 y; n = 7) were given 2.0 µmol [14,15]-13C2-retinyl acetate. Blood samples were staggered from 4 h to 152 d; the fraction of dose in serum was modeled with compartmental models. Four model-time categories were created: full models that used all data (median: 137 d; range 97-152 d) and truncated shorter studies of 14, 27, and 52 d (range: 42-62 d). Outcomes included number of compartments to adequately model serum data, kinetic parameters, total traced VA mass, and time-to-dose equilibration. To gain insight into longer follow-up, an additional participant was given 17.5 µmol 13C4-VA, and data were modeled as long as enrichment was above baseline (5 y). Results: Longer follow-up times affected kinetic parameters and outcomes. Compared with the 14-d models, long-term full models required an additional compartment for adequate fit (14.3% compared with 100%; P = 0.0056) and had longer [median (quartile 1, quartile 3)] whole-body half-life [15.0 d (10.5, 72.6 d) compared with 135 d (115, 199 d); P = 0.0006], time-to-dose equilibration [3.40 d (3.14, 6.75 d) compared with 18.9 d (11.2, 25.7 d); P < 0.0001], and total traced mass [166 µmol VA (162, 252 µmol VA) compared with 476 µmol VA (290, 752 µmol VA); P = 0.0031]. Conclusions: Extended RID sampling alters numerous mathematically modeled, time-dependent outcomes in women. Length of study should be considered when using mathematical models for calculating total-body VA stores or kinetic parameters related to VA turnover. This study is registered at www.clinicaltrials.gov as NCT03248700.


Asunto(s)
Técnicas de Dilución del Indicador , Estado Nutricional , Deficiencia de Vitamina A/metabolismo , Vitamina A/metabolismo , Adulto , Isótopos de Carbono/metabolismo , Diterpenos , Femenino , Humanos , Cinética , Estudios Longitudinales , Modelos Biológicos , Modelos Teóricos , Ésteres de Retinilo , Factores de Tiempo , Estados Unidos , Vitamina A/análogos & derivados , Vitamina A/sangre , Vitamina A/farmacocinética , Deficiencia de Vitamina A/sangre , Deficiencia de Vitamina A/diagnóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA