Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Biotechnol Appl Biochem ; 68(6): 1501-1507, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33146428

RESUMEN

Parkinson's disease (PD) is one of the most common central nervous system (CNS) degenerative disease and is characterized by a progressive loss of midbrain substantia nigra dopamine (DA) neurons. Dendrobium nobileLindl alkaloid (DNLA) is an active component extracted from D. nobile Lindl, which is a traditional Chinese herb. The various pharmacological effects of D. nobile are beneficial for human health. Recently, DNLA-mediated neuroprotective effects have been reported. However, the neuroprotection of DNLA on 6-hydroxydopamine (6-OHDA)-induced DA neurotoxicity is still unknown. This study aimed to explore the neuroprotective effects of DNLA on DA neurotoxicity induced by 6-OHDA. In PD rat model, continuous intragastric administration of DNLA (20 mg/kg) for 7 days significantly ameliorated 6-OHDA-induced DA neurons loss in the midbrain substantia nigra. In addition, primary rat midbrain neuron-glia cocultures were used to explore the mechanisms underlying DNLA-related DA neuroprotection. The studies on neuron-glia cocultures revealed that neuroprotective effects of DNLA (2.5 ng/mL) were mediated by inhibiting the release of proinflammatory cytokines. Taken together, DNLA holds neuroprotective effect on 6-OHDA-induced neurons neurodegeneration by selectively inhibiting the production of proinflammatory factors and could be a potential compound for PD treatment.


Asunto(s)
Alcaloides/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxidopamina/antagonistas & inhibidores , Alcaloides/administración & dosificación , Animales , Dopamina/toxicidad , Masculino , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Oxidopamina/farmacología , Ratas , Ratas Sprague-Dawley
2.
Biochemistry ; 57(33): 5014-5028, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30025458

RESUMEN

Amyloid formation of α-synuclein (α-Syn) and its familial mutations are directly linked with Parkinson's disease (PD) pathogenesis. Recently, a new familial α-Syn mutation (A53E) was discovered, associated with an early onset aggressive form of PD, which delays α-Syn aggregation. When we overexpressed wild-type (WT) and A53E proteins in cells, showed neither toxicity nor aggregate formation, suggesting merely overexpression may not recapitulate the PD phenotype in cell models. We hypothesized that cells expressing the A53E mutant might possess enhanced susceptibility to PD-associated toxicants compared to that of the WT. When cells were treated with PD toxicants (dopamine and rotenone), cells expressing A53E showed more susceptibility to cell death along with compromised mitochondrial potential and an increased production of reactive oxygen species. The higher toxicity of A53E could be due to more oligomers being formed in cells as confirmed by a dot blot assay using amyloid specific OC and A11 antibody and using an  in vitro aggregation study. The cellular model presented here suggests that along with familial mutation, environmental and other cellular factors might play a crucial role in dictating PD pathogenesis.


Asunto(s)
Apoptosis/efectos de los fármacos , Dopamina/toxicidad , Agregado de Proteínas/genética , Rotenona/toxicidad , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Humanos , Cinética , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Mutación , Agregación Patológica de Proteínas/metabolismo , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , alfa-Sinucleína/genética
3.
Neurobiol Dis ; 117: 82-113, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29859868

RESUMEN

The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 µM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.


Asunto(s)
Cloropirifos/toxicidad , Neuronas Dopaminérgicas/metabolismo , Insecticidas/toxicidad , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Factor de Transcripción STAT1/metabolismo , Animales , Línea Celular Transformada , Dopamina/metabolismo , Dopamina/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
4.
Neurochem Res ; 43(12): 2313-2323, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30288644

RESUMEN

Parkinson's disease is the second most common neurodegenerative disease that occurs due to cellular autophagy deficiency and the accumulation of alpha-synuclein in the dopaminergic neurons of the substantia nigra pars compacta (SNc) of the brainstem. The SMER28 (also known as 6-Bromo-N-prop-2-enylquinazolin-4-amine) is an autophagy inducer. In this study, the neuroprotective effects of SMER28 were evaluated on autophagy induction, antioxidant system activation, and microgliosis attenuation. The Parkinson's disease model was developed in the male Wistar rats by injection of 6-OHDA into the left striatum. Apomorphine-induced behavior assessment test and SNc cell counting were performed to investigate the neuroprotective effects of SMER28. This study examined the pharmacological roles of SMER28, especially by focusing on the autophagy (p62/ SQSTM1 and LC3II/LC3I ratio where LC3 is microtubule-associated protein 1A/1B-light chain 3), inhibiting free radicals, and activating the antioxidant system. The levels of malondialdehyde (MDA), reactive oxygen species (ROS), glutathione (GSH), GSH/glutathione peroxidase (GPX), superoxide dismutase (SOD) activity and nuclear factor-erythroid 2-related factor-2 (Nrf2) were measured to evaluate the antioxidant activity of SMER28. Moreover, Iba-1 (ionized calcium binding adaptor molecule, indicating microgliosis) and tyrosine hydroxylase immunoreactivities were evaluated in the SNc. In the behavioral assessment, SMER28 (50 µg/kg) attenuated damages to the SNc dopaminergic neurons, characterized by improved motor function. The tissue observations revealed that SMER28 prevented the destruction of SNc neurons and attenuated microgliosis as well. It also reduced MDA and ROS production and increased GSH, GPX, SOD, and Nrf2 activities by inducing autophagy (decreasing p62 and increasing LC3II/LC3I ratio). Consequently, possibly with further studies, it can be considered as a drug for neurodegenerative diseases with proteinopathy etiology.


Asunto(s)
Compuestos Alílicos/uso terapéutico , Autofagia/fisiología , Estrés Oxidativo/fisiología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/prevención & control , Quinazolinas/uso terapéutico , Compuestos Alílicos/farmacología , Animales , Autofagia/efectos de los fármacos , Dopamina/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Quinazolinas/farmacología , Distribución Aleatoria , Ratas , Ratas Wistar
5.
Brain ; 139(Pt 4): 1026-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26962053

RESUMEN

Iron accumulation is a cardinal feature of degenerating regions in the Parkinson's disease brain. As a potent pro-oxidant, redox-active iron may be a key player in upstream mechanisms that precipitate cell death in this disorder. Although an elevation in brain iron levels is a normal feature of ageing, the increase is greater in Parkinson's disease; on the other hand, the effects of the disease are most marked in the nigrostriatal dopaminergic system. In this Update, we explain that neurodegeneration in the affected regions may result from the potent redox couple formed by iron and dopamine itself, and discuss the clinical implications of this molecular trait in this dynamic and rapidly moving area of Parkinson's disease research.


Asunto(s)
Dopamina/metabolismo , Hierro/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Animales , Dopamina/toxicidad , Humanos , Hierro/toxicidad , Enfermedad de Parkinson/patología , Especies Reactivas de Oxígeno/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología
6.
J Neurochem ; 139(1): 120-33, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27385273

RESUMEN

The pathogenesis of Parkinson's disease (PD) is not completely understood, Zinc (Zn(2+) ) and dopamine (DA) have been shown to involve in the degeneration of dopaminergic cells. By microarray analysis, we identified Gadd45b as a candidate molecule that mediates Zn(2+) and DA-induced cell death; the mRNA and protein levels of Gadd45b are increased by Zn(2+) treatment and raised to an even higher level by Zn(2+) plus DA treatment. Zn(2+) plus DA treatment-induced PC12 cell death was enhanced when there was over-expression of Gadd45b and was decreased by knock down of Gadd45b. MAPK p38 and JNK signaling was able to cross-talk with Gadd45b during Zn(2+) and DA treatment. The synergistic effects of Zn(2+) and DA on PC12 cell death can be accounted for by an activation of the Gadd45b-induced cell death pathway and an inhibition of p38/JNK survival pathway. Furthermore, the in vivo results show that the levels of Gadd45b protein expression and phosphorylation of p38 were increased in the substantia nigra by the infusion of Zn(2+) /DA in the mouse brain and the level of Gadd45b mRNA is significantly higher in the substantia nigra of male PD patients than normal controls. The novel role of Gadd45b and its interactions with JNK and p38 will help our understanding of the pathogenesis of PD and help the development of future treatments for PD. Zinc and dopamine are implicated in the degeneration of dopaminergic neurons. We previously demonstrated that zinc and dopamine induced synergistic effects on PC12 cell death. Results from this study show that these synergistic effects can be accounted for by activation of the Gadd45b-induced cell death pathway and inhibition of the p38/JNK survival pathway. We provide in vitro and in vivo evidence to support a novel role for Gadd45b in the pathogenesis of Parkinson's disease.


Asunto(s)
Antígenos de Diferenciación/efectos de los fármacos , Antígenos de Diferenciación/genética , Dopamina/toxicidad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Zinc/toxicidad , Acetilcisteína/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Muerte Celular/efectos de los fármacos , Sinergismo Farmacológico , Depuradores de Radicales Libres/farmacología , Técnicas de Silenciamiento del Gen , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Necrosis/patología , Proteínas Nucleares/genética , Células PC12 , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Biochem J ; 463(1): 41-52, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24938188

RESUMEN

Parkinson's disease is characterized by the progressive and selective loss of dopaminergic neurons in the substantia nigra. It has been postulated that endogenously formed CysDA (5-S-cysteinyldopamine) and its metabolites may be, in part, responsible for this selective neuronal loss, although the mechanisms by which they contribute to such neurotoxicity are not understood. Exposure of neurons in culture to CysDA caused cell injury, apparent 12-48 h post-exposure. A portion of the neuronal death induced by CysDA was preceded by a rapid uptake and intracellular oxidation of CysDA, leading to an acute and transient activation of ERK2 (extracellular-signal-regulated kinase 2) and caspase 8. The oxidation of CysDA also induced the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser967, the phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun (Ser73) as well as the activation of p38, caspase 3, caspase 8, caspase 7 and caspase 9. Concurrently, the inhibition of complex I by the dihydrobenzothiazine DHBT-1 [7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid], formed from the intracellular oxidation of CysDA, induces complex I inhibition and the subsequent release of cytochrome c which further potentiates pro-apoptotic mechanisms. Our data suggest a novel comprehensive mechanism for CysDA that may hold relevance for the selective neuronal loss observed in Parkinson's disease.


Asunto(s)
Apoptosis/efectos de los fármacos , Dopamina/análogos & derivados , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/enzimología , Animales , Caspasas/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Dopamina/toxicidad , Complejo I de Transporte de Electrón/metabolismo , Ratones , Neuronas/patología , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/patología
9.
J Biol Chem ; 288(48): 34364-74, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24136195

RESUMEN

Dopamine neurotoxicity is associated with several neurodegenerative diseases, and neurons utilize several mechanisms, including uptake and metabolism, to protect them from injury. Metabolism of dopamine involves three enzymes: monoamine oxidase, catechol O-methyltransferase, and sulfotransferase. In primates but not lower order animals, a sulfotransferase (SULT1A3) is present that can rapidly metabolize dopamine to dopamine sulfate. Here, we show that SULT1A3 and a closely related protein SULT1A1 are highly inducible by dopamine. This involves activation of the D1 and NMDA receptors. Both ERK1/2 phosphorylation and calcineurin activation are required for induction. Pharmacological agents that inhibited induction or siRNA targeting SULT1A3 significantly increased the susceptibility of cells to dopamine toxicity. Taken together, these results show that dopamine can induce its own metabolism and protect neuron-like cells from damage, suggesting that SULT1A3 activity may be a risk factor for dopamine-dependent neurodegenerative diseases.


Asunto(s)
Arilsulfotransferasa/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Arilsulfotransferasa/antagonistas & inhibidores , Arilsulfotransferasa/genética , Benzazepinas/farmacología , Calcineurina/metabolismo , Línea Celular , Dopamina/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/genética , Neuronas/efectos de los fármacos , Neuronas/enzimología , Fosforilación , ARN Interferente Pequeño/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Factores de Riesgo , Transducción de Señal
10.
J Neurochem ; 129(6): 898-915, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24548101

RESUMEN

The molecular mechanisms causing the loss of dopaminergic neurons containing neuromelanin in the substantia nigra and responsible for motor symptoms of Parkinson's disease are still unknown. The discovery of genes associated with Parkinson's disease (such as alpha synuclein (SNCA), E3 ubiquitin protein ligase (parkin), DJ-1 (PARK7), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1), serine/threonine-protein kinase (PINK-1), leucine-rich repeat kinase 2 (LRRK2), cation-transporting ATPase 13A1 (ATP13A), etc.) contributed enormously to basic research towards understanding the role of these proteins in the sporadic form of the disease. However, it is generally accepted by the scientific community that mitochondria dysfunction, alpha synuclein aggregation, dysfunction of protein degradation, oxidative stress and neuroinflammation are involved in neurodegeneration. Dopamine oxidation seems to be a complex pathway in which dopamine o-quinone, aminochrome and 5,6-indolequinone are formed. However, both dopamine o-quinone and 5,6-indolequinone are so unstable that is difficult to study and separate their roles in the degenerative process occurring in Parkinson's disease. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone seems to play an important role in the neurodegenerative processes of Parkinson's disease as aminochrome induces: (i) mitochondria dysfunction, (ii) formation and stabilization of neurotoxic protofibrils of alpha synuclein, (iii) protein degradation dysfunction of both proteasomal and lysosomal systems and (iv) oxidative stress. The neurotoxic effects of aminochrome in dopaminergic neurons can be inhibited by: (i) preventing dopamine oxidation of the transporter that takes up dopamine into monoaminergic vesicles with low pH and dopamine oxidative deamination catalyzed by monoamino oxidase (ii) dopamine o-quinone, aminochrome and 5,6-indolequinone polymerization to neuromelanin and (iii) two-electron reduction of aminochrome catalyzed by DT-diaphorase. Furthermore, dopamine conversion to NM seems to have a dual role, protective and toxic, depending mostly on the cellular context. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone plays an important role in neurodegeneration in Parkinson's disease since they induce mitochondria and protein degradation dysfunction; formation of neurotoxic alpha synuclein protofibrils and oxidative stress. However, the cells have a protective system against dopamine oxidation composed by dopamine uptake mediated by Vesicular monoaminergic transporter-2 (VMAT-2), neuromelanin formation, two-electron reduction and GSH-conjugation mediated by Glutathione S-transferase M2-2 (GSTM2).


Asunto(s)
Dopamina/toxicidad , Dopamina/uso terapéutico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/prevención & control , Animales , Dopamina/biosíntesis , Dopamina/metabolismo , Glutatión/metabolismo , Humanos , Indolquinonas/metabolismo , Melaninas/metabolismo , Melaninas/fisiología , Monoaminooxidasa/metabolismo , Quinonas/metabolismo
11.
J Neurochem ; 129(3): 434-47, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24355073

RESUMEN

DJ-1 is an oxidative stress sensor that localizes to the mitochondria when the cell is exposed to oxidative stress. DJ-1 mutations that result in gene deficiency are linked to increased risk of Parkinson's disease (PD). Activation of microglial stress conditions that are linked to PD may result in neuronal death. We postulated that DJ-1 deficiency may increase microglial neurotoxicity. We found that down-regulation of DJ-1 in microglia using an shRNA approach increased cell sensitivity to dopamine as measured by secreted pro-inflammatory cytokines such as IL-1ß and IL-6. Furthermore, we discovered that DJ-1-deficient microglia had increased monoamine oxidase activity that resulted in elevation of intracellular reactive oxygen species and nitric oxide leading to increased dopaminergic neurotoxicity. Rasagaline, a monoamine oxidase inhibitor approved for treatment of PD, reduced the microglial pro-inflammatory phenotype and significantly reduced neurotoxicity. Moreover, we discovered that DJ-1-deficient microglia have reduced expression of triggering receptor expressed on myeloid cells 2 (TREM2), previously suggested as a risk factor for pro-inflammation in neurodegenerative diseases. Further studies of DJ-1-mediated cellular pathways in microglia may contribute useful insights into the development of PD providing future avenues for therapeutic intervention


Asunto(s)
Indanos/farmacología , Microglía/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Fármacos Neuroprotectores/farmacología , Proteínas Oncogénicas/deficiencia , Animales , Western Blotting , Línea Celular , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Dopamina/toxicidad , Ensayo de Inmunoadsorción Enzimática , Inflamación/metabolismo , Ratones , Microglía/efectos de los fármacos , Neurotransmisores/toxicidad , Peroxirredoxinas , Fagocitosis/efectos de los fármacos , Fenotipo , Proteína Desglicasa DJ-1 , ARN Interferente Pequeño , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
J Neurosci Res ; 92(3): 347-58, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24273027

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder whose etiology is still unclear in spite of extensive investigations. It has been hypothesized that 5-S-cysteinyldopamine (CysDA), a catechol-thioether metabolite of dopamine (DA), could be an endogenous parkinsonian neurotoxin. To gain further insight into its role in the neurodegenerative process, both CD1 mice and SH-SY5Y neuroblastoma cells were treated with CysDA, and the data were compared with those obtained by the use of 6-hydroxydopamine, a well-known parkinsonian mimetic. Intrastriatal injection of CysDA in CD1 mice caused a long-lasting depletion of DA, providing evidence of in vivo neurotoxicity of CysDA. Both in mice and in SH-SY5Y cells, CysDA treatment induced extensive oxidative stress, as evidenced by protein carbonylation and glutathione depletion, and affected the expression of two proteins, α-synuclein (α-Syn) and ERp57, whose levels are modulated by oxidative insult. Real-time PCR experiments support these findings, indicating an upregulation of both ERp57 and α-Syn expression. α-Syn aggregation was also found to be modulated by CysDA treatment. The present work provides a solid background sustaining the hypothesis that CysDA is involved in parkinsonian neurodegeneration by inducing extensive oxidative stress and protein aggregation.


Asunto(s)
Encéfalo/metabolismo , Dopaminérgicos/toxicidad , Dopamina/análogos & derivados , Enfermedad de Parkinson/etiología , Proteína Disulfuro Isomerasas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Monoaminas Biogénicas/metabolismo , Encéfalo/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Dopamina/toxicidad , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Humanos , Masculino , Ratones , Neuroblastoma/patología , Estrés Oxidativo/efectos de los fármacos , Oxidopamina/toxicidad , Carbonilación Proteica/efectos de los fármacos , Proteína Disulfuro Isomerasas/genética , alfa-Sinucleína/genética
13.
Mol Psychiatry ; 18(2): 245-54, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22212595

RESUMEN

The catecholamines dopamine (DA), norepinephrine (NE) and epinephrine (E) are neurotransmitters and hormones that mediate stress responses in tissues and plasma. The expression of ß-amyloid precursor protein (APP) is responsive to stress and is high in tissues rich in catecholamines. We recently reported that APP is a ferroxidase, subsuming, in neurons and other cells, the iron-export activity that ceruloplasmin mediates in glia. Here we report that, like ceruloplasmin, APP also oxidizes synthetic amines and catecholamines catalytically (K(m) NE=0.27 mM), through a site encompassing its ferroxidase motif and selectively inhibited by zinc. Accordingly, APP knockout mice have significantly higher levels of DA, NE and E in brain, plasma and select tissues. Consistent with this, these animals have increased resting heart rate and systolic blood pressure as well as suppressed prolactin and lymphocyte levels. These findings support a role for APP in extracellular catecholaminergic clearance.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Catecolaminas/metabolismo , Monoaminooxidasa/metabolismo , Precursor de Proteína beta-Amiloide/deficiencia , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Cromatografía Líquida de Alta Presión , Dopamina/toxicidad , Embrión de Mamíferos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/genética , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción/efectos de los fármacos
14.
Neurochem Res ; 38(2): 356-63, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23184185

RESUMEN

Pregnant SD rats were exposed to ethanol (25 % (v/v) ethanol at 1.0, 2.0 or 4.0 g/kg body weight from GD8 to GD20) to assess whether ethanol-derived acetaldehyde could interact with endogenous monoamine to generate tetrahydroisoquinoline or tetrahydro-beta-carboline in the fetuses. The fetal brain concentration of acetaldehyde increased remarkably after ethanol administration (2.6 times, 5.3 times and 7.8 times as compared to saline control in 1.0, 2.0 and 4.0 g/kg ethanol-treated groups, respectively) detected by HPLC with 2,4-dinitrophenylhydrazine derivatization. Compared to control, ethanol exposure induced the formation of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal), N-methyl-salsolinol (NMSal) and 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline (6-OH-MTHBC) in fetal rat brains. Determined by HPLC with electrochemical detector, the levels of dopamine and 5-hydroxytryptamine in whole fetal brain were not remarkably altered by ethanol treatment, while the levels of homovanillic acid and 5-hydroxyindole acetic acid in high dose (4.0 g/kg) of ethanol-treated rats were significantly decreased compared to that in the control animals. 4.0 g/kg ethanol administration inhibited the activity of mitochondrial monoamine oxidase (51.3 % as compared to control) and reduced the activity of respiratory chain complex I (61.2 % as compared to control). These results suggested that ethanol-induced alteration of monoamine metabolism and the accumulation of dopamine-derived catechol isoquinolines and 5-hydroxytryptamine-derived tetrahydro-beta-carbolines may play roles in the developmental dysfuction of monoaminergic neuronal systems.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Monoaminas Biogénicas/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Etanol/toxicidad , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Dopamina/metabolismo , Dopamina/toxicidad , Relación Dosis-Respuesta a Droga , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo , Serotonina/toxicidad
15.
J Immunol ; 186(7): 4443-54, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21335487

RESUMEN

The role of the ß2 adrenergic receptor (ß2AR) in the regulation of chronic neurodegenerative inflammation within the CNS is poorly understood. The purpose of this study was to determine neuroprotective effects of long-acting ß2AR agonists such as salmeterol in rodent models of Parkinson's disease. Results showed salmeterol exerted potent neuroprotection against both LPS and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium-induced dopaminergic neurotoxicity both in primary neuron-glia cultures (at subnanomolar concentrations) and in mice (1-10 µg/kg/day doses). Further studies demonstrated that salmeterol-mediated neuroprotection is not a direct effect on neurons; instead, it is mediated through the inhibition of LPS-induced microglial activation. Salmeterol significantly inhibited LPS-induced production of microglial proinflammatory neurotoxic mediators, such as TNF-α, superoxide, and NO, as well as the inhibition of TAK1-mediated phosphorylation of MAPK and p65 NF-κB. The anti-inflammatory effects of salmeterol required ß2AR expression in microglia but were not mediated through the conventional G protein-coupled receptor/cAMP pathway. Rather, salmeterol failed to induce microglial cAMP production, could not be reversed by either protein kinase A inhibitors or an exchange protein directly activated by cAMP agonist, and was dependent on ß-arrestin2 expression. Taken together, our results demonstrate that administration of extremely low doses of salmeterol exhibit potent neuroprotective effects by inhibiting microglial cell activation through a ß2AR/ß-arrestin2-dependent but cAMP/protein kinase A-independent pathway.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Dopamina/toxicidad , Microglía/inmunología , Inhibición Neural/inmunología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/inmunología , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Células Cultivadas , Técnicas de Cocultivo , Dopamina/biosíntesis , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/uso terapéutico , Mediadores de Inflamación/toxicidad , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/patología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Fármacos Neuroprotectores/metabolismo , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , Ratas Endogámicas F344 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
16.
Biochim Biophys Acta ; 1812(6): 663-73, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21377526

RESUMEN

The study has demonstrated that dopamine induces membrane depolarization and a loss of phosphorylation capacity in dose-dependent manner in isolated rat brain mitochondria during extended in vitro incubation and the phenomena are not prevented by oxyradical scavengers or metal chelators. Dopamine effects on brain mitochondria are, however, markedly prevented by reduced glutathione and N-acetyl cysteine and promoted by tyrosinase present in the incubation medium. The results imply that quinone oxidation products of dopamine are involved in mitochondrial damage under this condition. When PC12 cells are exposed to dopamine in varying concentrations (100-400µM) for up to 24h, a pronounced impairment of mitochondrial bio-energetic functions at several levels is observed along with a significant (nearly 40%) loss of cell viability with features of apoptotic nuclear changes and increased activities of caspase 3 and caspase 9 and all these effects of dopamine are remarkably prevented by N-acetyl cysteine. N-acetyl cysteine also blocks nearly completely the dopamine induced increase in reactive oxygen species production and the formation of quinoprotein adducts in mitochondrial fraction within PC12 cells and also the accumulation of quinone products in the culture medium. Clorgyline, an inhibitor of MAO-A, markedly decreases the formation of reactive oxygen species in PC12 cells upon dopamine exposure but has only mild protective actions against quinoprotein adduct formation, mitochondrial dysfunctions, cell death and caspase activation induced by dopamine. The results have indicated that quinone oxidation products and not reactive oxygen species are primarily involved in cytotoxic effects of dopamine and the mitochondrial impairment plays a central role in the latter process. The data have clear implications in the pathogenesis of Parkinson's disease.


Asunto(s)
Dopamina/toxicidad , Mitocondrias/efectos de los fármacos , Enfermedad de Parkinson/etiología , Quinonas/toxicidad , Animales , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Caspasas/metabolismo , Dopamina/metabolismo , Metabolismo Energético/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Células PC12 , Enfermedad de Parkinson/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
17.
J Neurosci Res ; 90(12): 2237-46, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22987761

RESUMEN

The neurotoxins paraquat (PQ) and dopamine (DA or 6-OHDA) cause apoptosis of dopaminergic neurons in the substantia nigra pars compacta (SNpc), reproducing an important pathological feature of Parkinson's disease (PD). Secretogranin III (SCG3), a member of the multifunctional granin family, plays a key role in neurotransmitter storage and transport and in secretory granule biogenesis, which involves the uptake of exogenous toxins and endogenous "toxins" in neuroendocrine cells. However, the molecular mechanisms of neurotoxin-induced apoptosis in dopaminergic neurons and the role of SCG3-associated signaling pathways in neuroendocrine regulation are unclear. To address this, we used PQ- and DA-induced apoptosis in SH-SY5Y human dopaminergic cells as an in vitro model to investigate the association between SCG3 expression level and apoptosis. SCG3 was highly expressed in SH-SY5Y cells, and SCG3 mRNA and protein levels were dramatically decreased after PQ treatment. Apoptosis induced by PQ is associated with caspase activation and decreased SCG3 expression, and restoration of SCG3 expression is observed after treatment with caspase inhibitors. Overexpressed SCG3 in nonneuronal cells and endogenous SCG3 in SH-SY5Y cells are cleaved into specific fragments by recombinant caspase-3 and -7, but the fragments were not detected in PQ-treated SH-SY5Y cells. Therefore, SCG3 may be involved in apoptosis signal transduction as a caspase substrate, leading to loss of its original biological functions. In addition, SCG3 may be a pivotal component of the neuroendocrine pathway and play an important role in neuronal communication and neurotransmitter release, possibly representing a new potential target in the course of PD pathogenesis.


Asunto(s)
Apoptosis/efectos de los fármacos , Cromograninas/fisiología , Neuronas Dopaminérgicas/efectos de los fármacos , Proteínas del Tejido Nervioso/fisiología , Neurotoxinas/toxicidad , Paraquat/toxicidad , Clorometilcetonas de Aminoácidos/farmacología , Apoptosis/fisiología , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Inhibidores de Caspasas/farmacología , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Cromograninas/biosíntesis , Cromograninas/genética , Dopamina/toxicidad , Neuronas Dopaminérgicas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células HEK293/metabolismo , Humanos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuroblastoma/patología , Oxidopamina/toxicidad , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/fisiología , Especificidad por Sustrato
18.
Nat Med ; 11(11): 1214-21, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16227987

RESUMEN

Inherited mutations in PARK2, the gene encoding parkin, cause selective degeneration of catecholaminergic neurons in the substantia nigra and locus coeruleus of the brainstem, resulting in early-onset parkinsonism. But the role of parkin in common, sporadic forms of Parkinson disease remains unclear. Here we report that the neurotransmitter dopamine covalently modifies parkin in living dopaminergic cells, a process that increases parkin insolubility and inactivates its E3 ubiquitin ligase function. In the brains of individuals with sporadic Parkinson disease, we observed decreases in parkin solubility consistent with its functional inactivation. Using a new biochemical method, we detected catechol-modified parkin in the substantia nigra but not other regions of normal human brain. These findings show a vulnerability of parkin to modification by dopamine, the principal transmitter lost in Parkinson disease, suggesting a mechanism for the progressive loss of parkin function in dopaminergic neurons during aging and sporadic Parkinson disease.


Asunto(s)
Dopamina/metabolismo , Dopamina/toxicidad , Enfermedad de Parkinson/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Animales , Western Blotting , Química Encefálica , Células CHO , Radioisótopos de Carbono/metabolismo , Línea Celular , Células Cultivadas , Cricetinae , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Locus Coeruleus/citología , Locus Coeruleus/metabolismo , Metanfetamina/farmacología , Mutación , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/genética , Pruebas de Precipitina , Solubilidad , Sustancia Negra/citología , Sustancia Negra/metabolismo , Ubiquitina-Proteína Ligasas/genética
19.
Semin Cell Dev Biol ; 20(4): 395-402, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19560044

RESUMEN

Exposure of the developing fetus to cocaine produces lasting adverse effects on brain structure and function. Animal models show that cocaine exerts its effects by interfering with monoamine neurotransmitter function and that dopamine is cocaine's principal monoamine target in the fetal brain. This review will examine the role of dopamine receptor signaling in the regulation of normal development of the cerebral cortex, the seat of higher cognitive functions, and discuss whether dopamine receptor signaling mechanisms are the principal mediators of cocaine's deleterious effects on the ontogeny of cerebral cortical cytoarchitecture.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Cocaína/toxicidad , Dopamina/toxicidad , Animales , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Femenino , Humanos , Intercambio Materno-Fetal , Embarazo , Receptores Dopaminérgicos/efectos de los fármacos , Receptores Dopaminérgicos/metabolismo
20.
Glia ; 59(3): 435-51, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21264950

RESUMEN

Our previous studies demonstrated the involvement of quinone formation in dopaminergic neuron dysfunction in the L-DOPA-treated parkinsonian model and in methamphetamine (METH) neurotoxicity. We further reported that the cysteine-rich metal-binding metallothionein (MT) family of proteins protects dopaminergic neurons against dopamine (DA) quinone neurotoxicity by its quinone-quenching property. The aim of this study was to examine MT induction in astrocytes in response to excess DA and the potential neuroprotective effects of astrocyte-derived MTs against DA quinone toxicity. DA exposure significantly upregulated MT-1/-2 in cultured striatal astrocytes, but not in mesencephalic neurons. This DA-induced MT upregulation in astrocytes was blocked by treatment with a DA-transporter (DAT) inhibitor, but not by DA-receptor antagonists. Expression of nuclear factor erythroid 2-related factor (Nrf2) and its binding activity to antioxidant response element of MT-1 gene were significantly increased in the astrocytes after DA exposure. Nuclear translocation of Nrf2 was suppressed by the DAT inhibitor. Quinone formation and reduction of mesencephalic DA neurons after DA exposure were ameliorated by preincubation with conditioned media from DA-treated astrocytes. These protective effects were abrogated by MT-1/-2-specific antibody. Adding exogenous MT-1 to glial conditioned media also showed similar neuroprotective effects. Furthermore, MT-1/-2 expression was markedly elevated specifically in reactive astrocytes in the striatum of L-DOPA-treated hemi-parkinsonian mice or METH-injected mice. These results suggested that excess DA taken up by astrocytes via DAT upregulates MT-1/-2 expression specifically in astrocytes, and that MTs or related molecules secreted specifically by astrocytes protect dopaminergic neurons from damage through quinone quenching and/or scavenging of free radicals.


Asunto(s)
Astrocitos/fisiología , Dopamina/análogos & derivados , Dopamina/fisiología , Metalotioneína/metabolismo , Metalotioneína/fisiología , Neuronas/metabolismo , Fármacos Neuroprotectores/toxicidad , Animales , Astrocitos/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Dopamina/toxicidad , Depuradores de Radicales Libres/metabolismo , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/toxicidad , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA