Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microbiol Mol Biol Rev ; 64(2): 412-34, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10839821

RESUMEN

Restriction enzymes are well known as reagents widely used by molecular biologists for genetic manipulation and analysis, but these reagents represent only one class (type II) of a wider range of enzymes that recognize specific nucleotide sequences in DNA molecules and detect the provenance of the DNA on the basis of specific modifications to their target sequence. Type I restriction and modification (R-M) systems are complex; a single multifunctional enzyme can respond to the modification state of its target sequence with the alternative activities of modification or restriction. In the absence of DNA modification, a type I R-M enzyme behaves like a molecular motor, translocating vast stretches of DNA towards itself before eventually breaking the DNA molecule. These sophisticated enzymes are the focus of this review, which will emphasize those aspects that give insights into more general problems of molecular and microbial biology. Current molecular experiments explore target recognition, intramolecular communication, and enzyme activities, including DNA translocation. Type I R-M systems are notable for their ability to evolve new specificities, even in laboratory cultures. This observation raises the important question of how bacteria protect their chromosomes from destruction by newly acquired restriction specifities. Recent experiments demonstrate proteolytic mechanisms by which cells avoid DNA breakage by a type I R-M system whenever their chromosomal DNA acquires unmodified target sequences. Finally, the review will reflect the present impact of genomic sequences on a field that has previously derived information almost exclusively from the analysis of bacteria commonly studied in the laboratory.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo I/clasificación , Desoxirribonucleasas de Localización Especificada Tipo I/fisiología , Secuencia de Aminoácidos , Bacteriófagos/fisiología , Secuencia Conservada , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/química , Evolución Molecular , Interacciones Huésped-Parásitos , Datos de Secuencia Molecular , Plásmidos/fisiología , Especificidad por Sustrato , Terminología como Asunto
4.
Microbiol Mol Biol Rev ; 72(2): 365-77, table of contents, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18535150

RESUMEN

SUMMARY: Plasmid R124 was first described in 1972 as being a new member of incompatibility group IncFIV, yet early physical investigations of plasmid DNA showed that this type of classification was more complex than first imagined. Throughout the history of the study of this plasmid, there have been many unexpected observations. Therefore, in this review, we describe the history of our understanding of this plasmid and the type I restriction-modification (R-M) system that it encodes, which will allow an opportunity to correct errors, or misunderstandings, that have arisen in the literature. We also describe the characterization of the R-M enzyme EcoR124I and describe the unusual properties of both type I R-M enzymes and EcoR124I in particular. As we approached the 21st century, we began to see the potential of the EcoR124I R-M enzyme as a useful molecular motor, and this leads to a description of recent work that has shown that the R-M enzyme can be used as a nanoactuator. Therefore, this is a history that takes us from a plasmid isolated from (presumably) an infected source to the potential use of the plasmid-encoded R-M enzyme in bionanotechnology.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/fisiología , Desoxirribonucleasas de Localización Especificada Tipo I/fisiología , Plásmidos/fisiología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/fisiología , Enzimas de Restricción-Modificación del ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/fisiología , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nanoestructuras/química , Plásmidos/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo
5.
J Bacteriol ; 188(15): 5578-85, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16855248

RESUMEN

The Sau1 type I restriction-modification system is found on the chromosome of all nine sequenced strains of Staphylococcus aureus and includes a single hsdR (restriction) gene and two copies of hsdM (modification) and hsdS (sequence specificity) genes. The strain S. aureus RN4220 is a vital intermediate for laboratory S. aureus manipulation, as it can accept plasmid DNA from Escherichia coli. We show that it carries a mutation in the sau1hsdR gene and that complementation restored a nontransformable phenotype. Sau1 was also responsible for reduced conjugative transfer from enterococci, a model of vancomycin resistance transfer. This may explain why only four vancomycin-resistant S. aureus strains have been identified despite substantial selective pressure in the clinical setting. Using a multistrain S. aureus microarray, we show that the two copies of sequence specificity genes (sau1hsdS1 and sau1hsdS2) vary substantially between isolates and that the variation corresponds to the 10 dominant S. aureus lineages. Thus, RN4220 complemented with sau1hsdR was resistant to bacteriophage lysis but only if the phage was grown on S. aureus of a different lineage. Similarly, it could be transduced with DNA from its own lineage but not with the phage grown on different S. aureus lineages. Therefore, we propose that Sau1 is the major mechanism for blocking transfer of resistance genes and other mobile genetic elements into S. aureus isolates from other species, as well as for controlling the spread of resistance genes between isolates of different S. aureus lineages. Blocking Sau1 should also allow genetic manipulation of clinical strains of S. aureus.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo I/fisiología , Transferencia de Gen Horizontal , Genes Bacterianos , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Enzimas de Restricción-Modificación del ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Variación Genética , Especificidad de la Especie , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Resistencia a la Vancomicina
6.
EMBO J ; 24(23): 4188-97, 2005 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-16292342

RESUMEN

Type I restriction enzymes use two motors to translocate DNA before carrying out DNA cleavage. The motor function is accomplished by amino-acid motifs typical for superfamily 2 helicases, although DNA unwinding is not observed. Using a combination of extensive single-molecule magnetic tweezers and stopped-flow bulk measurements, we fully characterized the (re)initiation of DNA translocation by EcoR124I. We found that the methyltransferase core unit of the enzyme loads the motor subunits onto adjacent DNA by allowing them to bind and initiate translocation. Termination of translocation occurs owing to dissociation of the motors from the core unit. Reinitiation of translocation requires binding of new motors from solution. The identification and quantification of further initiation steps--ATP binding and extrusion of an initial DNA loop--allowed us to deduce a complete kinetic reinitiation scheme. The dissociation/reassociation of motors during translocation allows dynamic control of the restriction process by the availability of motors. Direct evidence that this control mechanism is relevant in vivo is provided.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/fisiología , ADN Bacteriano/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/fisiología , Adenosina Trifosfato/metabolismo , Transporte Biológico Activo/fisiología , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Transporte de Proteínas
7.
Cell ; 56(1): 103-9, 1989 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-2642743

RESUMEN

One polypeptide, designated S, confers sequence-specificity to the multisubunit type I restriction enzymes. Two families of such enzymes, K and A, include members that recognize diverse, bipartite, target sequences. The S polypeptides of the K family, while having areas of near identity, also contain two extensive regions of variable sequence. We now show that one of these, comprising the N-terminal 150 amino acids, specifies recognition of one component of the bipartite target sequence. We have determined the sequence recognized by EcoE, a member of the A family. This sequence, 5'GAG(N7)ATGC, has the trinucleotide GAG in common with EcoA and with StySB of the K family. We determined the nucleotide sequences of the S genes of EcoA and EcoE, and compared their predicted amino acid sequences with each other and with those of the five members of the K family. There is no general sequence similarity between families, but the domain of the S polypeptide of StySB, which specifies GAG, shows nearly 50 per cent identity with the amino variable region of the S polypeptides of EcoA and EcoE. A complex domain that recognizes and directs methylation of GAG is therefore common to enzymes of generally dissimilar amino acid sequence.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Desoxirribonucleasas de Localización Especificada Tipo I/fisiología , Escherichia coli/enzimología , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Metilación , Datos de Secuencia Molecular , Especificidad por Sustrato
8.
Mol Microbiol ; 6(14): 1933-41, 1992 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-1508042

RESUMEN

Transmission of unmodified plasmid CoIIb-P9 by bacterial conjugation is markedly resistant to restriction compared with transfer by transformation. One process allowing evasion of type I and II restriction systems involves conjugative transfer of multiple copies of the plasmid. A more specialized evasion mechanism requires the Ard (alleviation of restriction of DNA) system encoded by CoIIb. The ard gene is transferred early in conjugation and specifically alleviates DNA restriction by all known families of type I enzyme, including EcoK. CoIIb has no effect on EcoK modification but this activity is impaired by multicopy recombinant plasmids supporting overexpression of ard. Genetic evidence shows that Ard protects CoIIb from EcoK restriction following conjugative transfer and that this protection requires expression of the gene on the immigrant plasmid. It is proposed that carriage of ard facilitates transfer of CoIIb between its natural enterobacterial hosts and that the route of DNA entry is important to the restriction-evasion mechanism.


Asunto(s)
Conjugación Genética/fisiología , Desoxirribonucleasa EcoRI/fisiología , Desoxirribonucleasas de Localización Especificada Tipo I/fisiología , Plásmidos/fisiología , Transformación Bacteriana/fisiología , ADN Bacteriano/fisiología , Genes Bacterianos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA