Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
Cell Mol Life Sci ; 79(3): 161, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35224705

RESUMEN

Injury to the spinal cord is devastating. Studies have implicated Wallerian degeneration as the main cause of axonal destruction in the wake of spinal cord injury. Therefore, the suppression of Wallerian degeneration could be beneficial for spinal cord injury treatment. Sterile alpha and armadillo motif-containing protein 1 (SARM1) is a key modulator of Wallerian degeneration, and its impediment can improve spinal cord injury to a significant degree. In this report, we analyze the various signaling domains of SARM1, the recent findings on Wallerian degeneration and its relation to axonal insults, as well as its connection to SARM1, the mitogen-activated protein kinase (MAPK) signaling, and the survival factor, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). We then elaborate on the possible role of SARM1 in spinal cord injury and explicate how its obstruction could potentially alleviate the injury.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Degeneración Walleriana/metabolismo , Axones/metabolismo , Humanos , Transducción de Señal , Traumatismos de la Médula Espinal/terapia , Degeneración Walleriana/fisiopatología
2.
Dev Med Child Neurol ; 63(10): 1171-1179, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33969478

RESUMEN

AIM: To identify clinical and radiological predictors of long-term motor outcome after childhood-onset arterial ischemic stroke (AIS) in the middle cerebral artery (MCA) territory. METHOD: Medical records of 69 children (36 females, 33 males; median age at index AIS 3y 3mo, range: 1mo-16y) who presented to Great Ormond Street Hospital with first AIS in the MCA territory were reviewed retrospectively. Cases were categorized using the Childhood AIS Standardized Classification and Diagnostic Evaluation (CASCADE). Magnetic resonance imaging (MRI) and angiography were evaluated. An Alberta Stroke Program Early Computed Tomography Score (ASPECTS) was calculated on MRI. The Recurrence and Recovery Questionnaire assessed motor outcome and was dichotomized into good/poor. RESULTS: Eventual motor outcome was good in 49 children and poor in 20. There were no acute radiological predictors of eventual motor outcome. At follow-up, CASCADE 3A (i.e. moyamoya) and Wallerian degeneration were significantly associated with poor motor outcome. In the multivariate analysis, younger age and CASCADE 3A predicted poor motor outcome. INTERPRETATION: In the context of recommendations regarding unproven and potentially high-risk hyperacute therapies for childhood AIS, prediction of outcome could usefully contribute to risk/benefit analysis. Unfortunately, paradigms used in adults, such as ASPECTS, are not useful in children in the acute/early subacute phase of AIS. What this paper adds Adult paradigms, such as the Alberta Stroke Program Early Computed Tomography Score system, are not useful for predicting outcome in children. Younger children tend to have a poorer long-term prognosis than older children. Moyamoya is associated with poor prognosis.


Asunto(s)
Infarto de la Arteria Cerebral Media/fisiopatología , Accidente Cerebrovascular Isquémico/fisiopatología , Recuperación de la Función , Degeneración Walleriana/fisiopatología , Adolescente , Factores de Edad , Niño , Preescolar , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Lactante , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/etiología , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/etiología , Angiografía por Resonancia Magnética , Masculino , Actividad Motora , Enfermedad de Moyamoya/complicaciones , Enfermedad de Moyamoya/diagnóstico por imagen , Análisis Multivariante , Pronóstico , Degeneración Walleriana/diagnóstico por imagen
3.
BMC Biol ; 18(1): 170, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208154

RESUMEN

BACKGROUND: Despite the widespread occurrence of axon and synaptic loss in the injured and diseased nervous system, the cellular and molecular mechanisms of these key degenerative processes remain incompletely understood. Wallerian degeneration (WD) is a tightly regulated form of axon loss after injury, which has been intensively studied in large myelinated fibre tracts of the spinal cord, optic nerve and peripheral nervous system (PNS). Fewer studies, however, have focused on WD in the complex neuronal circuits of the mammalian brain, and these were mainly based on conventional endpoint histological methods. Post-mortem analysis, however, cannot capture the exact sequence of events nor can it evaluate the influence of elaborated arborisation and synaptic architecture on the degeneration process, due to the non-synchronous and variable nature of WD across individual axons. RESULTS: To gain a comprehensive picture of the spatiotemporal dynamics and synaptic mechanisms of WD in the nervous system, we identify the factors that regulate WD within the mouse cerebral cortex. We combined single-axon-resolution multiphoton imaging with laser microsurgery through a cranial window and a fluorescent membrane reporter. Longitudinal imaging of > 150 individually injured excitatory cortical axons revealed a threshold length below which injured axons consistently underwent a rapid-onset form of WD (roWD). roWD started on average 20 times earlier and was executed 3 times slower than WD described in other regions of the nervous system. Cortical axon WD and roWD were dependent on synaptic density, but independent of axon complexity. Finally, pharmacological and genetic manipulations showed that a nicotinamide adenine dinucleotide (NAD+)-dependent pathway could delay cortical roWD independent of transcription in the damaged neurons, demonstrating further conservation of the molecular mechanisms controlling WD in different areas of the mammalian nervous system. CONCLUSIONS: Our data illustrate how in vivo time-lapse imaging can provide new insights into the spatiotemporal dynamics and synaptic mechanisms of axon loss and assess therapeutic interventions in the injured mammalian brain.


Asunto(s)
Axones/fisiología , Corteza Cerebral/diagnóstico por imagen , Degeneración Walleriana/fisiopatología , Animales , Corteza Cerebral/fisiopatología , Masculino , Ratones , Degeneración Walleriana/diagnóstico por imagen
4.
J Stroke Cerebrovasc Dis ; 30(2): 105480, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33253986

RESUMEN

BACKGROUND: Wallerian degeneration(WD) occurs in the descending pyramidal tract(DPT) after cerebral infarction commonly, but studies of its degree evaluation, influencing factors and effects on nervous function are still limited. OBJECTIVES: The purpose of this study was to describe these findings and estimate their clinical significance. METHODS: In total, 133 patients confirmed acute cerebral infarction and restricted diffusion in the DPT of the cerebral peduncle by MRI scans. These cases were retrospectively reviewed. We describe their clinical characteristics and analyze influence factors of WD, including the timespan from symptom onset to MRI and TOAST classification. Their NIHSS scores at admission and first 7 days NIHSS improvement rate after admission were also analyzed. RESULTS: These patients were divided into three groups by timespan ≤7 days(n = 45),7-14 days(n = 70) and >14 days(n = 18). The mean WD degree (%)of these three groups was 44.41 ± 22.51,52.35 ± 22.61and 44.31 ± 19.35,respectively(p = 0.122).According to the TOAST classification, the mean WD degree(%) of the cardioembolism group(n = 28, 62.80 ± 25.12) was significantly different from both the large-artery atherosclerosis group(n = 73,45.08 ± 20.03,p = 0.000) and the small-vessel occlusion group(n = 23,39.68 ± 16.95,p = 0.000). The mean NIHSS score upon admission of the WD degree≤50% group(n = 82,8.17 ± 5.87) was different from that of the >50% group(n = 51,11.31 ± 7.00)(p = 0.006). However, the mean 7 days NIHSS improvement rate(%) of the WD degree≤50% group(n = 79,11.83 ± 23.76)and >50% group(n = 50,13.40 ± 27.88) was not significantly different(p = 0.733). CONCLUSIONS: Early WD in ischemic stroke patients has a correlation with serious baseline functional defects. Therefore, we should give close attention to imaging change, especially in those with cardioembolism .


Asunto(s)
Infarto Cerebral/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Tractos Piramidales/diagnóstico por imagen , Degeneración Walleriana/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Infarto Cerebral/fisiopatología , Infarto Cerebral/terapia , Evaluación de la Discapacidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Tractos Piramidales/fisiopatología , Recuperación de la Función , Estudios Retrospectivos , Factores de Tiempo , Degeneración Walleriana/fisiopatología , Degeneración Walleriana/terapia
5.
J Neurosci ; 39(20): 3832-3844, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30850513

RESUMEN

Axonal degeneration, which contributes to functional impairment in several disorders of the nervous system, is an important target for neuroprotection. Several individual factors and subcellular events have been implicated in axonal degeneration, but researchers have so far been unable to identify an integrative signaling pathway activating this self-destructive process. Through pharmacological and genetic approaches, we tested whether necroptosis, a regulated cell-death mechanism implicated in the pathogenesis of several neurodegenerative diseases, is involved in axonal degeneration. Pharmacological inhibition of the necroptotic kinase RIPK1 using necrostatin-1 strongly delayed axonal degeneration in the peripheral nervous system and CNS of wild-type mice of either sex and protected in vitro sensory axons from degeneration after mechanical and toxic insults. These effects were also observed after genetic knock-down of RIPK3, a second key regulator of necroptosis, and the downstream effector MLKL (Mixed Lineage Kinase Domain-Like). RIPK1 inhibition prevented mitochondrial fragmentation in vitro and in vivo, a typical feature of necrotic death, and inhibition of mitochondrial fission by Mdivi also resulted in reduced axonal loss in damaged nerves. Furthermore, electrophysiological analysis demonstrated that inhibition of necroptosis delays not only the morphological degeneration of axons, but also the loss of their electrophysiological function after nerve injury. Activation of the necroptotic pathway early during injury-induced axonal degeneration was made evident by increased phosphorylation of the downstream effector MLKL. Our results demonstrate that axonal degeneration proceeds by necroptosis, thus defining a novel mechanistic framework in the axonal degenerative cascade for therapeutic interventions in a wide variety of conditions that lead to neuronal loss and functional impairment.SIGNIFICANCE STATEMENT We show that axonal degeneration triggered by diverse stimuli is mediated by the activation of the necroptotic programmed cell-death program by a cell-autonomous mechanism. This work represents a critical advance for the field since it identifies a defined degenerative pathway involved in axonal degeneration in both the peripheral nervous system and the CNS, a process that has been proposed as an early event in several neurodegenerative conditions and a major contributor to neuronal death. The identification of necroptosis as a key mechanism for axonal degeneration is an important step toward the development of novel therapeutic strategies for nervous-system disorders, particularly those related to chemotherapy-induced peripheral neuropathies or CNS diseases in which axonal degeneration is a common factor.


Asunto(s)
Axones/fisiología , Mitocondrias/fisiología , Necroptosis/fisiología , Degeneración Nerviosa/fisiopatología , Animales , Células Cultivadas , Dinaminas/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Ratones Endogámicos C57BL , Traumatismos del Nervio Óptico/fisiopatología , Proteínas Quinasas/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Degeneración Walleriana/fisiopatología
6.
Muscle Nerve ; 62(2): 239-246, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32415858

RESUMEN

BACKGROUND: Compound muscle action potential (CMAP) scan and MScanFit have been used to understand the consequences of denervation and reinnervation. This study aimed to monitor these parameters during Wallerian degeneration (WD) after acute nerve transections (ANT). METHODS: Beginning after urgent surgery, CMAP scans were recorded at 1-2 day intervals in 12 patients with ANT of the ulnar or median nerves, by stimulating the distal stump (DS). Stimulus intensities (SI), steps, returners, and MScanFit were calculated. Studies were grouped according to the examination time after ANT. Results were compared with those of 27 controls. RESULTS: CMAP amplitudes and MScanFit progressively declined, revealing a positive correlation with one another. SIs were higher in WD groups than controls. Steps appeared or disappeared in follow-up scans. The late WD group had higher returner% than the early WD and control groups. CONCLUSIONS: MScanFit can monitor neuromuscular dysfunction during WD. SIs revealed excitability changes in DS.


Asunto(s)
Potenciales de Acción/fisiología , Nervio Mediano/fisiopatología , Neuronas Motoras/fisiología , Conducción Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Nervio Cubital/fisiopatología , Degeneración Walleriana/fisiopatología , Adolescente , Adulto , Progresión de la Enfermedad , Electrodiagnóstico , Electromiografía , Femenino , Humanos , Masculino , Nervio Mediano/lesiones , Nervio Mediano/cirugía , Persona de Mediana Edad , Traumatismos de los Nervios Periféricos/cirugía , Nervio Cubital/lesiones , Nervio Cubital/cirugía , Adulto Joven
7.
J Neurosci ; 38(6): 1351-1365, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29279307

RESUMEN

Injury to the peripheral axons of sensory neurons strongly enhances the regeneration of their central axons in the spinal cord. It remains unclear on what molecules that initiate such conditioning effect. Because ATP is released extracellularly by nerve and other tissue injury, we hypothesize that injection of ATP into a peripheral nerve might mimic the stimulatory effect of nerve injury on the regenerative state of the primary sensory neurons. We found that a single injection of 6 µl of 150 µm ATP into female rat sciatic nerve quadrupled the number of axons growing into a lesion epicenter in spinal cord after a concomitant dorsal column transection. A second boost ATP injection 1 week after the first one markedly reinforced the stimulatory effect of a single injection. Single ATP injection increased expression of phospho-STAT3 and GAP43, two markers of regenerative activity, in sensory neurons. Double ATP injections sustained the activation of phospho-STAT3 and GAP43, which may account for the marked axonal growth across the lesion epicenter. Similar studies performed on P2X7 or P2Y2 receptor knock-out mice indicate P2Y2 receptors are involved in the activation of STAT3 after ATP injection or conditioning lesion, whereas P2X7 receptors are not. Injection of ATP at 150 µm caused little Wallerian degeneration and behavioral tests showed no significant long-term adverse effects on sciatic nerve functions. The results in this study reveal possible mechanisms underlying the stimulation of regenerative programs and suggest a practical strategy for stimulating axonal regeneration following spinal cord injury.SIGNIFICANCE STATEMENT Injury of peripheral axons of sensory neurons has been known to strongly enhance the regeneration of their central axons in the spinal cord. In this study, we found that injection of ATP into a peripheral nerve can mimic the effect of peripheral nerve injury and significantly increase the number of sensory axons growing across lesion epicenter in the spinal cord. ATP injection increased expression of several markers for regenerative activity in sensory neurons, including phospho-STAT3 and GAP43. ATP injection did not cause significant long-term adverse effects on the functions of the injected nerve. These results may lead to clinically applicable strategies for enhancing neuronal responses that support regeneration of injured axons.


Asunto(s)
Adenosina Trifosfato/farmacología , Axones/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Adenosina Trifosfato/administración & dosificación , Animales , Conducta Animal , Femenino , Proteína GAP-43/biosíntesis , Proteína GAP-43/genética , Inyecciones , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/patología , Ratas , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2Y2/genética , Factor de Transcripción STAT3/biosíntesis , Factor de Transcripción STAT3/genética , Nervio Ciático , Traumatismos de la Médula Espinal/patología , Degeneración Walleriana/genética , Degeneración Walleriana/fisiopatología
8.
Nat Rev Neurosci ; 15(6): 394-409, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24840802

RESUMEN

Axon degeneration is a prominent early feature of most neurodegenerative disorders and can also be induced directly by nerve injury in a process known as Wallerian degeneration. The discovery of genetic mutations that delay Wallerian degeneration has provided insight into mechanisms underlying axon degeneration in disease. Rapid Wallerian degeneration requires the pro-degenerative molecules SARM1 and PHR1. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is essential for axon growth and survival. Its loss from injured axons may activate Wallerian degeneration, whereas NMNAT overexpression rescues axons from degeneration. Here, we discuss the roles of these and other proposed regulators of Wallerian degeneration, new opportunities for understanding disease mechanisms and intriguing links between Wallerian degeneration, innate immunity, synaptic growth and cell death.


Asunto(s)
Axones/fisiología , Neuronas/patología , Degeneración Walleriana/patología , Degeneración Walleriana/fisiopatología , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Muerte Celular/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Vías Nerviosas/patología , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Degeneración Walleriana/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-27614771

RESUMEN

The integrity of long axons is essential for neural communication. Unfortunately, relatively minor stress to a neuron can cause extensive loss of this integrity. Axon degeneration is the cell-intrinsic program that actively deconstructs an axon after injury or damage. Although ultrastructural examination has revealed signs of axon degeneration in vivo, the occurrence and progression of axon degeneration in avian species have not yet been documented in vitro. Here, we use a novel cell culture system with primary embryonic zebra finch retinal ganglion cells to interrogate the properties of avian axon degeneration. First, we establish that both axotomy and a chemically induced injury (taxol and vincristine) are sufficient to initiate degeneration. These events are dependent on a late influx of calcium. In addition, as in mammals, the NAD pathway is involved, since a decrease in NMN with FK866 can reduce degeneration. Importantly, these retinal ganglion cell axons were sensitive to a pressure-induced injury, which may mimic the effect of high intraocular pressure associated with glaucoma. We have demonstrated that avian neurons undergo Wallerian degeneration in response to both physical and chemical injury. Subsequent avian studies will investigate whether blocking the degeneration pathway can protect individuals from neurodegenerative disease.


Asunto(s)
Axones/fisiología , Pinzones/fisiología , Degeneración Nerviosa/fisiopatología , Células Ganglionares de la Retina/fisiología , Estrés Fisiológico/fisiología , Degeneración Walleriana/fisiopatología , Análisis de Varianza , Animales , Axones/patología , Axotomía , Calcio/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Microscopía Confocal , Microscopía Fluorescente , NAD/metabolismo , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Paclitaxel , Presión , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Estrés Fisiológico/efectos de los fármacos , Vincristina , Degeneración Walleriana/tratamiento farmacológico , Degeneración Walleriana/etiología , Degeneración Walleriana/patología
10.
Hum Mol Genet ; 22(9): 1699-708, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23335597

RESUMEN

Increased levels of nicotinamide/nicotinic acid mononucleotide adenylyltransferase (NMNAT) act as a powerful suppressor of Wallerian degeneration and ataxin- and tau-induced neurodegeneration in flies and mice. However, the nature of the suppression mechanism/s remains controversial. Here, we show that in yeast models of proteinopathies, overexpression of the NMNAT yeast homologs, NMA1 and NMA2, suppresses polyglutamine (PolyQ) and α-synuclein-induced cytotoxicities. Unexpectedly, overexpression of other genes in the salvage pathway for NAD(+) biosynthesis, including QNS1, NPT1 and PNC1 also protected against proteotoxicity. Our data revealed that in all cases, this mechanism involves extensive clearance of the non-native protein. Importantly, we demonstrate that suppression by NMA1 does not require the presence of a functional salvage pathway for NAD(+) biosynthesis, SIR2 or an active mitochondrial oxidative phosphorylation (OXPHOS) system. Our results imply the existence of histone deacetylase- and OXPHOS-independent crosstalk between the proteins in the salvage pathway for NAD(+) biosynthesis and the proteasome that can be manipulated to achieve cellular protection against proteotoxic stress.


Asunto(s)
NAD/biosíntesis , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Saccharomyces cerevisiae/genética , Expresión Génica , Histona Desacetilasas/metabolismo , Mitocondrias/metabolismo , Niacinamida/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Fosforilación Oxidativa , Péptidos/genética , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Degeneración Walleriana/genética , Degeneración Walleriana/fisiopatología , alfa-Sinucleína/genética
11.
Acta Neuropathol ; 130(5): 605-18, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26419777

RESUMEN

The peripheral nervous system (PNS) has remarkable regenerative abilities after injury. Successful PNS regeneration relies on both injured axons and non-neuronal cells, including Schwann cells and immune cells. Macrophages are the most notable immune cells that play key roles in PNS injury and repair. Upon peripheral nerve injury, a large number of macrophages are accumulated at the injury sites, where they not only contribute to Wallerian degeneration, but also are educated by the local microenvironment and polarized to an anti-inflammatory phenotype (M2), thus contributing to axonal regeneration. Significant progress has been made in understanding how macrophages are educated and polarized in the injured microenvironment as well as how they contribute to axonal regeneration. Following the discussion on the main properties of macrophages and their phenotypes, in this review, we will summarize the current knowledge regarding the mechanisms of macrophage infiltration after PNS injury. Moreover, we will discuss the recent findings elucidating how macrophages are polarized to M2 phenotype in the injured PNS microenvironment, as well as the role and underlying mechanisms of macrophages in peripheral nerve injury, Wallerian degeneration and regeneration. Furthermore, we will highlight the potential application by targeting macrophages in treating peripheral nerve injury and peripheral neuropathies.


Asunto(s)
Axones/fisiología , Macrófagos/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Degeneración Walleriana/fisiopatología , Animales , Axones/patología , Macrófagos/patología , Traumatismos de los Nervios Periféricos/patología , Degeneración Walleriana/patología
12.
Muscle Nerve ; 51(2): 268-75, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24895229

RESUMEN

INTRODUCTION: A device has been developed to apply freezing temperatures to temporarily impede nerve conduction, resulting in inhibition of voluntary skeletal muscle contraction. This device was designed as an alternative to the neurotoxins usually used to treat movement disorders. METHODS: We evaluated the effects of single and 3 repeat treatments with a cryoprobe device (-55°C) on a sciatic nerve rat model. Long-term effects of repeated treatment were evaluated through assessments of physiological function and histological analysis. RESULTS: There was consistent weakening of physiological function after each treatment, with recovery of normal function by 8 weeks posttreatment. Histological findings showed axonal degeneration with no disruption to the epineurial or perineurial structures. Progressive axonal regeneration was followed by normal recovery by 24 weeks post-treatment. CONCLUSIONS: Low-temperature treatment of motor nerves did not result in permanent or long-term changes to nerve function or structure.


Asunto(s)
Crioterapia/métodos , Recuperación de la Función/fisiología , Nervio Ciático/fisiopatología , Degeneración Walleriana/patología , Degeneración Walleriana/fisiopatología , Degeneración Walleriana/terapia , Animales , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Lateralidad Funcional , Actividad Motora/fisiología , Ratas , Ratas Sprague-Dawley , Proteínas S100/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Factores de Tiempo
13.
J Neurosci ; 33(48): 18728-39, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24285879

RESUMEN

Axons degenerate after injury and in neuropathies and disease via a self-destruction program whose mechanism is poorly understood. Axons that have lost connection to their cell bodies have altered electrical and synaptic activities, but whether such changes play a role in the axonal degeneration process is not clear. We have used a Drosophila model to study the Wallerian degeneration of motoneuron axons and their neuromuscular junction synapses. We found that degeneration of the distal nerve stump after a nerve crush is greatly delayed when there is increased potassium channel activity (by overexpression of two different potassium channels, Kir2.1 and dORKΔ-C) or decreased voltage-gated sodium channel activity (using mutations in the para sodium channel). Conversely, degeneration is accelerated when potassium channel activity is decreased (by expressing a dominant-negative mutation of Shaker). Despite the effect of altering voltage-gated sodium and potassium channel activity, recordings made after nerve crush demonstrated that the distal stump does not fire action potentials. Rather, a variety of lines of evidence suggest that the sodium and potassium channels manifest their effects upon degeneration through changes in the resting membrane potential, which in turn regulates the level of intracellular free calcium within the isolated distal axon.


Asunto(s)
Axones/fisiología , Drosophila/fisiología , Canales de Potasio/fisiología , Canales de Sodio/fisiología , Degeneración Walleriana/fisiopatología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Fenómenos Electrofisiológicos/fisiología , Inmunohistoquímica , Microscopía Confocal , Compresión Nerviosa , Unión Neuromuscular/fisiología , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/fisiología , Temperatura , Tetrodotoxina/farmacología
14.
Ann Neurol ; 73(2): 210-23, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23281061

RESUMEN

OBJECTIVE: Traumatic peripheral nerve injuries often produce permanent functional deficits despite optimal surgical and medical management. One reason for the impaired target organ reinnervation is degradation of motor endplates during prolonged denervation. Here we investigate the effect of preserving agrin on the stability of denervated endplates. Because matrix metalloproteinase 3 (MMP3) is known to degrade agrin, we examined the changes in endplate structure following traumatic nerve injury in MMP3 knockout mice. METHODS: After creation of a critical size nerve defect to preclude reinnervation, we characterized receptor area, receptor density, and endplate morphology in denervated plantaris muscles in wild-type and MMP3 null mice. The level of agrin and muscle-specific kinase (MuSK) was assessed at denervated endplates. In addition, denervated muscles were subjected to ex vivo stimulation with acetylcholine. Finally, reinnervation potential was compared after long-term denervation. RESULTS: In wild-type mice, the endplates demonstrated time-dependent decreases in area and receptor density and conversion to an immature receptor phenotype. In striking contrast, all denervation-induced changes were attenuated in MMP3 null mice, with endplates retaining their differentiated form. Agrin and MuSK were preserved in endplates from denervated MMP3 null animals. Furthermore, denervated muscles from MMP3 null mice demonstrated greater endplate efficacy and reinnervation. INTERPRETATION: These results demonstrate a critical role for MMP3 in motor endplate remodeling, and reveal a potential target for therapeutic intervention to prevent motor endplate degradation following nerve injury.


Asunto(s)
Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Placa Motora/enzimología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Acetilcolina/farmacología , Agrina/metabolismo , Animales , Línea Celular , Agonistas Colinérgicos/farmacología , Modelos Animales de Enfermedad , Eliminación de Gen , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Actividad Motora/fisiología , Placa Motora/efectos de los fármacos , Desnervación Muscular/métodos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/inervación , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo , Degeneración Walleriana/metabolismo , Degeneración Walleriana/fisiopatología
15.
Brain ; 136(Pt 7): 2262-78, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23748155

RESUMEN

The number of Schwann cells is fitted to axonal length in peripheral nerves. This relationship is lost when tumorigenic stimuli induce uncontrolled Schwann cell proliferation, generating tumours such us neurofibromas and schwannomas. Schwann cells also re-enter the cell cycle following nerve injury during the process of Wallerian degeneration. In both cases proliferation is finally arrested. We show that in neurofibroma, the induction of Jmjd3 (jumonji domain containing 3, histone lysine demethylase) removes trimethyl groups on lysine-27 of histone-H3 and epigenetically activates the Ink4a/Arf-locus, forcing Schwann cells towards replicative senescence. Remarkably, blocking this mechanism allows unrestricted proliferation, inducing malignant transformation of neurofibromas. Interestingly, our data suggest that in injured nerves, Schwann cells epigenetically activate the same locus to switch off proliferation and enter the senescence programme. Indeed, when this pathway is genetically blocked, Schwann cells fail to drop out of the cell cycle and continue to proliferate. We postulate that the Ink4a/Arf-locus is expressed as part of a physiological response that prevents uncontrolled proliferation of the de-differentiated Schwann cell generated during nerve regeneration, a response that is also activated to avoid overproliferation after tumorigenic stimuli in the peripheral nervous system.


Asunto(s)
Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Regulación de la Expresión Génica/genética , Regeneración Nerviosa/fisiología , Neurofibroma/patología , Células de Schwann/fisiología , Degeneración Walleriana/patología , Factores de Edad , Animales , Animales Recién Nacidos , Axones/patología , Axones/ultraestructura , Células Cultivadas , Senescencia Celular/genética , Inmunoprecipitación de Cromatina , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Epigenómica , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Antígeno Ki-67/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Regeneración Nerviosa/genética , Neurregulina-1/genética , Neurofibroma/genética , Neurofibroma/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Células de Schwann/patología , Células de Schwann/ultraestructura , Nervio Ciático/citología , Transducción de Señal/genética , Transfección , Proteína p53 Supresora de Tumor/deficiencia , Degeneración Walleriana/etiología , Degeneración Walleriana/fisiopatología
17.
J Neurosci ; 32(2): 610-5, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22238096

RESUMEN

Axons are vulnerable components of neuronal circuitry, and neurons are equipped with mechanisms for responding to axonal injury. A highly studied example of this is the conditioning lesion, in which neurons that have been previously injured have an increased ability to initiate new axonal growth (Hoffman, 2010). Here we investigate the effect of a conditioning lesion on axonal degeneration, which occurs in the distal stump after injury, and also occurs in neuropathies and neurodegenerative disorders (Coleman, 2005). We found that Drosophila motoneuron axons that had been previously injured had an increased resiliency to degeneration. This requires the function of a conserved axonal kinase, Wallenda (Wnd)/DLK, and a downstream transcription factor. Because axonal injury leads to acute activation of Wnd (Xiong et al., 2010), and overexpression studies indicate that increased Wnd function is sufficient to promote protection from degeneration, we propose that Wnd regulates an adaptive response to injury that allows neurons to cope with axonal stress.


Asunto(s)
Axones/enzimología , Proteínas de Drosophila/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Neuronas Motoras/enzimología , Degeneración Walleriana/enzimología , Degeneración Walleriana/fisiopatología , Adaptación Fisiológica/fisiología , Animales , Axones/patología , Drosophila melanogaster , Femenino , Masculino , Neuronas Motoras/patología , Compresión Nerviosa/métodos , Unión Neuromuscular/enzimología , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Estrés Fisiológico/fisiología , Degeneración Walleriana/patología
18.
J Neurosci ; 32(21): 7158-68, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22623660

RESUMEN

Physical damage to the peripheral nerves triggers Schwann cell injury response in the distal nerves in an event termed Wallerian degeneration: the Schwann cells degrade their myelin sheaths and dedifferentiate, reverting to a phenotype that supports axon regeneration and nerve repair. The molecular mechanisms regulating Schwann cell plasticity in the PNS remain to be elucidated. Using both in vivo and in vitro models for peripheral nerve injury, here we show that inhibition of p38 mitogen-activated protein kinase (MAPK) activity in mice blocks Schwann cell demyelination and dedifferentiation following nerve injury, suggesting that the kinase mediates the injury signal that triggers distal Schwann cell injury response. In myelinating cocultures, p38 MAPK also mediates myelin breakdown induced by Schwann cell growth factors, such as neuregulin and FGF-2. Furthermore, ectopic activation of p38 MAPK is sufficient to induce myelin breakdown and drives differentiated Schwann cells to acquire phenotypic features of immature Schwann cells. We also show that p38 MAPK concomitantly functions as a negative regulator of Schwann cell differentiation: enforced p38 MAPK activation blocks cAMP-induced expression of Krox 20 and myelin proteins, but induces expression of c-Jun. As expected of its role as a negative signal for myelination, inhibition of p38 MAPK in cocultures promotes myelin formation by increasing the number as well as the length of individual myelin segments. Altogether, our data identify p38 MAPK as an important regulator of Schwann cell plasticity and differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Fibras Nerviosas Mielínicas/fisiología , Células de Schwann/metabolismo , Células de Schwann/fisiología , Degeneración Walleriana/fisiopatología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Técnicas de Cocultivo , Proteína 2 de la Respuesta de Crecimiento Precoz/biosíntesis , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/biosíntesis , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neurregulina-1/farmacología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Ratas , Nervio Ciático/metabolismo , Nervio Ciático/fisiopatología , Degeneración Walleriana/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
19.
Development ; 137(23): 3985-94, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21041367

RESUMEN

Fragments of injured axons that detach from their cell body break down by the molecularly regulated process of Wallerian degeneration (WD). Although WD resembles local axon degeneration, a common mechanism for refining neuronal structure, several previously examined instances of developmental pruning were unaffected by WD pathways. We used laser axotomy and time-lapse confocal imaging to characterize and compare peripheral sensory axon WD and developmental pruning in live zebrafish larvae. Detached fragments of single injured axon arbors underwent three stereotyped phases of WD: a lag phase, a fragmentation phase and clearance. The lag phase was developmentally regulated, becoming shorter as embryos aged, while the length of the clearance phase increased with the amount of axon debris. Both cell-specific inhibition of ubiquitylation and overexpression of the Wallerian degeneration slow protein (Wld(S)) lengthened the lag phase dramatically, but neither affected fragmentation. Persistent Wld(S)-expressing axon fragments directly repelled regenerating axon branches of their parent arbor, similar to self-repulsion among sister branches of intact arbors. Expression of Wld(S) also disrupted naturally occurring local axon pruning and axon degeneration in spontaneously dying trigeminal neurons: although pieces of Wld(S)-expressing axons were pruned, and some Wld(S)-expressing cells still died during development, in both cases detached axon fragments failed to degenerate. We propose that spontaneously pruned fragments of peripheral sensory axons must be removed by a WD-like mechanism to permit efficient innervation of the epidermis.


Asunto(s)
Axones/patología , Regeneración Nerviosa/fisiología , Piel/inervación , Piel/patología , Nervio Trigémino/fisiopatología , Degeneración Walleriana/fisiopatología , Pez Cebra/embriología , Envejecimiento/patología , Animales , Axones/enzimología , Conducta Animal , Citoprotección , Nervio Trigémino/patología , Degeneración Walleriana/patología , Proteínas de Pez Cebra/metabolismo
20.
Am J Pathol ; 181(1): 62-73, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22642911

RESUMEN

Axonal injury and degeneration are pivotal pathological events in diseases of the nervous system. In the past decade, it has been recognized that the process of axonal degeneration is distinct from somal degeneration and that axoprotective strategies may be distinct from those that protect the soma. Preserving the cell body via neuroprotection cannot improve function if the axon is damaged, because the soma is still disconnected from its target. Therefore, understanding the mechanisms of axonal degeneration is critical for developing new therapeutic interventions for axonal disease treatment. We combined in vivo imaging with a multilaser confocal scanning laser ophthalmoscope and in vivo axotomy with a diode-pumped solid-state laser to assess the time course of Wallerian and retrograde degeneration of unmyelinated retinal ganglion cell axons in living rats for 4 weeks after intraretinal axotomy. Laser injury resulted in reproducible axon loss both distal and proximal to the site of injury. Longitudinal polarization-sensitive imaging of axons demonstrated that Wallerian and retrograde degeneration occurred synchronously. Neurofilament immunostaining of retinal whole-mounts confirmed axonal loss and demonstrated sparing of adjacent axons to the axotomy site. In vivo fluorescent imaging of axonal transport and photobleaching of labeled axons demonstrated that the laser axotomy model did not affect adjacent axon function. These results are consistent with a shared mechanism for Wallerian and retrograde degeneration.


Asunto(s)
Axotomía , Células Ganglionares de la Retina/fisiología , Degeneración Retrógrada/etiología , Degeneración Walleriana/etiología , Animales , Transporte Axonal/fisiología , Femenino , Rayos Láser , Oftalmoscopía/métodos , Ratas , Ratas Long-Evans , Degeneración Retrógrada/patología , Degeneración Retrógrada/fisiopatología , Degeneración Walleriana/patología , Degeneración Walleriana/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA