Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(14): e2107994119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35363566

RESUMEN

Persistence of Acinetobacter baumannii in environments with low water activity is largely attributed to the biosynthesis of compatible solutes. Mannitol is one of the key compatible solutes in A. baumannii, and it is synthesized by a bifunctional mannitol-1-phosphate dehydrogenase/phosphatase (AbMtlD). AbMtlD catalyzes the conversion of fructose-6-phosphate to mannitol in two consecutive steps. Here, we report the crystal structure of dimeric AbMtlD, constituting two protomers each with a dehydrogenase and phosphatase domain. A proper assembly of AbMtlD dimer is facilitated by an intersection comprising a unique helix­loop­helix (HLH) domain. Reduction and dephosphorylation catalysis of fructose-6-phosphate to mannitol is dependent on the transient dimerization of AbMtlD. AbMtlD presents as a monomer under lower ionic strength conditions and was found to be mainly dimeric under high-salt conditions. The AbMtlD catalytic efficiency was markedly increased by cross-linking the protomers at the intersected HLH domain via engineered disulfide bonds. Inactivation of the AbMtlD phosphatase domain results in an intracellular accumulation of mannitol-1-phosphate in A. baumannii, leading to bacterial growth impairment upon salt stress. Taken together, our findings demonstrate that salt-induced dimerization of the bifunctional AbMtlD increases catalytic dehydrogenase and phosphatase efficiency, resulting in unidirectional catalysis of mannitol production.


Asunto(s)
Acinetobacter baumannii , Secuencias Hélice-Asa-Hélice , Manitol , Deshidrogenasas del Alcohol de Azúcar , Acinetobacter baumannii/enzimología , Manitol/metabolismo , Presión Osmótica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Estrés Salino , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo
2.
Appl Environ Microbiol ; 90(7): e0028124, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38975762

RESUMEN

Mesophilic enzymes, which are active at moderate temperatures, may dominate enzymatic reactions even in the presence of thermophilic crude enzymes. This study was conducted to investigate this hypothesis with mesophilic inositol dehydrogenases (IolG and IolX) produced in Geobacillus kaustophilus HTA426. To ensure the efficient production of mesophilic enzymes, we first screened for promoters induced at moderate temperatures using transcriptome analysis and identified four genes highly expressed at 30°C in the thermophile. We further characterized these promoters using fluorescent reporter assays to determine that the mti3 promoter could direct efficient gene expression at 40°C. We cloned the promoter into an Escherichia coli-Geobacillus shuttle plasmid and confirmed that the resulting vector functioned in G. kaustophilus and other thermophiles. We then used this vector for the cooperative expression of the iolG and iolX genes from Bacillus subtilis 168. G. kaustophilus cells carrying the expression vector were incubated at 60°C for cellular propagation and then at 40°C for the production of IolG and IolX. When the cells were permeabilized, IolG and IolX acted as catalysts to convert exogenous myo-inositol into scyllo-inositol at 30°C. In a scaled-up reaction, 10 g of myo-inositol was converted to 1.8 g of scyllo-inositol, which was further purified to yield 970 mg of pure powder. Notably, myo-inositol was degraded by intrinsic enzymes of G. kaustophilus at 60°C but not at 30°C, supporting our initial hypothesis. We indicate that this approach is useful for preparing enzyme cocktails without the need for purification. IMPORTANCE: Enzyme cocktails are commonly employed for cell-free chemical synthesis; however, their preparation involves cumbersome processes. This study affirms that mesophilic enzymes in thermophilic crude extracts can function as specific catalysts at moderate temperatures, akin to enzyme cocktails. The catalyst was prepared by permeabilizing cells without the need for concentration, extraction, or purification processes; hence, its preparation was considerably simpler compared with conventional methods for enzyme cocktails. This approach was employed to produce pure scyllo-inositol from an economical substrate. Notably, this marks the first large-scale preparation of pure scyllo-inositol, holding potential pharmaceutical significance as scyllo-inositol serves as a promising agent for certain diseases but is currently expensive. Moreover, this approach holds promise for application in pathway engineering within living cells. The envisioned pathway is designed without chromosomal modification and is simply regulated by switching culture temperatures. Consequently, this study introduces a novel platform for both whole-cell and cell-free synthetic systems.


Asunto(s)
Proteínas Bacterianas , Geobacillus , Inositol , Inositol/metabolismo , Geobacillus/genética , Geobacillus/enzimología , Geobacillus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas
3.
Mol Cell ; 56(3): 414-424, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25458842

RESUMEN

Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria.


Asunto(s)
Supervivencia Celular , Ciclo del Ácido Cítrico , Glutamina/metabolismo , Ácido Pirúvico/metabolismo , Acetilcoenzima A/biosíntesis , Animales , Antineoplásicos/farmacología , Transporte Biológico , Catequina/análogos & derivados , Catequina/farmacología , Línea Celular Tumoral , Ácido Cítrico/metabolismo , Ácidos Cumáricos/farmacología , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Ratones Desnudos , Mitocondrias/metabolismo , Oxidación-Reducción , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34165242

RESUMEN

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Asunto(s)
Albinismo/terapia , Alcaptonuria/terapia , Cistinuria/terapia , Errores Innatos del Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patología , Alcaptonuria/genética , Alcaptonuria/metabolismo , Alcaptonuria/patología , Errores Innatos del Metabolismo de los Carbohidratos/genética , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/patología , Errores Innatos del Metabolismo de los Carbohidratos/terapia , Cistinuria/genética , Cistinuria/metabolismo , Cistinuria/patología , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Fenilcetonurias/genética , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Fenilcetonurias/terapia , Deshidrogenasas del Alcohol de Azúcar/deficiencia , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Xilulosa/genética , Xilulosa/metabolismo
5.
Biochem Biophys Res Commun ; 526(3): 728-732, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32253031

RESUMEN

1,5-Anhydro-D-fructose (AF), a metabolite of the anhydrofructose pathway of glycogen metabolism, has recently been shown to react with intracellular proteins and form advanced glycation end-products. The reactive AF is metabolized to non-reactive 1,5-anhydro-D-glucitol by AF reductase in animal tissues and human cells. Pig and mouse AF reductases were characterized, but primate AF reductase remains unknown. Here, we examined the AF-reducing activity of eleven primate NADPH-dependent reductases with broad substrate specificity for carbonyl compounds. AF was reduced by monkey dimeric dihydrodiol dehydrogenase (DHDH), human aldehyde reductase (AKR1A1) and human dicarbonyl/L-xylulose reductase (DCXR). DHDH showed the lowest KM (21 µM) for AF, and its kcat/KM value (1208 s-1mM-1) was much higher than those of AKR1A1 (1.3 s-1mM-1), DCXR (1.1 s-1mM-1) and the pig and mouse AF reductases. AF is a novel substrate with higher affinity and catalytic efficiency than known substrates of DHDH. Docking simulation study suggested that Lys156 in the substrate-binding site of DHDH contributes to the high affinity for AF. Gene database searches identified DHDH homologues (with >95% amino acid sequence identity) in humans and apes. Thus, DHDH acts as an efficient AF reductase in primates.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Fructosa/análogos & derivados , Oxidorreductasas/metabolismo , Multimerización de Proteína , Aldehído Reductasa/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Dominio Catalítico , Clonación Molecular , Fructosa/metabolismo , Haplorrinos , Humanos , Ratones , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Primates , Unión Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Porcinos
6.
World J Microbiol Biotechnol ; 36(9): 136, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32783085

RESUMEN

Glycerol dehydrogenase has been identified and characterized functionally in many species. However, little is known about glycerol dehydrogenase genes and their functions in Aspergillus oryzae. Here, a total of 45 glycerol dehydrogenase genes in Aspergillus oryzae were identified and renamed from AoGld1 to AoGld45 according to their chromosome distribution. They were classified into three groups based on phylogenetic analysis. Synteny analysis revealed that thirteen AoGld genes are conserved among Aspergillus species. Promoter analysis displayed that AoGld3 and AoGld13 harbored multiple binding elements of GATA-type transcription factors and zinc-finger protein msnA that were involved in nitrogen and kojic acid metabolism, respectively. Moreover, the AoGld3 deletion strain Δgld3 was generated by the CRISPR/Cas9 system, which had no visible growth defects compared with the control wild-type strain under the control and osmotic stress treatments. However, disruption of AoGld3 led to the inhibition of kojic acid production, and the expression of kojA, kojR was down-regulated in the Δgld3 strain. Furthermore, when kojA or kojR was overexpressed in the Δgld3 strain, the yield of kojic acid was restored, suggesting that AoGld3 is involved in kojic acid production through affecting the expression of kojR and kojA. Taken together, these findings provide new insights into our understanding of glycerol dehydrogenase and establish foundation for further study of their roles in Aspergillus oryzae.


Asunto(s)
Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Pironas/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Nitrógeno/metabolismo , Filogenia , Regiones Promotoras Genéticas
7.
Crit Rev Biochem Mol Biol ; 52(6): 674-695, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28901199

RESUMEN

Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Microbiota , Acetiltransferasas/química , Acetiltransferasas/metabolismo , Anaerobiosis , Bacterias/química , Proteínas Bacterianas/química , Carboxiliasas/química , Carboxiliasas/metabolismo , Fermentación , Humanos , Ligasas/química , Ligasas/metabolismo , Modelos Moleculares , Conformación Proteica , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo
8.
J Biol Chem ; 293(45): 17375-17386, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30224354

RESUMEN

Levoglucosan is the 1,6-anhydrosugar of d-glucose formed by pyrolysis of glucans and is found in the environment and industrial waste. Two types of microbial levoglucosan metabolic pathways are known. Although the eukaryotic pathway involving levoglucosan kinase has been well-studied, the bacterial pathway involving levoglucosan dehydrogenase (LGDH) has not been well-investigated. Here, we identified and cloned the lgdh gene from the bacterium Pseudarthrobacter phenanthrenivorans and characterized the recombinant protein. The enzyme exhibited high substrate specificity toward levoglucosan and NAD+ for the oxidative reaction and was confirmed to be LGDH. LGDH also showed weak activities (∼4%) toward l-sorbose and 1,5-anhydro-d-glucitol. The reverse (reductive) reaction using 3-keto-levoglucosan and NADH exhibited significantly lower Km and higher kcat values than those of the forward reaction. The crystal structures of LGDH in the apo and complex forms with NADH, NADH + levoglucosan, and NADH + l-sorbose revealed that LGDH has a typical fold of Gfo/Idh/MocA family proteins, similar to those of scyllo-inositol dehydrogenase, aldose-aldose oxidoreductase, 1,5-anhydro-d-fructose reductase, and glucose-fructose oxidoreductase. The crystal structures also disclosed that the active site of LGDH is distinct from those of these enzymes. The LGDH active site extensively recognized the levoglucosan molecule with six hydrogen bonds, and the C3 atom of levoglucosan was closely located to the C4 atom of NADH nicotinamide. Our study is the first molecular characterization of LGDH, providing evidence for C3-specific oxidation and representing a starting point for future biotechnological use of LGDH and levoglucosan-metabolizing bacteria.


Asunto(s)
Actinobacteria/enzimología , Glucosa/análogos & derivados , NAD/química , Deshidrogenasas del Alcohol de Azúcar/química , Actinobacteria/genética , Dominio Catalítico , Cristalografía por Rayos X , Glucosa/química , Glucosa/metabolismo , Enlace de Hidrógeno , NAD/metabolismo , Oxidación-Reducción , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
9.
Environ Microbiol ; 21(10): 3728-3736, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31219674

RESUMEN

Acetogenic bacteria recently attracted attention because they reduce carbon dioxide (CO2 ) with hydrogen (H2 ) to acetate or to other products such as ethanol. Besides gases, acetogens use a broad range of substrates, but conversion of the sugar alcohol mannitol has rarely been reported. We found that the thermophilic acetogenic bacterium Thermoanaerobacter kivui grew on mannitol with a specific growth rate of 0.33 h-1 to a final optical density (OD600 ) of 2.2. Acetate was the major product formed. A lag phase was observed only in cultures pre-grown on glucose, not in those pre-grown on mannitol, indicating that mannitol metabolism is regulated. Mannitol-1-phosphate dehydrogenase (MtlD) activity was observed in cell-free extracts of cells grown on mannitol only. A gene cluster (TKV_c02830-TKV_c02860) for mannitol uptake and conversion was identified in the T. kivui genome, and its involvement was confirmed by deleting the mtlD gene (TKV_c02860) encoding the key enzyme MtlD. Finally, we overexpressed mtlD, and the recombinant MtlD carried out the reduction of fructose-6-phosphate with NADH, at a high VMAX of 1235 U mg-1 at 65°C. The enzyme was thermostable for 40 min at 75°C, thereby representing the first characterized MtlD from a thermophile.


Asunto(s)
Manitol/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Thermoanaerobacter/enzimología , Estabilidad de Enzimas , Genes Bacterianos , Familia de Multigenes , Thermoanaerobacter/genética , Thermoanaerobacter/crecimiento & desarrollo
10.
Anal Biochem ; 586: 113409, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31469978

RESUMEN

A modified sensitive, cheap and simple enzymatic assay method is described for the quantitation of inositol (6-carbon polyol) in human placental tissue. Water-soluble and total (water-soluble and lipid-bound) inositol isomers were extracted and quantified using a 96-well adaptation of the Megazyme® assay. This assay specifically recognized myo-inositol (predominant isomer), d-chiro-, epi-, and allo-inositols, but not scyllo-inositol, glucose or fucose. In term placenta, water-soluble and total inositol contents were high [489 (±58) and 635 (±69) µg/g respectively], and reliably quantified with good reproducibility. This modified assay could facilitate placental inositol biology research, particularly pertinent now with interest in myo-inositol supplementation for gestational diabetes (GDM) prevention.


Asunto(s)
Pruebas de Enzimas , Inositol/análisis , Placenta/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Femenino , Humanos , Inositol/metabolismo , Placenta/metabolismo , Embarazo
11.
J Struct Biol ; 203(2): 109-119, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29605571

RESUMEN

Sorbitol-6-phosphate 2-dehydrogenases (S6PDH) catalyze the interconversion of d-sorbitol 6-phosphate to d-fructose 6-phosphate. In the plant pathogen Erwinia amylovora the S6PDH SrlD is used by the bacterium to utilize sorbitol, which is used for carbohydrate transport in the host plants belonging to the Amygdaloideae subfamily (e.g., apple, pear, and quince). We have determined the crystal structure of S6PDH SrlD at 1.84 Šresolution, which is the first structure of an EC 1.1.1.140 enzyme. Kinetic data show that SrlD is much faster at oxidizing d-sorbitol 6-phosphate than in reducing d-fructose 6-phosphate, however, equilibrium analysis revealed that only part of the d-sorbitol 6-phosphate present in the in vitro environment is converted into d-fructose 6-phosphate. The comparison of the structures of SrlD and Rhodobacter sphaeroides sorbitol dehydrogenase showed that the tetrameric quaternary structure, the catalytic residues and a conserved aspartate residue that confers specificity for NAD+ over NADP+ are preserved. Analysis of the SrlD cofactor and substrate binding sites identified residues important for the formation of the complex with cofactor and substrate and in particular the role of Lys42 in selectivity towards the phospho-substrate. The comparison of SrlD backbone with the backbone of 302 short-chain dehydrogenases/reductases showed the conservation of the protein core and identified the variable parts. The SrlD sequence was compared with 500 S6PDH sequences selected by homology revealing that the C-terminal part is more conserved than the N-terminal, the consensus of the catalytic tetrad (Y[SN]AGXA) and a not previously described consensus for the NAD(H) binding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Erwinia amylovora/enzimología , Erwinia amylovora/metabolismo , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Proteínas Bacterianas/genética , Erwinia amylovora/genética , Hexosafosfatos/metabolismo , Cinética , Rosaceae/microbiología , Deshidrogenasas del Alcohol de Azúcar/genética , Tomografía Computarizada por Rayos X
12.
Biochem Biophys Res Commun ; 503(1): 195-201, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29864427

RESUMEN

Archaeal/fungal Rib7 and eubacterial RibG possess a reductase domain for ribosyl reduction in the second and third steps, respectively, of riboflavin biosynthesis. These enzymes are specific for an amino and a carbonyl group of the pyrimidine ring, respectively. Here, several crystal structures of Methanosarcina mazei Rib7 are reported at 2.27-1.95 Šresolution, which are the first archaeal dimeric Rib7 structures. Mutational analysis displayed that no detectable activity was observed for the Bacillus subtilis RibG K151A, K151D, and K151E mutants, and the M. mazei Rib7 D33N, D33K, and E156Q variants, while 0.1-0.6% of the activity was detected for the M. mazei Rib7 N9A, S29A, D33A, and D57N variants. Our results suggest that Lys151 in B. subtilis RibG, while Asp33 together with Arg36 in M. mazei Rib7, ensure the specific substrate recognition. Unexpectedly, an endogenous NADPH cofactor is observed in M. mazei Rib7, in which the 2'-phosphate group interacts with Ser88, and Arg91. Replacement of Ser88 with glutamate eliminates the endogenous NADPH binding and switches preference to NADH. The lower melting temperature of ∼10 °C for the S88E and R91A mutants suggests that nature had evolved a tightly bound NADPH to greatly enhance the structural stability of archaeal Rib7.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Nucleótido Desaminasas/metabolismo , Oxidorreductasas/metabolismo , Riboflavina/biosíntesis , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Estabilidad de Enzimas , Evolución Molecular , Methanosarcina/enzimología , Methanosarcina/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , NAD/metabolismo , NADP/metabolismo , Nucleótido Desaminasas/química , Nucleótido Desaminasas/genética , Oxidorreductasas/química , Oxidorreductasas/genética , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética
13.
BMC Microbiol ; 18(1): 23, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29580217

RESUMEN

BACKGROUND: Nonencapsulated Streptococcus pneumoniae bacteria are successful colonizers of the human nasopharynx and often possess genes aliB-like ORF 1 and 2 in place of capsule genes. AliB-like ORF 2 binds peptide FPPQSV, found in Prevotella species, resulting in enhanced colonization. How this response is mediated is so far unknown. RESULTS: Here we show that the peptide increases expression of genes involved in release of host carbohydrates, carbohydrate uptake and carbohydrate metabolism. In particular, the peptide increased expression of 1,5-anhydro-D-fructose reductase, a metabolic enzyme of an alternative starch and glycogen degrading pathway found in many organisms, in both transcriptomic and proteomic data. The peptide enhanced pneumococcal growth giving a competitive advantage to a strain with aliB-like ORF 2, over its mutant lacking the gene. Possession of aliB-like ORF 2 did not affect release of inflammatory cytokine CXCL8 from epithelial cells in culture and the nonencapsulated wild type strain was not able to establish disease or inflammation in an infant rat model of meningitis. CONCLUSIONS: We propose that AliB-like ORF 2 confers an advantage in colonization by enhancing carbohydrate metabolism resulting in a boost in growth. This may explain the widespread presence of aliB-like ORF 2 in the nonencapsulated pneumococcal population in the human nasopharynx.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Péptidos/farmacocinética , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/metabolismo , Animales , Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Metabolismo de los Hidratos de Carbono , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Glucógeno/metabolismo , Humanos , Interleucina-8/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Nasofaringe/microbiología , Infecciones Neumocócicas/microbiología , Prevotella/metabolismo , Proteómica , Ratas , Ratas Wistar , Almidón/metabolismo , Streptococcus pneumoniae/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Transcriptoma
14.
Plant Cell Environ ; 41(9): 2183-2194, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29543987

RESUMEN

Seeds mainly acquire their physiological quality during maturation, whereas oxidative conditions reign within cells triggering protein carbonylation. To better understand the role of this protein modification in legume seeds, we compared by proteomics patterns of carbonylated proteins in maturing seeds of Medicago truncatula naturally desiccated or prematurely dried, a treatment known to impair seed quality acquisition. In both cases, protein carbonylation increased in these seeds, accompanying water removal. We identified several proteins whose extent of carbonylation varied when comparing natural desiccation and premature drying and that could therefore be responsible for the impairment of seed quality acquisition or expression. In particular, we focused on PM34, a protein specific to seeds exhibiting a high sensitivity to carbonylation and of which function in dicotyledons was not known before. PM34 proved to have a cellulase activity presumably associated with cell elongation, a process required for germination and subsequent seedling growth. We discuss the possibility that PM34 (abundance or redox state) could be used to assess crop seed quality.


Asunto(s)
Medicago truncatula/fisiología , Proteínas de Plantas/metabolismo , Carbonilación Proteica , Semillas/crecimiento & desarrollo , Celulasa/metabolismo , Germinación , Proteínas de Plantas/genética , Semillas/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo
15.
Appl Microbiol Biotechnol ; 102(7): 3159-3171, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29468297

RESUMEN

Membrane-bound, pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase (GLDH, or polyol dehydrogenase) of Gluconobacter sp. oxidizes various secondary alcohols to produce the corresponding ketones, such as oxidation of D-sorbitol to L-sorbose in vitamin C production. Substrate specificity of GLDH is considered limited to secondary alcohols in the D-erythro configuration at the next to the last carbon. Here, we suggest that L-ribose, D- and L-lyxoses, and L-tagatose are also substrates of GLDH, but these sugars do not meet the substrate specificity rule of GLDH. The oxygen consumption activity of wild-type Gluconobacter frateurii cell membranes depends on several kinds of sugars as compared with that of the membranes of a GLDH-negative variant. Biotransformation of those sugars with the membranes was examined to determine the reaction products. A time course measuring the pH in the reaction mixture and the increase or decrease in substrates and products on TLC suggested that oxidation products of L-lyxose and L-tagatose were ketones with unknown structures, but those of L-ribose and D-lyxose were acids. The oxidation product of L-ribose was purified and revealed to be L-ribonate by HRMS and NMR analysis. Biotransformation of L-ribose with the membranes and also with the whole cells produced L-ribonate in nearly stoichiometric amounts, indicating that the specific oxidation site in L-ribose is recognized by GLDH. Since purified GLDH produced L-ribonate without any intermediate-like compounds, we propose here a reaction model where the first carbon in the pyranose form of L-ribose is oxidized by GLDH to L-ribonolactone, which is further hydrolyzed spontaneously to produce L-ribonate.


Asunto(s)
Gluconobacter/enzimología , Pentosas/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Gluconobacter/metabolismo , Glicerol , Cofactor PQQ/metabolismo
16.
Genes Dev ; 24(17): 1893-902, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20713508

RESUMEN

The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Microdominios de Membrana/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Bacterias/enzimología , Biopelículas/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Farnesil Difosfato Farnesil Transferasa/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Transducción de Señal/efectos de los fármacos , Deshidrogenasas del Alcohol de Azúcar/metabolismo
17.
Glia ; 65(3): 474-488, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28032919

RESUMEN

A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [3 H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of 13 C and 14 C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488.


Asunto(s)
Astrocitos/metabolismo , Ciclo del Ácido Cítrico/fisiología , Regulación Enzimológica de la Expresión Génica , Glucosa/deficiencia , Glutamato Deshidrogenasa/metabolismo , Ácido Glutámico/metabolismo , Animales , Astrocitos/efectos de los fármacos , Dióxido de Carbono/farmacocinética , Isótopos de Carbono/farmacocinética , Células Cultivadas , Corteza Cerebral/citología , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Relación Dosis-Respuesta a Droga , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato Deshidrogenasa/genética , Ácido Glutámico/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Tritio/farmacocinética
18.
Plant Mol Biol ; 95(4-5): 507-517, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29038917

RESUMEN

KEY MESSAGE: PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Cromatina/genética , Prunus persica/genética , Sorbitol/metabolismo , Frío , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Prunus persica/crecimiento & desarrollo , Prunus persica/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
19.
Am J Pathol ; 186(11): 2887-2908, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27643531

RESUMEN

Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.


Asunto(s)
Diacetil/efectos adversos , Aromatizantes/efectos adversos , Enfermedades Pulmonares/etiología , Proteína Sequestosoma-1/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Ubiquitina/metabolismo , Animales , Autofagia , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Exposición por Inhalación , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Proteína Marcadora Olfativa/genética , Proteína Marcadora Olfativa/metabolismo , Sistema Respiratorio/metabolismo , Sistema Respiratorio/patología , Proteína Sequestosoma-1/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
20.
BMC Microbiol ; 17(1): 154, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28693424

RESUMEN

BACKGROUND: Bacillus subtilis is able to utilize at least three inositol stereoisomers as carbon sources, myo-, scyllo-, and D-chiro-inositol (MI, SI, and DCI, respectively). NAD+-dependent SI dehydrogenase responsible for SI catabolism is encoded by iolX. Even in the absence of functional iolX, the presence of SI or MI in the growth medium was found to induce the transcription of iolX through an unknown mechanism. RESULTS: Immediately upstream of iolX, there is an operon that encodes two genes, yisR and iolQ (formerly known as degA), each of which could encode a transcriptional regulator. Here we performed an inactivation analysis of yisR and iolQ and found that iolQ encodes a repressor of the iolX transcription. The coding sequence of iolQ was expressed in Escherichia coli and the gene product was purified as a His-tagged fusion protein, which bound to two sites within the iolX promoter region in vitro. CONCLUSIONS: IolQ is a transcriptional repressor of iolX. Genetic evidences allowed us to speculate that SI and MI might possibly be the intracellular inducers, however they failed to antagonize DNA binding of IolQ in in vitro experiments.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Enzimológica de la Expresión Génica , Inositol/metabolismo , NAD/metabolismo , Proteínas Represoras/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA