Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 738
Filtrar
1.
Brain Behav Immun ; 119: 105-119, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548186

RESUMEN

The sympathetic arm of the inflammatory reflex is the efferent pathway through which the central nervous system (CNS) can control peripheral immune responses. Diminazene aceturate (DIZE) is an antiparasitic drug that has been reported to exert protective effects on various experimental models of inflammation. However, the pathways by which DIZE promotes a protective immunomodulatory effects still need to be well established, and no studies demonstrate the capacity of DIZE to modulate a neural reflex to control inflammation. C57BL/6 male mice received intraperitoneal administration of DIZE (2 mg/Kg) followed by lipopolysaccharide (LPS, 5 mg/Kg, i.p.). Endotoxemic animals showed hyperresponsiveness to inflammatory signals, while those treated with DIZE promoted the activation of the inflammatory reflex to attenuate the inflammatory response during endotoxemia. The unilateral cervical vagotomy did not affect the anti-inflammatory effect of DIZE in the spleen and serum. At the same time, splenic denervation attenuated tumor necrosis factor (TNF) synthesis in the spleen and serum. Using broad-spectrum antibiotics for two weeks showed that LPS modulated the microbiota to induce a pro-inflammatory profile in the intestine and reduced the serum concentration of tryptophan and serotonin (5-HT), while DIZE restored serum tryptophan and increased the hypothalamic 5-HT levels. Furthermore, the treatment with 4-Chloro-DL-phenylalanine (pcpa, an inhibitor of 5-HT synthesis) abolished the anti-inflammatory effects of the DIZE in the spleen. Our results indicate that DIZE promotes microbiota modulation to increase central 5-HT levels and activates the efferent sympathetic arm of the inflammatory reflex to control splenic TNF production in endotoxemic mice.


Asunto(s)
Diminazeno , Endotoxemia , Microbioma Gastrointestinal , Inflamación , Lipopolisacáridos , Ratones Endogámicos C57BL , Serotonina , Bazo , Sistema Nervioso Simpático , Animales , Masculino , Ratones , Bazo/metabolismo , Bazo/efectos de los fármacos , Diminazeno/análogos & derivados , Diminazeno/farmacología , Lipopolisacáridos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/metabolismo , Serotonina/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Endotoxemia/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Eje Cerebro-Intestino/efectos de los fármacos , Antiinflamatorios/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Biochem Mol Toxicol ; 38(1): e23527, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37681557

RESUMEN

Diminazene aceturate (DIZE) is an FDA-listed small molecule known for the treatment of African sleeping sickness. In vivo studies showed that DIZE may be beneficial for a range of human ailments. However, there is very limited information on the effects of DIZE on human cancer cells. The current study aimed to investigate the cytotoxic responses of DIZE, using the human carcinoma Hela cell line. WST-1 cell proliferation assay showed that DIZE inhibited the viability of Hela cells in a dose-dependent manner and the observed response was associated with the downregulation of Ki67 and PCNA cell proliferation markers. DIZE-treated cells stained with acridine orange-ethidium and JC-10 dye revealed cell death and loss of mitochondrial membrane potential (Ψm), compared with DMSO (vehicle) control, respectively. Cellular immunofluorescence staining of DIZE-treated cells showed upregulation of caspase 3 activities. DIZE-treated cells showed downregulation of mRNA for G1/S genes CCNA2 and CDC25A, S-phase genes MCM3 and PLK4, and G2/S phase transition/mitosis genes Aurka and PLK1. These effects were associated with decreased mRNA expression of Furin, c-Myc, and FOXM1 oncogenes. These results suggested that DIZE may be considered for its effects on other cancer types. To the best of our knowledge, this is the first study to evaluate the effect of DIZE on human cervical cancer cells.


Asunto(s)
Diminazeno/análogos & derivados , Peptidil-Dipeptidasa A , Neoplasias del Cuello Uterino , Femenino , Humanos , Peptidil-Dipeptidasa A/metabolismo , Células HeLa , Regulación hacia Abajo , Neoplasias del Cuello Uterino/genética , Furina/genética , Furina/metabolismo , Oncogenes , Ciclo Celular , ARN Mensajero , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
3.
BMC Vet Res ; 20(1): 32, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279149

RESUMEN

BACKGROUND: Animal trypanosomiasis is a major livestock problem due to its socioeconomic impacts in tropical countries. Currently used trypanocides are toxic, expensive, and the parasites have developed resistance to the existing drugs, which calls for an urgent need of new effective and safe chemotherapeutic agents from alternative sources such as medicinal plants. In Ethiopian traditional medicine fresh leaves of Ranunculus multifidus Forsk, are used for the treatment of animal trypanosomiasis. The present study aimed to evaluate the antitrypanosomal activity of the fresh leaves of R. multifidus and its major compound anemonin against Trypanosoma congolense field isolate. METHODS: Fresh leaves of R. multifidus were extracted by maceration with 80% methanol and hydro-distillation to obtain the corresponding extracts. Anemonin was isolated from the hydro-distilled extract by preparative TLC. For the in vitro assay, 0.1, 0.4, 2 and 4 mg/ml of the test substances were incubated with parasites and cessation or drop in motility of the parasites was monitored for a total duration of 1 h. In the in vivo assay, the test substances were administered intraperitoneally daily for 7 days to mice infected with Trypanosoma congolense. Diminazene aceturate and 1% dimethylsulfoxide (DMSO) were used as positive and negative controls, respectively. RESULTS: Both extracts showed antitrypanosomal activity although the hydro-distilled extract demonstrated superior activity compared to the hydroalcoholic extract. At a concentration of 4 mg/ml, the hydro-distilled extract drastically reduced motility of trypanosomes within 20 min. Similarly, anemonin at the same concentration completely immobilized trypanosomes within 5 min of incubation, while diminazene aceturate (28.00 mg/kg/day) immobilized the parasites within 10 min. In the in vivo antitrypanosomal assay, anemonin eliminates parasites at all the tested doses (8.75, 17.00 and 35.00 mg/kg/day) and prevented relapse, while in diminazene aceturate-treated mice the parasites reappeared on days 12 to 14. CONCLUSIONS: The current study demonstrated that the fresh leaves of R. multifidus possess genuine antitrypanosomal activity supporting the use of the plant for the treatment of animal trypanosomiasis in traditional medicine. Furthermore, anemonin appears to be responsible for the activity suggesting its potential as a scaffold for the development of safe and cost effective antitrypanosomal agent.


Asunto(s)
Furanos , Ranunculus , Tripanocidas , Tripanosomiasis Africana , Animales , Ratones , Diminazeno/farmacología , Diminazeno/uso terapéutico , Músculos Paraespinales , Extractos Vegetales/uso terapéutico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Trypanosoma congolense , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria
4.
Can J Physiol Pharmacol ; 102(6): 383-390, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377482

RESUMEN

Hyperthyroidism is a condition where the thyroid gland produces high levels of thyroid hormone. Heart diseases are one of the main complications of hyperthyroidism. Several studies have shown that losartan (LOS) and diminazene aceturate (DIZE) possess cardioprotection effects against cardiac hypertrophy, ischemic heart disease, and heart failure. The research aimed to investigate the cardioprotection of LOS, DIZE, and their combination in the case of levothyroxine (LT4)-induced cardiomyopathy in rats. Hyperthyroidism was induced by LT4 in drinking water (12 mg/L) for 28 days. LOS (10 mg/kg, orally) and/or DIZE (15 mg/kg, subcutaneously) were administrated in rats with hyperthyroidism for 28 days. Decreased serum creatine kinase myoglobin and lactate dehydrogenase levels and cardiac hypertrophy by DIZE and combination therapy in hyperthyroidism rats have been reported. Cardiac hemodynamic findings showed that DIZE and its combination with LOS decreased the LT4-mediated left ventricular developed pressure (LVDP), rate pressure product (RPP), and RPP recovery percentage. Elevated cardiac oxidative stress and inflammation were confirmed by decreasing cardiac superoxide dismutase (SOD) activity and increasing the total oxidative stress and tumor necrosis factor-alpha (TNF-α) levels. SOD activity and TNF-α level were reversed by LOS and DIZE administration, respectively. Generally, DIZE and combination therapy with LOS improved cardiac dysfunction caused by hyperthyroidism in rats, whereas LOS alone has not been able to effectively respond to this dysfunction.


Asunto(s)
Cardiotónicos , Diminazeno , Hipertiroidismo , Losartán , Daño por Reperfusión Miocárdica , Estrés Oxidativo , Animales , Hipertiroidismo/tratamiento farmacológico , Hipertiroidismo/complicaciones , Losartán/farmacología , Losartán/uso terapéutico , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Diminazeno/análogos & derivados , Diminazeno/farmacología , Diminazeno/uso terapéutico , Ratas , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Tiroxina , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/sangre
5.
Trop Anim Health Prod ; 55(5): 315, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737958

RESUMEN

Chemoprophylaxis with dipropionate imidocarb (IMD) is a method adopted to prevent cattle tick fever (TF). Sixty weaned dairy heifers (±60 days old), without previous exposure to Rhipicephalus microplus ticks, were housed in Tifton paddocks and were subsequently exposed to R. microplus ticks and monitored up to 315 days old. Thirty animals were kept as controls (T01) and 30 received five preventive strategic treatments with IMD at 21-day intervals (T02). The heifers were monitored weekly by means of packed cell volume (PCV) and blood smears to evaluate the presence of TF agents. Salvage treatments (ST) with diminazene and enrofloxacin were administered when animals showed PCV ≤ 24%. The A. marginale prevalence was 39.3% and 37.7%, B. bovis 6.0%, and 7.3%, and B. bigemina 16.3% and 13.7% for T01 and T02, respectively. Regarding PCV values, group T01 showed lower PCV than group T02, between 119 and 161 days of life, but when animals were 196, 210, 217, and between 252 to 301 days old, an inversion occurred. The IMD treatment protocol was effective in group T02 from day 91 to 175 while treatment was being administered, but from day 182 to 315 after the IMD treatment protocol was completed, the number of salvage treatments against TF agents performed in T02 group increased significantly. The sequential application of IMD treatments with intervals less than 21 days is not recommended.


Asunto(s)
Anaplasmosis , Babesiosis , Enfermedades de los Bovinos , Animales , Bovinos , Femenino , Imidocarbo , Diminazeno , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/prevención & control
6.
Clin Infect Dis ; 75(9): 1637-1640, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-35514134

RESUMEN

Four cases of cutaneous Balamuthia mandrillaris infection were treated with diminazene aceturate. One patient was cured with mainly monotherapy, 2 patients were cured with diminazene aceturate and excision, and 1 patient died of drug-induced liver damage. This is the first report of B. mandrillaris infection treated with diminazene aceturate.


Asunto(s)
Amebiasis , Balamuthia mandrillaris , Humanos , Diminazeno/uso terapéutico , Celulitis (Flemón)
7.
Mol Microbiol ; 116(2): 564-588, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33932053

RESUMEN

Trypanosoma congolense is a principal agent causing livestock trypanosomiasis in Africa, costing developing economies billions of dollars and undermining food security. Only the diamidine diminazene and the phenanthridine isometamidium are regularly used, and resistance is widespread but poorly understood. We induced stable diminazene resistance in T. congolense strain IL3000 in vitro. There was no cross-resistance with the phenanthridine drugs, melaminophenyl arsenicals, oxaborole trypanocides, or with diamidine trypanocides, except the close analogs DB829 and DB75. Fluorescence microscopy showed that accumulation of DB75 was inhibited by folate. Uptake of [3 H]-diminazene was slow with low affinity and partly but reciprocally inhibited by folate and by competing diamidines. Expression of T. congolense folate transporters in diminazene-resistant Trypanosoma brucei brucei significantly sensitized the cells to diminazene and DB829, but not to oxaborole AN7973. However, [3 H]-diminazene transport studies, whole-genome sequencing, and RNA-seq found no major changes in diminazene uptake, folate transporter sequence, or expression. Instead, all resistant clones displayed a moderate reduction in the mitochondrial membrane potential Ψm. We conclude that diminazene uptake in T. congolense proceed via multiple low affinity mechanisms including folate transporters; while resistance is associated with a reduction in Ψm it is unclear whether this is the primary cause of the resistance.


Asunto(s)
Diminazeno/farmacología , Potencial de la Membrana Mitocondrial/fisiología , Tripanocidas/farmacología , Trypanosoma congolense/efectos de los fármacos , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Bovina/tratamiento farmacológico , Animales , Bovinos , Resistencia a Medicamentos/fisiología , Transportadores de Ácido Fólico/metabolismo , Fenantridinas/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Tripanosomiasis Bovina/parasitología
8.
J Pharmacol Exp Ther ; 382(2): 113-122, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35688477

RESUMEN

Nafamostat is an approved short-acting serine protease inhibitor. However, its administration is also associated with anaphylactic reactions. One mechanism to augment hypersensitivity reactions could be inhibition of diamine oxidase (DAO). The chemical structure of nafamostat is related to the potent DAO inhibitors pentamidine and diminazene. Therefore, we tested whether nafamostat is a human DAO inhibitor. Using different activity assays, nafamostat reversibly inhibited recombinant human DAO with an IC50 of 300-400 nM using 200 µM substrate concentrations. The Ki of nafamostat for the inhibition of putrescine and histamine deamination is 27 nM and 138 nM, respectively For both substrates, nafamostat is a mixed mode inhibitor with P values of <0.01 compared with other inhibition types. Using 80-90% EDTA plasma, the IC50 of nafamostat inhibition was approximately 360 nM using 20 µM cadaverine. In 90% EDTA plasma, the IC50 concentrations were 2-3 µM using 0.9 µM and 0.18 µM histamine as substrate. In silico modeling showed a high overlap compared with published diminazene crystallography data, with a preferred orientation of the guanidine group toward topaquinone. In conclusion, nafamostat is a potent human DAO inhibitor and might increase severity of anaphylactic reaction by interfering with DAO-mediated extracellular histamine degradation. SIGNIFICANCE STATEMENT: Treatment with the short-acting anticoagulant nafamostat during hemodialysis, leukocytapheresis, extracorporeal membrane oxygenator procedures, and disseminated intravascular coagulation is associated with severe anaphylaxis in humans. Histamine is a central mediator in anaphylaxis. Potent inhibition of the only extracellularly histamine-degrading enzyme diamine oxidase could augment anaphylaxis reactions during nafamostat treatment.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Anafilaxia , Amina Oxidasa (conteniendo Cobre)/metabolismo , Benzamidinas , Diminazeno , Ácido Edético , Guanidinas/efectos adversos , Histamina/efectos adversos , Histamina/metabolismo , Humanos
9.
Can J Physiol Pharmacol ; 100(3): 234-239, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34587465

RESUMEN

Persistent hyperglycemia in type 1 diabetes triggers numerous signaling pathways, which may prove deleterious to the endothelium. As hyperglycemia damages the endothelial layer via multiple signaling pathways, including enhanced oxidative stress, downregulation of angiotensin-converting enzyme 2 signaling, and exacerbation of endoplasmic reticulum (ER) stress, it becomes difficult to prevent injury using monotherapy. Thus, the present study was conceived to evaluate the combined effect of ER stress inhibition along with angiotensin-converting enzyme 2 activation, two major contributors to hyperglycemia-induced endothelial dysfunction, in preventing endothelial dysfunction associated with type 1 diabetes. Streptozotocin-induced diabetic animals were treated with either diminazene aceturate (5 mg·kg-1 per day, p.o.) or tauroursodeoxycholic acid, sodium salt (200 mg·kg-1 per day i.p.), or both for 4 weeks. Endothelial dysfunction was evaluated using vasoreactivity assay, where acetylcholine-induced relaxation was assessed in phenylephrine pre-contracted rings. Combination therapy significantly improved vascular relaxation when compared with diabetic control as well as monotherapy. Restoration of nitrite levels along with prevention of collagen led to improved vasodilatation. Moreover, there was an overall reduction in aortic oxidative stress. We conclude that by simultaneously inhibiting ER stress and activating angiotensin-converting enzyme 2 deleterious effects of hyperglycemia on endothelium were significantly alleviated. This could serve as a novel strategy for the prevention of endothelial dysfunction.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diminazeno/análogos & derivados , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Ácido Tauroquenodesoxicólico/administración & dosificación , Animales , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/fisiopatología , Diminazeno/administración & dosificación , Diminazeno/farmacología , Quimioterapia Combinada , Endotelio Vascular/fisiopatología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Estreptozocina , Ácido Tauroquenodesoxicólico/farmacología
10.
Parasitol Res ; 121(1): 423-431, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34746978

RESUMEN

African animal trypanosomosis is an important wasting and endemic protozoan disease causing morbidities and mortalities in animals in the sub-Saharan Africa. Currently, chemotherapy is the widely used method of African animal trypanosomosis control, especially in dogs in the sub-Saharan Africa. However, their efficacy is threatened by the emergence of drug-resistant trypanosomes owing to their extensive use and misuse over several decades amongst other factors. Thus, this study focused on the trypanocidal sensitivity and characterization of Trypanosoma species isolated from dogs in Enugu North Senatorial Zone (ENSZ), Southeastern Nigeria. Trypanosoma brucei (n = 44) and T. congolense (n = 4) isolated from naturally infected dogs in ENSZ, Southeastern Nigeria, between January and August 2016 were subjected to single dose test to assess their sensitivity to diminazene aceturate (DA) and isometamidium chloride (ISM). Subsequently, DA and multidrug-resistant isolates were further subjected to DA multi-dose test and CD50 was determined and was used to characterize the drug-resistant trypanosomes. Clones were derived from a randomly selected multidrug-resistant isolate and their sensitivity also assessed. 100% and 83.3% of T. congolense and T. brucei respectively were resistant to the trypanocides. Amongst the drug-resistant isolates, 50%, 16.7%, and 33.3% were resistant to DA, ISM, and both trypanocides respectively with CD50 ranging between 11 and 32.34 mg/kg. Drug-resistant trypanosomes were characterized into highly resistant (CD50 = 11-24.99 mg/kg) and very highly resistant (CD50 = > 25 mg/kg) trypanosome isolates. Clones also expressed high levels of resistance to both DA and ISM with CD50 values between 35.58 and 38.85 mg/kg. Trypanocidal resistance was, thus, confirmed and appears to be widespread in dogs in ENSZ, Southeastern Nigeria. The adoption of an integrated trypanosomosis control strategy in ENSZ is most desirous.


Asunto(s)
Preparaciones Farmacéuticas , Tripanocidas , Trypanosoma congolense , Tripanosomiasis Africana , Animales , Diminazeno , Perros , Resistencia a Medicamentos , Nigeria , Tripanocidas/farmacología , Tripanosomiasis Africana/tratamiento farmacológico
11.
Drug Chem Toxicol ; 45(5): 2003-2013, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33685320

RESUMEN

The diminazene aceturate (C14H15N7.2C4H7NO3) is a chemotherapeutic agent with more than six decades of use, however more studies regarding its toxicity still need to be performed. Thus, the present study determined the acute toxicity (14 days) of diminazene acetate (DIZE) in male and female swiss mice by changes in body mass, food consumption, biochemical and hematological parameters, locomotor activity and motor coordination. DIZE was administered at a single dose (1000 and 2000 mg/kg) orally. In addition, in vitro antioxidant capacity, hemolytic activity, toxicity in Artemia salina and in silico evaluation were also performed. The results obtained include several signs of toxicity (hypoactivity, loss of the straightening reflex and tachycardia), reduction of behavioral activity (locomotor activity and motor coordination) and significant changes (p < 0.05) in biochemical and hematological parameters. According to the in silico study, the DIZE can be classified based on the mean lethal dose (LD50) in category 4 (300 mg/kg < LD50 ≤ 2000 mg/kg, ProTox-II) or 3 (50 mg/kg < LD50 ≤ 300 mg/kg, AdmetSAR 1.0). Additionally, DIZE (30.3-969.9 nM) was not toxic to A. salina in the first 48 hours of treatment and was not cytotoxic to rat red blood cells after induced hemolysis. In vitro results indicated low antioxidant capacity against DPPH• and ABTS•+ radicals. Therefore, DIZE induces several adverse effects with influence on the central nervous system, changes in hematological and biochemical parameters and even mortality at the highest dose. However, absence of toxicity was observed in A. salina and rats red blood cells.


Asunto(s)
Antiparasitarios , Diminazeno , Enzima Convertidora de Angiotensina 2 , Animales , Antioxidantes , Antiparasitarios/uso terapéutico , Diminazeno/análogos & derivados , Diminazeno/toxicidad , Femenino , Masculino , Ratones , Peptidil-Dipeptidasa A , Ratas , Ratas Wistar
12.
J Cell Mol Med ; 25(3): 1342-1349, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33443816

RESUMEN

SARS-CoV-2, the virus responsible for the global coronavirus disease (COVID-19) pandemic, attacks multiple organs of the human body by binding to angiotensin-converting enzyme 2 (ACE2) to enter cells. More than 20 million people have already been infected by the virus. ACE2 is not only a functional receptor of COVID-19 but also an important endogenous antagonist of the renin-angiotensin system (RAS). A large number of studies have shown that ACE2 can reverse myocardial injury in various cardiovascular diseases (CVDs) as well as is exert anti-inflammatory, antioxidant, anti-apoptotic and anticardiomyocyte fibrosis effects by regulating transforming growth factor beta, mitogen-activated protein kinases, calcium ions in cells and other major pathways. The ACE2/angiotensin-(1-7)/Mas receptor axis plays a decisive role in the cardiovascular system to combat the negative effects of the ACE/angiotensin II/angiotensin II type 1 receptor axis. However, the underlying mechanism of ACE2 in cardiac protection remains unclear. Some approaches for enhancing ACE2 expression in CVDs have been suggested, which may provide targets for the development of novel clinical therapies. In this review, we aimed to identify and summarize the role of ACE2 in CVDs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , Enfermedades Cardiovasculares/metabolismo , Enzima Convertidora de Angiotensina 2/farmacología , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , COVID-19/metabolismo , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/fisiopatología , Diminazeno/farmacología , Insuficiencia Cardíaca/etiología , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Proteínas Recombinantes/farmacología , Tratamiento Farmacológico de COVID-19
13.
Analyst ; 146(15): 4927-4933, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34254081

RESUMEN

We prepared monoclonal antibodies (mAbs) against diminazene and used them in the development of a gold nanoparticle-based lateral-flow test (GNT) strip and indirect competitive enzyme-linked immunosorbent assay for the detection of diminazene in beef and beef liver samples. MAbs, which belong to the IgG2a subclass, had a half maximal inhibitory concentration of 0.04 ng mL-1. Based on cross-reactivity, mAb against diminazene was highly specific. The visual limit of detection (vLOD) of the GNT strip was 0.1 µg kg-1, and the cut-off value was 1 µg kg-1 in beef samples. The vLOD of the GNT assay was 0.1 µg kg-1, and the cut-off value was 2 µg kg-1 in beef liver samples. The average recoveries of diminazene ranged from 97.5% to 103.7% when using ic-ELISA. The accuracy of the developed GNT strip was confirmed by comparing the results with the ic-ELISA results. We developed a reliable GNT strip assay for the rapid detection of diminazene in beef and beef liver samples.


Asunto(s)
Oro , Nanopartículas del Metal , Cromatografía de Afinidad , Diminazeno , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo
14.
Exp Parasitol ; 221: 108050, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33307095

RESUMEN

Heat shock protein 90 (HSP90) is a molecular chaperon and an essential component for stage differentiation and intracellular growth inside the host cells of many protozoans. HSP90 of Babesia gibsoni (BgHSP90) was suggested to function in the development of diminazene aceturate (DA)-resistance. Therefore, we examined the expression level of BgHSP90 in a DA-resistant B. gibsoni isolate. Transcription of the BgHSP90 gene in the DA-resistant isolate and wild-type B. gibsoni was assessed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). As a result, the copy number and relative amount of BgHSP90 transcripts in the DA-resistant isolate were significantly lower than those in the wild-type. Moreover, a rabbit anti-recombinant BgHSP90 antibody was developed, and the protein synthesis of BgHSP90 in the DA-resistant isolate was compared with that in the wild-type by Western blot analysis and indirect fluorescence assay. There was significantly less BgHSP90 protein than in the wild-type. Additionally, the relative intensity of BgHSP70 in DA-resistant isolate was also lower than that in the wild-type. This suggested that the expression of BgHSP90 and BgHSP70 in the DA-resistant B. gibsoni isolate was suppressed and that the reduced amount of BgHSP90 and BgHSP70 might cause the weak proliferation of the DA-resistant isolate. Further studies are necessary to elucidate the function of BgHSP90.


Asunto(s)
Antiprotozoarios/farmacología , Babesia/efectos de los fármacos , Babesia/metabolismo , Diminazeno/análogos & derivados , Proteínas HSP90 de Choque Térmico/metabolismo , Animales , Western Blotting , Diminazeno/farmacología , Perros , Resistencia a Medicamentos , Electroforesis en Gel de Poliacrilamida , Eritrocitos/química , Eritrocitos/parasitología , Técnica del Anticuerpo Fluorescente Indirecta , Immunoblotting , Potasio/metabolismo , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070749

RESUMEN

Atherosclerosis and nonalcoholic fatty liver disease are leading causes of morbidity and mortality in the Western countries. The renin-angiotensin system (RAS) with its two main opposing effectors, i.e., angiotensin II (Ang II) and Ang-(1-7), is widely recognized as a major regulator of cardiovascular function and body metabolic processes. Angiotensin-converting enzyme 2 (ACE2) by breaking-down Ang II forms Ang-(1-7) and thus favors Ang-(1-7) actions. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with ACE2 activator, diminazene aceturate (DIZE) on the development of atherosclerotic lesions and hepatic steatosis in apoE-/- mice fed a high-fat diet (HFD). We have shown that DIZE stabilized atherosclerotic lesions and attenuated hepatic steatosis in apoE-/- mice fed an HFD. Such effects were associated with decreased total macrophages content and increased α-smooth muscle actin levels in atherosclerotic plaques. Moreover, DIZE changed polarization of macrophages towards increased amount of anti-inflammatory M2 macrophages in the atherosclerotic lesions. Interestingly, the anti-steatotic action of DIZE in the liver was related to the elevated levels of HDL in the plasma, decreased levels of triglycerides, and increased biosynthesis and concentration of taurine in the liver of apoE-/- mice. However, exact molecular mechanisms of both anti-atherosclerotic and anti-steatotic actions of DIZE require further investigations.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Aterosclerosis/tratamiento farmacológico , Diminazeno/análogos & derivados , Hígado Graso/tratamiento farmacológico , Placa Aterosclerótica/tratamiento farmacológico , Taurina/biosíntesis , Angiotensina I/genética , Angiotensina I/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/etiología , Aterosclerosis/genética , Aterosclerosis/patología , Dieta Alta en Grasa , Diminazeno/farmacología , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/patología , Femenino , Regulación de la Expresión Génica , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Placa Aterosclerótica/etiología , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Células THP-1 , Taurina/agonistas
16.
Molecules ; 26(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885700

RESUMEN

Babesiosis is an infectious disease with an empty drug pipeline. A search inside chemical libraries for novel potent antibabesial candidates may help fill such an empty drug pipeline. A total of 400 compounds (200 drug-like and 200 probe-like) from the Malaria Box were evaluated in the current study against the in vitro growth of Babesia divergens (B. divergens), a parasite of veterinary and zoonotic importance. Novel and more effective anti-B. divergens drugs than the traditionally used ones were identified. Seven compounds (four drug-like and three probe-like) revealed a highly inhibitory effect against the in vitro growth of B. divergens, with IC50s ≤ 10 nanomolar. Among these hits, MMV006913 exhibited an IC50 value of 1 nM IC50 and the highest selectivity index of 32,000. The atom pair fingerprint (APfp) analysis revealed that MMV006913 and MMV019124 showed maximum structural similarity (MSS) with atovaquone and diminazene aceturate (DA), and with DA and imidocarb dipropionate (ID), respectively. MMV665807 and MMV665850 showed MMS with each other and with ID. Of note, a high concentration (0.75 IC50) of MMV006913 caused additive inhibition of B. divergens growth when combined with DA at 0.75 or 0.50 IC50. The Medicines for Malaria Venture box is a treasure trove of anti-B. divergens candidates according to the obtained results.


Asunto(s)
Babesia/efectos de los fármacos , Babesiosis/tratamiento farmacológico , Patógenos Transmitidos por la Sangre/efectos de los fármacos , Malaria/tratamiento farmacológico , Animales , Antiprotozoarios/farmacología , Atovacuona/farmacología , Babesia/patogenicidad , Babesiosis/parasitología , Diminazeno/análogos & derivados , Diminazeno/farmacología , Humanos , Imidocarbo/análogos & derivados , Imidocarbo/farmacología , Malaria/epidemiología , Malaria/parasitología , Plantas Medicinales/química
17.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L873-L887, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32160007

RESUMEN

Tenacious mucus produced by tracheal and bronchial submucosal glands is a defining feature of several airway diseases, including cystic fibrosis (CF). Airway acidification as a driving force of CF airway pathology has been controversial. Here we tested the hypothesis that transient airway acidification produces pathologic mucus and impairs mucociliary transport. We studied pigs challenged with intra-airway acid. Acid had a minimal effect on mucus properties under basal conditions. However, cholinergic stimulation in acid-challenged pigs revealed retention of mucin 5B (MUC5B) in the submucosal glands, decreased concentrations of MUC5B in the lung lavage fluid, and airway obstruction. To more closely mimic a CF-like environment, we also examined mucus secretion and transport following cholinergic stimulation under diminished bicarbonate and chloride transport conditions ex vivo. Under these conditions, airways from acid-challenged pigs displayed extensive mucus films and decreased mucociliary transport. Pretreatment with diminazene aceturate, a small molecule with ability to inhibit acid detection through blockade of the acid-sensing ion channel (ASIC) at the doses provided, did not prevent acid-induced pathologic mucus or transport defects but did mitigate airway obstruction. These findings suggest that transient airway acidification early in life has significant impacts on mucus secretion and transport properties. Furthermore, they highlight diminazene aceturate as an agent that might be beneficial in alleviating airway obstruction.


Asunto(s)
Ácido Acético/administración & dosificación , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/genética , Obstrucción de las Vías Aéreas/inducido químicamente , Fibrosis Quística/inducido químicamente , Diminazeno/análogos & derivados , Canales Iónicos Sensibles al Ácido/metabolismo , Obstrucción de las Vías Aéreas/tratamiento farmacológico , Obstrucción de las Vías Aéreas/metabolismo , Obstrucción de las Vías Aéreas/patología , Animales , Animales Recién Nacidos , Bicarbonatos/metabolismo , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Bronquios/patología , Líquido del Lavado Bronquioalveolar/química , Cloruros/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Diminazeno/farmacología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Masculino , Mucina 5AC/genética , Mucina 5AC/metabolismo , Mucina 5B/genética , Mucina 5B/metabolismo , Depuración Mucociliar/efectos de los fármacos , Moco/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Porcinos , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Tráquea/patología
18.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32816737

RESUMEN

Praziquantel is currently the only drug available to treat schistosomiasis, a disease of enormous public health significance caused by a blood fluke of the genus Schistosoma Diminazene, a drug approved by the FDA, has been successfully used to treat diseases caused by blood protozoan parasites. In this study, we evaluated the antiparasitic properties of diminazene against Schistosoma mansoniex vivo and in mice harboring either chronic or early S. mansoni infections. In vitro, we monitored phenotypic and tegumental changes as well as the effects of the drug on pairing and egg production. In mice infected with either adult (chronic infection) or immature (early infection) worms, diminazene was administered intraperitoneally (10 to 100 mg/kg of body weight) or by oral gavage (100 to 400 mg/kg), and we studied the influence of the drug on worm burden and egg production. Liver and spleen pathologies and serum aminotransferase levels were also analyzed. In vitro, 50% effective concentrations (EC50) and EC90 revealed that diminazene is able to kill both immature and adult parasites, and its effect was time and concentration dependent. In addition, confocal laser scanning microscopy showed morphological alterations in the teguments of schistosomes. In an animal model, the influence of the drug on worm burden, egg production, hepatomegaly, and splenomegaly depended on the dosing regimen applied and the route of administration. Diminazene also caused a significant reduction in aminotransferase levels. Comparatively, diminazene treatment was more effective in chronic infection than in early infection. In tandem, our study revealed that diminazene possesses anthelmintic properties and inhibits liver injury caused by Schistosoma eggs.


Asunto(s)
Parásitos , Esquistosomiasis mansoni , Esquistosomiasis , Animales , Diminazeno/análogos & derivados , Diminazeno/farmacología , Ratones , Schistosoma mansoni , Esquistosomiasis mansoni/tratamiento farmacológico
19.
Acta Neuropathol ; 139(3): 485-502, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31982938

RESUMEN

Mid-life hypertension and cerebrovascular dysfunction are associated with increased risk of later life dementia, including Alzheimer's disease (AD). The classical renin-angiotensin system (cRAS), a physiological regulator of blood pressure, functions independently within the brain and is overactive in AD. cRAS-targeting anti-hypertensive drugs are associated with reduced incidence of AD, delayed onset of cognitive decline, and reduced levels of Aß and tau in both animal models and human pathological studies. cRAS activity is moderated by a downstream regulatory RAS pathway (rRAS), which is underactive in AD and is strongly associated with pathological hallmarks in human AD, and cognitive decline in animal models of CNS disease. We now show that enhancement of brain ACE2 activity, a major effector of rRAS, by intraperitoneal administration of diminazene aceturate (DIZE), an established activator of ACE2, lowered hippocampal Aß and restored cognition in mid-aged (13-14-month-old) symptomatic Tg2576 mice. We confirmed that the protective effects of DIZE were directly mediated through ACE2 and were associated with reduced hippocampal soluble Aß42 and IL1-ß levels. DIZE restored hippocampal MasR levels in conjunction with increased NMDA NR2B and downstream ERK signalling expression in hippocampal synaptosomes from Tg2576 mice. Chronic (10 weeks) administration of DIZE to pre-symptomatic 9-10-month-old Tg2576 mice, and acute (10 days) treatment in cognitively impaired 12-13-month-old mice, prevented the development of cognitive impairment. Together these data demonstrate that ACE2 enhancement protects against and reverses amyloid-related hippocampal pathology and cognitive impairment in a preclinical model of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enzima Convertidora de Angiotensina 2/metabolismo , Proteínas Amiloidogénicas/metabolismo , Animales , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Diminazeno/análogos & derivados , Diminazeno/farmacología , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proto-Oncogenes Mas
20.
Clin Sci (Lond) ; 134(23): 3093-3106, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33206153

RESUMEN

Acute Kidney Injury (AKI) comprises a rapidly developed renal failure and is associated with high mortality rates. The Renin-Angiotensin System (RAS) plays a pivotal role in AKI, as the over-active RAS axis exerts major deleterious effects in disease progression. In this sense, the conversion of Angiotensin II (Ang II) into Angiotensin-(1-7) (Ang-(1-7)) by the Angiotensin-converting enzyme 2 (ACE2) is of utmost importance to prevent worse clinical outcomes. Previous studies reported the beneficial effects of oral diminazene aceturate (DIZE) administration, an ACE2 activator, in renal diseases models. In the present study, we aimed to evaluate the therapeutic effects of DIZE administration in experimental AKI induced by gentamicin (GM) in rats. Our findings showed that treatment with DIZE improved renal function and tissue damage by increasing Ang-(1-7) and ACE2 activity, and reducing TNF-α. These results corroborate with a raising potential of ACE2 activation as a strategy for treating AKI.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/enzimología , Enzima Convertidora de Angiotensina 2/metabolismo , Diminazeno/análogos & derivados , Activadores de Enzimas/farmacología , Gentamicinas/efectos adversos , Riñón/patología , Sustancias Protectoras/uso terapéutico , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/orina , Animales , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Citocinas/metabolismo , Diminazeno/farmacología , Diminazeno/uso terapéutico , Inflamación/patología , Riñón/efectos de los fármacos , Riñón/fisiopatología , Masculino , Sustancias Protectoras/farmacología , Ratas Wistar , Sistema Renina-Angiotensina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA