Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nature ; 596(7873): 590-596, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34293799

RESUMEN

Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure1. Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold2, at a scale that covers almost the entire human proteome (98.5% of human proteins). The resulting dataset covers 58% of residues with a confident prediction, of which a subset (36% of all residues) have very high confidence. We introduce several metrics developed by building on the AlphaFold model and use them to interpret the dataset, identifying strong multi-domain predictions as well as regions that are likely to be disordered. Finally, we provide some case studies to illustrate how high-quality predictions could be used to generate biological hypotheses. We are making our predictions freely available to the community and anticipate that routine large-scale and high-accuracy structure prediction will become an important tool that will allow new questions to be addressed from a structural perspective.


Asunto(s)
Biología Computacional/normas , Aprendizaje Profundo/normas , Modelos Moleculares , Conformación Proteica , Proteoma/química , Conjuntos de Datos como Asunto/normas , Diacilglicerol O-Acetiltransferasa/química , Glucosa-6-Fosfatasa/química , Humanos , Proteínas de la Membrana/química , Pliegue de Proteína , Reproducibilidad de los Resultados
2.
Nature ; 581(7808): 329-332, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433610

RESUMEN

Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans1. DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins2,3. How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


Asunto(s)
Microscopía por Crioelectrón , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Sitios de Unión , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/ultraestructura , Diglicéridos/metabolismo , Humanos , Modelos Moleculares , Multimerización de Proteína , Relación Estructura-Actividad , Triglicéridos/metabolismo
3.
Nature ; 581(7808): 323-328, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433611

RESUMEN

Triacylglycerols store metabolic energy in organisms and have industrial uses as foods and fuels. Excessive accumulation of triacylglycerols in humans causes obesity and is associated with metabolic diseases1. Triacylglycerol synthesis is catalysed by acyl-CoA diacylglycerol acyltransferase (DGAT) enzymes2-4, the structures and catalytic mechanisms of which remain unknown. Here we determined the structure of dimeric human DGAT1, a member of the membrane-bound O-acyltransferase (MBOAT) family, by cryo-electron microscopy at approximately 3.0 Å resolution. DGAT1 forms a homodimer through N-terminal segments and a hydrophobic interface, with putative active sites within the membrane region. A structure obtained with oleoyl-CoA substrate resolved at approximately 3.2 Å shows that the CoA moiety binds DGAT1 on the cytosolic side and the acyl group lies deep within a hydrophobic channel, positioning the acyl-CoA thioester bond near an invariant catalytic histidine residue. The reaction centre is located inside a large cavity, which opens laterally to the membrane bilayer, providing lipid access to the active site. A lipid-like density-possibly representing an acyl-acceptor molecule-is located within the reaction centre, orthogonal to acyl-CoA. Insights provided by the DGAT1 structures, together with mutagenesis and functional studies, provide the basis for a model of the catalysis of triacylglycerol synthesis by DGAT.


Asunto(s)
Biocatálisis , Microscopía por Crioelectrón , Diacilglicerol O-Acetiltransferasa/metabolismo , Diacilglicerol O-Acetiltransferasa/ultraestructura , Triglicéridos/biosíntesis , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Acilcoenzima A/ultraestructura , Aciltransferasas/química , Aciltransferasas/metabolismo , Dominio Catalítico , Membrana Celular/química , Membrana Celular/metabolismo , Diacilglicerol O-Acetiltransferasa/química , Histidina/química , Histidina/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Multimerización de Proteína , Especificidad por Sustrato
4.
Plant Mol Biol ; 105(3): 247-262, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33089420

RESUMEN

KEY MESSAGE: Two OsDGAT1 genes showed the ability to restore TAG and LB synthesis in yeast H1246. Alterations in the N-terminal region of OsDGAT1-1 gene revealed its regulatory role in gene function. Accumulation of triacylglycerol (TAG) or oil in vegetative tissues has emerged as a promising approach to meet the global needs of food, feed, and fuel. Rice (Oryza sativa) has been recognized as an important cereal crop containing nutritional rice bran oil with high economic value for renewable energy production. To identify the key component involved in storage lipid biosynthesis, two type-1 diacylglycerol acyltransferases (DGAT1) from rice were characterized for its in vivo function in the H1246 (dga1, lro1, are1 and are2) yeast quadruple mutant. The ectopic expression of rice DGAT1 (designated as OsDGAT1-1 and OsDGAT1-2) genes restored the capability of TAG synthesis and lipid body (LB) formation in H1246. OsDGAT1-1 showed nearly equal substrate preferences to C16:0-CoA and 18:1-CoA whereas OsDGAT1-2 displayed substrate selectivity for C16:0-CoA over 18:1-CoA, indicating that these enzymes have contrasting substrate specificities. In parallel, we have identified the intrinsically disordered region (IDR) at the N-terminal domains of OsDGAT1 proteins. The regulatory role of the N-terminal domain was dissected. Single point mutations at the phosphorylation sites and truncations of the N-terminal region highlighted reduced lipid accumulation capabilities among different OsDGAT1-1 variants.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/genética , Oryza/enzimología , Oryza/genética , Saccharomyces cerevisiae/metabolismo , Semillas/enzimología , Semillas/genética , Triglicéridos/metabolismo , Secuencia de Aminoácidos , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Diglicéridos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Gotas Lipídicas/metabolismo , Mutación/genética , Fosforilación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad por Sustrato
5.
Mol Divers ; 25(3): 1481-1495, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34160713

RESUMEN

DGAT1 plays a crucial controlling role in triglyceride biosynthetic pathways, which makes it an attractive therapeutic target for obesity. Thus, development of DGAT1 inhibitors with novel chemical scaffolds is desired and important in the drug discovery. In this investigation, the multistep virtual screening methods, including machine learning methods and common feature pharmacophore model, were developed and used to identify novel DGAT1 inhibitors from BioDiversity database with 30,000 compounds. 531 compounds were predicted as DGAT1 inhibitors by combination of machine learning methods comprising of SVM, NB and RP models. Then, 12 agents were filtered from 531 compounds by using the common feature pharmacophore model. The 3D chemical structures of the 12 hits coordinated with surface charges and isosurface have been carefully analyzed by the established 3D-QSAR model. Finally, 8 compounds with desired properties were retained from the final hits and have been assigned to another research group to complete the follow-up compound synthesis and biologic evaluation.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/química , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Aprendizaje Automático , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Algoritmos , Quimioinformática/métodos , Bases de Datos de Compuestos Químicos , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Curva ROC , Reproducibilidad de los Resultados
6.
Plant J ; 92(1): 82-94, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28715115

RESUMEN

Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) catalyzes the transfer of an acetyl group from acetyl-CoA to the sn-3 position of diacylglycerol to form 3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAG). EaDAcT belongs to a small, plant-specific subfamily of the membrane bound O-acyltransferases (MBOAT) that acylate different lipid substrates. Sucrose gradient density centrifugation revealed that EaDAcT colocalizes to the same fractions as an endoplasmic reticulum (ER)-specific marker. By mapping the membrane topology of EaDAcT, we obtained an experimentally determined topology model for a plant MBOAT. The EaDAcT model contains four transmembrane domains (TMDs), with both the N- and C-termini orientated toward the lumen of the ER. In addition, there is a large cytoplasmic loop between the first and second TMDs, with the MBOAT signature region of the protein embedded in the third TMD close to the interface between the membrane and the cytoplasm. During topology mapping, we discovered two cysteine residues (C187 and C293) located on opposite sides of the membrane that are important for enzyme activity. In order to identify additional amino acid residues important for acetyltransferase activity, we isolated and characterized acetyltransferases from other acetyl-TAG-producing plants. Among them, the acetyltransferase from Euonymus fortunei possessed the highest activity in vivo and in vitro. Mutagenesis of conserved amino acids revealed that S253, H257, D258 and V263 are essential for EaDAcT activity. Alteration of residues unique to the acetyltransferases did not alter the unique acyl donor specificity of EaDAcT, suggesting that multiple amino acids are important for substrate recognition.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Euonymus/enzimología , Acetilcoenzima A/metabolismo , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/genética , Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Euonymus/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1068-1081, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29902571

RESUMEN

Diacylglycerol acyltranferase-2 (DGAT2) is a resident protein of the endoplasmic reticulum that catalyzes the synthesis of triacylglycerol. When lipid droplet formation is stimulated by incubating cells with fatty acids, DGAT2 becomes concentrated around the surface of cytosolic lipid droplets. Using confocal microscopy and directed mutagenesis, we have identified a 17-amino acid sequence in the C-terminal region of DGAT2 that is necessary and sufficient for targeting DGAT2 to lipid droplets. When this region was deleted, DGAT2 remained in the ER and did not target to lipid droplets. Fusing this sequence to mCherry directed the fluorescent reporter to lipid droplets. Similarly, when the corresponding region of monoacylglycerol acyltransferase-2 (MGAT2) was replaced with this sequence, MGAT2 was also targeted to lipid droplets. Lastly, we demonstrated that DGAT2 in ER membranes is continuous with lipid droplets. We propose a new model whereby DGAT2 remains in the ER during lipid droplet formation via it's transmembrane domains and interacts with nascent lipid droplets via its C-terminal lipid droplet interacting domain as they expand.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/genética , Diglicéridos/metabolismo , Retículo Endoplásmico/química , Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Gotas Lipídicas/química , Metabolismo de los Lípidos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , Señales de Clasificación de Proteína , Transporte de Proteínas , Triglicéridos/metabolismo , Proteína Fluorescente Roja
8.
Plant Physiol ; 175(2): 667-680, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28827454

RESUMEN

Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT11-113) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis.


Asunto(s)
Regulación Alostérica , Brassica napus/enzimología , Diacilglicerol O-Acetiltransferasa/química , Modelos Biológicos , Acilcoenzima A/metabolismo , Sitio Alostérico , Secuencia de Aminoácidos , Brassica napus/genética , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Modelos Estructurales , Resonancia Magnética Nuclear Biomolecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triglicéridos/metabolismo
9.
Arch Biochem Biophys ; 655: 1-11, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30077544

RESUMEN

The esterification of a fatty acyl moiety to diacylglycerol to form triacylglycerol (TAG) is catalysed by two diacylglycerol O-acyltransferases (DGATs) encoded by genes belonging to two distinct gene families. The enzymes are referred to as DGAT1 and DGAT2 in order of their identification. Both proteins are transmembrane proteins localized in the endoplasmic reticulum. Their membrane topologies are however significantly different. This difference is hypothesized to give the two isozymes different abilities to interact with other proteins and organelles and access to different pools of fatty acids, thereby creating a distinction between the enzymes in terms of their role and contribution to lipid metabolism. DGAT1 is proposed to have dual topology contributing to TAG synthesis on both sides of the ER membrane and esterifying only the pre-formed fatty acids. There is evidence to suggest that DGAT2 translocates to the lipid droplet (LD), associates with other proteins, and synthesizes cytosolic and luminal apolipoprotein B associated LD-TAG from both endogenous and exogenous fatty acids. The aim of this review is to differentiate between the two DGAT enzymes by comparing the genes that encode them, their proposed topologies, the proteins they interact with, and their roles in lipid metabolism.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Triglicéridos/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Membrana Celular/química , Diacilglicerol O-Acetiltransferasa/genética , Retículo Endoplásmico/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Hígado/metabolismo , Dominios Proteicos
10.
Genome ; 61(10): 735-743, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30092654

RESUMEN

Diacylglycerol acyltransferase (DGAT) catalyzes the only rate-limiting step in the pathway of plant oil (TAG) biosynthesis and is involved in plant development. In this study, five DGAT family members were identified from maize genome database. Phylogenetic analysis classified the ZmDGATs into type-I, II, and III clusters. Conserved functional domain analysis revealed that the proteins encoded by ZmDGAT1 contained conserved MBOAT domains, while two ZmDGAT2-encoding proteins harbored LPLAT domains. qRT-PCR analysis showed that ZmDGAT genes exhibited very high relative expression in developing seeds, especially at the early stage of seed development. Under various abiotic stress conditions, differential responses of ZmDGAT genes were observed. An overall significant induction of ZmDGAT genes under cold stress in leaves and a quick and strong response to osmotic stresses in roots were highlighted. This study provides useful information for understanding the roles of DGATs in oil accumulation and stress responses in higher plants.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Perfilación de la Expresión Génica/métodos , Zea mays/enzimología , Secuencia Conservada , Diacilglicerol O-Acetiltransferasa/química , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Dominios Proteicos , Estrés Fisiológico , Zea mays/genética
11.
Int J Mol Sci ; 19(11)2018 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-30400369

RESUMEN

Diacylglycerol acyltransferase (DGAT) is a rate-limiting enzyme in the synthesis of triacylglycerol (TAG), the most important form of energy storage in plants. Some residues have previously been proven to be crucial for DGAT1 activity. In this study, we used site-directed mutagenesis of the CeDGAT1 gene from Chlorella ellipsoidea to alter 16 amino acids to investigate effects on DGAT1 function. Of the 16 residues (L482R, E542R, Y553A, G577R, R579D, Y582R, R596D, H603D, H609D, A624R, F629R, S632A, W650R, A651R, Q658H, and P660R), we newly identified 5 (L482, R579, H603, A651, and P660) as being essential for DGAT1 function and 7 (E542, G577, R596, H609, A624, S632, and Q658) that significantly affect DGAT1 function to different degrees, as revealed by heterologous expression of the mutants in yeast strain INVSc1. Importantly, compared with CeDGAT1, expression of the mutant CeDGAT1Y553A significantly increased the total fatty acid and TAG contents of INVSc1. Comparison among CeDGAT1Y553A, GmDGAT1Y341A, AtDGAT1Y364A, BnDGAT1Y347A, and BoDGAT1Y352A, in which tyrosine at the position corresponding to the 553rd residue in CeDGAT1 is changed into alanine, indicated that the impact of changing Y to A at position 553 is specific for CeDGAT1. Overall, the results provide novel insight into the structure and function of DGAT1, as well as a mutant gene with high potential for lipid improvement in microalgae and plants.


Asunto(s)
Proteínas Algáceas/genética , Aminoácidos Esenciales/metabolismo , Chlorella/genética , Diacilglicerol O-Acetiltransferasa/genética , Triglicéridos/biosíntesis , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Aminoácidos Esenciales/química , Chlorella/enzimología , Clonación Molecular , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Grasos/biosíntesis , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Metabolismo de los Lípidos/genética , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Triglicéridos/genética
12.
BMC Genomics ; 18(1): 223, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28274201

RESUMEN

BACKGROUND: Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. RESULTS: Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. CONCLUSIONS: Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis.


Asunto(s)
Chlorophyta/metabolismo , Cloroplastos/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Redes y Vías Metabólicas , Triglicéridos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Chlorophyta/clasificación , Chlorophyta/genética , Cloroplastos/genética , Biología Computacional/métodos , Simulación por Computador , Secuencia Conservada , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/genética , Evolución Molecular , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Redes y Vías Metabólicas/ética , Filogenia , Posición Específica de Matrices de Puntuación , Triglicéridos/biosíntesis
13.
Biotechnol Lett ; 39(6): 883-888, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28247196

RESUMEN

OBJECTIVES: To clone and express a diacylglycerol acyltransferase (DGAT) gene from Mortierella alpina in Saccharomyces cerevisiae and characterize oil production and fatty acid composition of the resulting recombinant RESULTS: A new, full-length cDNA, putatively encoding a DGAT, was cloned from M. alpina. We subsequently cloned the gene, except the transmembrane-encoding region, termed MaDGAT, its molecular mass was 31.3 kDa. MaDGAT shares 75% identity with a DGAT from Mortierella verticillata NRRL 6337. A recombinant vector expressing MaDGAT, pYES2-DGAT, was constructed and transformed into S. cerevisiae H1246, a neutral, lipid-deficient quadruple mutant. TLC analysis showed that the recombinant vector restored triacylglycerol biosynthesis and its content in the recombinant strain was 3.9%. CONCLUSION: MaDGAT is a novel DGAT gene and could increase TAG biosynthesis in M. alpina or other filamentous fungi, thereby promoting the synthesis of polyunsaturated fatty acids.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Proteínas Fúngicas/metabolismo , Mortierella/enzimología , Clonación Molecular , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Mortierella/genética , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Triglicéridos/análisis , Triglicéridos/metabolismo
14.
Plant Physiol ; 167(3): 887-904, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25585619

RESUMEN

PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) is an enzyme that catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3-position of sn-1,2-diacylglyerol, thus forming triacylglycerol and a lysophospholipid. Although the importance of PDAT in triacylglycerol biosynthesis has been illustrated in some previous studies, the evolutionary relationship of plant PDATs has not been studied in detail. In this study, we investigated the evolutionary relationship of the PDAT gene family across the green plants using a comparative phylogenetic framework. We found that the PDAT candidate genes are present in all examined green plants, including algae, lowland plants (a moss and a lycophyte), monocots, and eudicots. Phylogenetic analysis revealed the evolutionary division of the PDAT gene family into seven major clades. The separation is supported by the conservation and variation in the gene structure, protein properties, motif patterns, and/or selection constraints. We further demonstrated that there is a eudicot-wide PDAT gene expansion, which appears to have been mainly caused by the eudicot-shared ancient gene duplication and subsequent species-specific segmental duplications. In addition, selection pressure analyses showed that different selection constraints have acted on three core eudicot clades, which might enable paleoduplicated PDAT paralogs to either become nonfunctionalized or develop divergent expression patterns during evolution. Overall, our study provides important insights into the evolution of the plant PDAT gene family and explores the evolutionary mechanism underlying the functional diversification among the core eudicot PDAT paralogs.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/genética , Genes de Plantas , Plantas/enzimología , Plantas/genética , Selección Genética , Homología de Secuencia de Ácido Nucleico , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada/genética , Diacilglicerol O-Acetiltransferasa/química , Evolución Molecular , Exones/genética , Duplicación de Gen , Intrones/genética , Punto Isoeléctrico , Funciones de Verosimilitud , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alineación de Secuencia , Especificidad de la Especie
15.
Biochim Biophys Acta ; 1841(9): 1318-28, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24953780

RESUMEN

Acyl CoA:diacylglycerol acyltransferase-2 (DGAT2) is an integral membrane protein that catalyzes the synthesis of triacylglycerol (TG). DGAT2 is present in the endoplasmic reticulum (ER) and also localizes to lipid droplets when cells are stimulated with oleate. Previous studies have shown that DGAT2 can interact with membranes and lipid droplets independently of its two transmembrane domains, suggesting the presence of an additional membrane binding domain. In order to identify additional membrane binding regions, we confirmed that DGAT2 has only two transmembrane domains and demonstrated that the loop connecting them is present in the ER lumen. Increasing the length of this short loop from 5 to 27 amino acids impaired the ability of DGAT2 to localize to lipid droplets. Using a mutagenesis approach, we were able to identify a stretch of amino acids that appears to have a role in binding DGAT2 to the ER membrane. Our results confirm that murine DGAT2 has only two transmembrane domains but also can interact with membranes via a previously unidentified helical domain containing its active site.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Retículo Endoplásmico/metabolismo , Triglicéridos/química , Animales , Células COS , Fraccionamiento Celular , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/genética , Retículo Endoplásmico/química , Retículo Endoplásmico/efectos de los fármacos , Expresión Génica , Células HEK293 , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Ácido Oléico/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Triglicéridos/biosíntesis
16.
Plant Biotechnol J ; 13(4): 540-50, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25403771

RESUMEN

Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 10(6) cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae.


Asunto(s)
Brassica/enzimología , Chlamydomonas reinhardtii/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Lípidos/análisis , Transfección , Secuencia de Aminoácidos , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/genética , Diacilglicerol O-Acetiltransferasa/química , Lípidos/biosíntesis , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
17.
J Biol Chem ; 288(14): 9915-9923, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23420847

RESUMEN

The triglyceride-synthesizing enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) plays a critical role in hepatitis C virus (HCV) infection by recruiting the HCV capsid protein core onto the surface of cellular lipid droplets (LDs). Here we find a new interaction between the non-structural protein NS5A and DGAT1 and show that the trafficking of NS5A to LDs depends on DGAT1 activity. DGAT1 forms a complex with NS5A and core and facilitates the interaction between both viral proteins. A catalytically inactive mutant of DGAT1 (H426A) blocks the localization of NS5A, but not core, to LDs in a dominant-negative manner and impairs the release of infectious viral particles, underscoring the importance of DGAT1-mediated translocation of NS5A to LDs in viral particle production. We propose a model whereby DGAT1 serves as a cellular hub for HCV core and NS5A proteins, guiding both onto the surface of the same subset of LDs, those generated by DGAT1. These results highlight the critical role of DGAT1 as a host factor for HCV infection and as a potential drug target for antiviral therapy.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/fisiología , Regulación Viral de la Expresión Génica , Hepacivirus/metabolismo , Proteínas no Estructurales Virales/química , Animales , Antivirales/farmacología , Cápside/química , Línea Celular , Genes Dominantes , Células HEK293 , Hepatitis C/virología , Humanos , Lentivirus/genética , Lípidos/química , Ratones , Microscopía Fluorescente/métodos , Mutación , Plásmidos/metabolismo , Unión Proteica , Triglicéridos/química , Triglicéridos/metabolismo , Proteínas no Estructurales Virales/fisiología
18.
Int J Biol Macromol ; 278(Pt 1): 134363, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089556

RESUMEN

Acetyl-coenzyme A carboxylase (ACC) and diacylglycerol acyltransferase 2 (DGAT2) are recognized as potential therapeutic targets for nonalcoholic fatty liver disease (NAFLD). Inhibitors targeting ACC and DGAT2 have exhibited the capacity to reduce hepatic fat in individuals afflicted with NAFLD. However, there are no reports of dual inhibitors targeting ACC and DGAT2 for the treatment of NAFLD. Here, we aimed to identify potential dual inhibitors of ACC and DGAT2 using an integrated in silico approach. Machine learning-based virtual screening of commercial molecule databases yielded 395,729 hits, which were subsequently subjected to molecular docking aimed at both the ACC and DGAT2 binding sites. Based on the docking scores, nine compounds exhibited robust interactions with critical residues of both ACC and DGAT2, displaying favorable drug-like features. Molecular dynamics simulations (MDs) unveiled the substantial impact of these compounds on the conformational dynamics of the proteins. Furthermore, binding free energy assessments highlighted the notable binding affinities of specific compounds (V003-8107, G340-0503, Y200-1700, E999-1199, V003-6429, V025-4981, V006-1474, V025-0499, and V021-8916) to ACC and DGAT2. The compounds proposed in this study, identified using a multifaceted computational strategy, warrant experimental validation as potential dual inhibitors of ACC and DGAT2, with implications for the future development of novel drugs targeting NAFLD.


Asunto(s)
Acetil-CoA Carboxilasa , Diacilglicerol O-Acetiltransferasa , Inhibidores Enzimáticos , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Sitios de Unión , Unión Proteica , Evaluación Preclínica de Medicamentos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
19.
Traffic ; 12(4): 452-72, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21214700

RESUMEN

The endoplasmic reticulum (ER) is a dynamic organelle that consists of numerous regions or 'subdomains' that have discrete morphological features and functional properties. Although it is generally accepted that these subdomains differ in their protein and perhaps lipid compositions, a clear understanding of how they are assembled and maintained has not been well established. We previously demonstrated that two diacylglycerol acyltransferase enzymes (DGAT1 and DGAT2) from tung tree (Vernicia fordii) were located in different subdomains of ER, but the mechanisms responsible for protein targeting to these subdomains were not elucidated. Here we extend these studies by describing two glycerol-3-phosphate acyltransferase-like (GPAT) enzymes from tung tree, GPAT8 and GPAT9, that both colocalize with DGAT2 in the same ER subdomains. Measurement of protein-protein interactions using the split-ubiquitin assay revealed that GPAT8 interacts with itself, GPAT9 and DGAT2, but not with DGAT1. Furthermore, mutational analysis of GPAT8 revealed that the protein's first predicted hydrophobic region, which contains an amphipathic helix-like motif, is required for interaction with DGAT2 and for DGAT2-dependent colocalization in ER subdomains. Taken together, these results suggest that the regulation and organization of ER subdomains is mediated at least in part by higher-ordered, hydrophobic-domain-dependent homo- and hetero-oligomeric protein-protein interactions.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Retículo Endoplásmico/enzimología , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Aleurites/enzimología , Aleurites/genética , Aleurites/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Células Cultivadas , Diacilglicerol O-Acetiltransferasa/química , Glicerol-3-Fosfato O-Aciltransferasa/química , Glicerol-3-Fosfato O-Aciltransferasa/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Levaduras
20.
Biochim Biophys Acta Biomembr ; 1865(1): 184069, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216097

RESUMEN

With the advent of modern detectors and robust structure solution pipeline, cryogenic electron microscopy has recently proved to be game changer in structural biology. Membrane proteins are challenging targets for structural biologists. This minireview focuses a membrane embedded triglyceride synthesizing machine, DGAT1. Decades of research had built the foundational knowledge on this enzyme's activity. However, recently solved cryo-EM structures of this enzyme, in apo and bound form, has provided critical mechanistic insights. The flipping of the catalytic histidine is critical of enzyme catalysis. The structures explain why the enzyme has preference to long fatty acyl chains over the short forms.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Histidina , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA