Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.807
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(10): 2779-2792.e18, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33915107

RESUMEN

Ligands can induce G protein-coupled receptors (GPCRs) to adopt a myriad of conformations, many of which play critical roles in determining the activation of specific signaling cascades associated with distinct functional and behavioral consequences. For example, the 5-hydroxytryptamine 2A receptor (5-HT2AR) is the target of classic hallucinogens, atypical antipsychotics, and psychoplastogens. However, currently available methods are inadequate for directly assessing 5-HT2AR conformation both in vitro and in vivo. Here, we developed psychLight, a genetically encoded fluorescent sensor based on the 5-HT2AR structure. PsychLight detects behaviorally relevant serotonin release and correctly predicts the hallucinogenic behavioral effects of structurally similar 5-HT2AR ligands. We further used psychLight to identify a non-hallucinogenic psychedelic analog, which produced rapid-onset and long-lasting antidepressant-like effects after a single administration. The advent of psychLight will enable in vivo detection of serotonin dynamics, early identification of designer drugs of abuse, and the development of 5-HT2AR-dependent non-hallucinogenic therapeutics.


Asunto(s)
Técnicas Biosensibles , Drogas de Diseño/química , Drogas de Diseño/farmacología , Descubrimiento de Drogas/métodos , Alucinógenos/química , Alucinógenos/farmacología , Receptor de Serotonina 5-HT2A/química , Animales , Evaluación Preclínica de Medicamentos/métodos , Femenino , Fluorescencia , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fotometría , Conformación Proteica , Ingeniería de Proteínas , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Mol Cell ; 78(6): 1002-1018, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32559422

RESUMEN

We are witnessing several revolutionary technological advances in cancer. These innovations have not only contributed to a growing understanding of the tumor and its microenvironment but also uncovered an increasing array of new therapeutic targets. For most advanced cancers, therapy resistance limits the benefit of single-agent therapies. Therefore, some 5,000 clinical trials are ongoing globally to probe the clinical benefit of new combination treatments. However, the possibilities to combine individual treatments dramatically outnumber the patients available to enroll in clinical trials. This comes at a potential cost of missed opportunities, clinical failure, avoidable toxicity, insufficient patient accrual, and financial loss. A solution may be to design combination therapies more rationally, which are informed by fundamental biological and mechanistic insight. We will discuss some successes and failures of current treatment combinations, as well as interesting emerging preclinical concepts that warrant clinical exploration.


Asunto(s)
Quimioterapia Combinada/tendencias , Neoplasias/terapia , Drogas de Diseño/uso terapéutico , Humanos , Neoplasias/metabolismo , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Microambiente Tumoral/efectos de los fármacos
3.
Tidsskr Nor Laegeforen ; 144(4)2024 03 19.
Artículo en Nor | MEDLINE | ID: mdl-38506014

RESUMEN

Background: The knowledge base on new psychoactive substances (NPS) is generally limited. This introduces new challenges and increased unpredictability in substance abuse treatment. Case presentation: A man in his thirties was submitted to detoxification after reportedly using flubromazolam, a high potency designer benzodiazepine, which he had purchased on the dark web. Extensive drug testing of serum, urine and hair, and the remains in a dropper bottle delivered by the patient, did not reveal flubromazolam or possible metabolites, but did reveal several common drugs of abuse, and 8-aminoclonazolam, a metabolite of clonazolam, another designer benzodiazepine sold on the dark web. The detoxification was uncomplicated. An excessive treatment protocol based on the patient's information, involving high preparedness and increased resources, both clinically and analytically, turned out to be unnecessary. Interpretation: The drug use and clinical course in this case proved to be more common than the unit prepared for. The case history illustrates both the challenges with users of NPS and the general unpredictability in substance abuse treatment.


Asunto(s)
Drogas de Diseño , Trastornos Relacionados con Sustancias , Masculino , Humanos , Benzodiazepinas/efectos adversos , Detección de Abuso de Sustancias/métodos , Psicotrópicos
4.
J Neurosci ; 42(12): 2552-2561, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35110390

RESUMEN

The chemogenetic technology referred to as designer receptors exclusively activated by designer drugs (DREADDs) offers reversible means to control neuronal activity for investigating its functional correlation with behavioral action. Deschloroclozapine (DCZ), a recently developed highly potent and selective DREADD actuator, displays a capacity to expand the utility of DREADDs for chronic manipulation without side effects in nonhuman primates, which has not yet been validated. Here we investigated the pharmacokinetics and behavioral effects of orally administered DCZ in female and male macaque monkeys. Pharmacokinetic analysis and PET occupancy examination demonstrated that oral administration of DCZ yielded slower and prolonged kinetics, and that its bioavailability was 10%-20% of that in the case of systemic injection. Oral DCZ (300-1000 µg/kg) induced significant working memory impairments for at least 4 h in monkeys with hM4Di expressed in the dorsolateral prefrontal cortex (Brodmann's area 46). Repeated daily oral doses of DCZ consistently caused similar impairments over two weeks without discernible desensitization. Our results indicate that orally delivered DCZ affords a less invasive strategy for chronic but reversible chemogenetic manipulation of neuronal activity in nonhuman primates, and this has potential for clinical application.SIGNIFICANCE STATEMENT The use of designer receptors exclusively activated by designer drugs (DREADDs) for chronic manipulation of neuronal activity for days to weeks may be feasible for investigating brain functions and behavior on a long time-scale, and thereby for developing therapeutics for brain disorders, such as epilepsy. Here we performed pharmacokinetics and in vivo occupancy study of orally administered deschloroclozapine to determine a dose range suitable for DREADDs studies. In monkeys expressing hM4Di in the prefrontal cortex, single and repeated daily doses significantly induced working-memory impairments for hours and over two weeks, respectively, without discernible desensitization. These results indicate that orally delivered deschloroclozapine produces long-term stable chemogenetic effects, and holds great promise for the translational use of DREADDs technology.


Asunto(s)
Clozapina , Drogas de Diseño , Animales , Control de la Conducta , Clozapina/farmacología , Drogas de Diseño/farmacología , Femenino , Macaca mulatta , Masculino , Neuronas
5.
J Neurosci ; 42(29): 5705-5716, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35701162

RESUMEN

Chemogenetic techniques, such as designer receptors exclusively activated by designer drugs (DREADDs), enable transient, reversible, and minimally invasive manipulation of neural activity in vivo Their development in nonhuman primates is essential for uncovering neural circuits contributing to cognitive functions and their translation to humans. One key issue that has delayed the development of chemogenetic techniques in primates is the lack of an accessible drug-screening method. Here, we use resting-state fMRI, a noninvasive neuroimaging tool, to assess the impact of deschloroclozapine (DCZ) on brainwide resting-state functional connectivity in 7 rhesus macaques (6 males and 1 female) without DREADDs. We found that systemic administration of 0.1 mg/kg DCZ did not alter the resting-state functional connectivity. Conversely, 0.3 mg/kg of DCZ was associated with a prominent increase in functional connectivity that was mainly confined to the connections of frontal regions. Additional behavioral tests confirmed a negligible impact of 0.1 mg/kg DCZ on socio-emotional behaviors as well as on reaction time in a probabilistic learning task; 0.3 mg/kg DCZ did, however, slow responses in the probabilistic learning task, suggesting attentional or motivational deficits associated with hyperconnectivity in fronto-temporo-parietal networks. Our study highlights both the excellent selectivity of DCZ as a DREADD actuator, and the side effects of its excess dosage. The results demonstrate the translational value of resting-state fMRI as a drug-screening tool to accelerate the development of chemogenetics in primates.SIGNIFICANCE STATEMENT Chemogenetics, such as designer receptors exclusively activated by designer drugs (DREADDs), can afford control over neural activity with unprecedented spatiotemporal resolution. Accelerating the translation of chemogenetic neuromodulation from rodents to primates requires an approach to screen novel DREADD actuators in vivo Here, we assessed brainwide activity in response to a DREADD actuator deschloroclozapine (DCZ) using resting-state fMRI in macaque monkeys. We demonstrated that low-dose DCZ (0.1 mg/kg) did not change whole-brain functional connectivity or affective behaviors, while a higher dose (0.3 mg/kg) altered frontal functional connectivity and slowed response in a learning task. Our study highlights the excellent selectivity of DCZ at proper dosing, and demonstrates the utility of resting-state fMRI to screen novel chemogenetic actuators in primates.


Asunto(s)
Drogas de Diseño , Imagen por Resonancia Magnética , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Drogas de Diseño/farmacología , Femenino , Humanos , Macaca mulatta , Imagen por Resonancia Magnética/métodos , Masculino
6.
J Neurosci ; 42(43): 8184-8199, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36109166

RESUMEN

Diabetic neuropathic pain (DNP) is a diabetes complication experienced by many patients. Ventrolateral periaqueductal gray (vlPAG) neurons are essential mediators of the descending pain modulation system, yet the role of vlPAG astrocytes in DNP remains unclear. The present study applied a multidimensional approach to elucidate the role of these astrocytes in DNP. We verified the activation of astrocytes in different regions of the PAG in male DNP-model rats. We found that only astrocytes in the vlPAG exhibited increased growth. Furthermore, we described differences in vlPAG astrocyte activity at different time points during DNP progression. After the 14th day of modeling, vlPAG astrocytes exhibited obvious activation and morphologic changes. Furthermore, activation of Gq-designer receptors exclusively activated by a designer drug (Gq-DREADDs) in vlPAG astrocytes in naive male rats induced neuropathic pain-like symptoms and pain-related aversion, whereas activation of Gi-DREADDs in vlPAG astrocytes in male DNP-model rats alleviated sensations of pain and promoted pain-related preference behavior. Thus, bidirectional manipulation of vlPAG astrocytes revealed their potential to regulate pain. Surprisingly, activation of Gi-DREADDs in vlPAG astrocytes also mitigated anxiety-like behavior induced by DNP. Thus, our results provide direct support for the hypothesis that vlPAG astrocytes regulate diabetes-associated neuropathic pain and concomitant anxiety-like behavior.SIGNIFICANCE STATEMENT Many studies examined the association between the ventrolateral periaqueductal gray (vlPAG) and neuropathic pain. However, few studies have focused on the role of vlPAG astrocytes in diabetic neuropathic pain (DNP) and DNP-related emotional changes. This work confirmed the role of vlPAG astrocytes in DNP by applying a more direct and robust approach. We used chemogenetics to bidirectionally manipulate the activity of vlPAG astrocytes and revealed that vlPAG astrocytes regulate DNP and pain-related behavior. In addition, we discovered that activation of Gi-designer receptors exclusively activated by a designer drug in vlPAG astrocytes alleviated anxiety-like behavior induced by DNP. Together, these findings provide new insights into DNP and concomitant anxiety-like behavior and supply new therapeutic targets for treating DNP.


Asunto(s)
Drogas de Diseño , Diabetes Mellitus , Neuropatías Diabéticas , Neuralgia , Masculino , Ratas , Animales , Sustancia Gris Periacueductal/fisiología , Astrocitos , Nocicepción/fisiología , Motivación
7.
Glia ; 71(9): 2071-2095, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37222453

RESUMEN

Insights into the role astrocytes and microglia play in normal and diseased brain functioning has expanded drastically over the last decade. Recently, chemogenetic tools have emerged as cutting-edge techniques, allowing targeted and spatiotemporal precise manipulation of a specific glial cell type. As a result, significant advances in astrocyte and microglial cell function have been made, showing how glial cells can intervene in central nervous system (CNS) functions such as cognition, reward and feeding behavior in addition to their established contribution in brain diseases, pain, and CNS inflammation. Here, we discuss the latest insights in glial functions in health and disease that have been made through the application of chemogenetics. We will focus on the manipulation of intracellular signaling pathways induced by activation of the designer receptors exclusively activated by designer drugs (DREADDs) in astrocytes and microglia. We will also elaborate on some of the potential pitfalls and the translational potential of the DREADD technology.


Asunto(s)
Drogas de Diseño , Microglía , Astrocitos , Drogas de Diseño/farmacología , Transducción de Señal , Neuroglía
8.
Hippocampus ; 33(1): 6-17, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468186

RESUMEN

The hippocampus, a medial temporal lobe brain region, is critical for the consolidation of information from short-term memory into long-term episodic memory and for spatial memory that enables navigation. Hippocampal damage in humans has been linked to amnesia and memory loss, characteristic of Alzheimer's disease and other dementias. Numerous studies indicate that the rodent hippocampus contributes significantly to long-term memory for spatial and nonspatial information. For example, muscimol-induced depression of CA1 neuronal activity in the dorsal hippocampus impairs the encoding, consolidation, and retrieval of nonspatial object memory in mice. Here, a chemogenetic designer receptor exclusively activated by designer drugs (DREADDs) approach was used to test the selective involvement of CA1 pyramidal neurons in memory retrieval for objects and for spatial location in a cohort of male C57BL/6J mice. Activation of the inhibitory (hM4Di) DREADDs receptor expressed in CA1 neurons significantly impaired the retrieval of object memory in the spontaneous object recognition task and of spatial memory in the Morris water maze. Silencing of CA1 neuronal activity in hM4Di-expressing mice was confirmed by comparing Fos expression in vehicle- and clozapine-N-oxide-treated mice after exploration of a novel environment. Histological analyses revealed that expression of the hM4Di receptor was limited to CA1 neurons of the dorsal hippocampus. These results suggest that a common subset of CA1 neurons (i.e., those expressing hM4Di receptors) in mouse hippocampus contributed to the retrieval of long-term memory for nonspatial and spatial information. Our findings support the view that the contribution of the rodent hippocampus is like that of the primate hippocampus, specifically essential for global memory. Our results further validate mice as a suitable model system to study the neurobiological mechanisms of human episodic memory, but also in developing treatments and understanding the underlying causes of diseases affecting long-term memory, such as Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Memoria Espacial , Animales , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Hipocampo/fisiología , Ratones Endogámicos C57BL , Células Piramidales/fisiología , Memoria Espacial/fisiología , Drogas de Diseño
9.
Toxicol Appl Pharmacol ; 465: 116459, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36907383

RESUMEN

Designer benzodiazepines, including flualprazolam and flubromazolam, are clandestinely produced to circumvent federal regulations. Although flualprazolam and flubromazolam are structurally similar to alprazolam, they do not have an approved medical indication. Flualprazolam differs from alprazolam by the addition of a single fluorine atom. Whereas, flubromazolam differs by the addition of a single fluorine atom and substitution of a bromine for a chlorine atom. The pharmacokinetics of these designer compounds have not been extensively evaluated. In the present study, we evaluated flualprazolam and flubromazolam in a rat model and compared the pharmacokinetics of both compounds to alprazolam. Twelve male, Sprague-Dawley rats were given a 2 mg/kg subcutaneous dose of alprazolam, flualprazolam and flubromazolam and plasma pharmacokinetic parameters were evaluated. Both compounds displayed significant two-fold increases in volume of distribution and clearance. Additionally, flualprazolam displayed a significant increase in half-life leading to a nearly double half-life when compared to alprazolam. The findings of this study demonstrate that fluorination of the alprazolam pharmacophore increases pharmacokinetic parameters including half-life and volume of distribution. The increase in these parameters for flualprazolam and flubromazolam leads to an overall increased exposure in the body and a potential for greater toxicity than alprazolam.


Asunto(s)
Alprazolam , Drogas de Diseño , Masculino , Ratas , Animales , Alprazolam/toxicidad , Alprazolam/farmacocinética , Flúor , Drogas de Diseño/toxicidad , Drogas de Diseño/farmacocinética , Detección de Abuso de Sustancias , Ratas Sprague-Dawley , Benzodiazepinas/toxicidad , Benzodiazepinas/farmacocinética
10.
Proc Natl Acad Sci U S A ; 117(49): 31376-31385, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229526

RESUMEN

For a myriad of different reasons most antimicrobial peptides (AMPs) have failed to reach clinical application. Different AMPs have different shortcomings including but not limited to toxicity issues, potency, limited spectrum of activity, or reduced activity in situ. We synthesized several cationic peptide mimics, main-chain cationic polyimidazoliums (PIMs), and discovered that, although select PIMs show little acute mammalian cell toxicity, they are potent broad-spectrum antibiotics with activity against even pan-antibiotic-resistant gram-positive and gram-negative bacteria, and mycobacteria. We selected PIM1, a particularly potent PIM, for mechanistic studies. Our experiments indicate PIM1 binds bacterial cell membranes by hydrophobic and electrostatic interactions, enters cells, and ultimately kills bacteria. Unlike cationic AMPs, such as colistin (CST), PIM1 does not permeabilize cell membranes. We show that a membrane electric potential is required for PIM1 activity. In laboratory evolution experiments with the gram-positive Staphylococcus aureus we obtained PIM1-resistant isolates most of which had menaquinone mutations, and we found that a site-directed menaquinone mutation also conferred PIM1 resistance. In similar experiments with the gram-negative pathogen Pseudomonas aeruginosa, PIM1-resistant mutants did not emerge. Although PIM1 was efficacious as a topical agent, intraperitoneal administration of PIM1 in mice showed some toxicity. We synthesized a PIM1 derivative, PIM1D, which is less hydrophobic than PIM1. PIM1D did not show evidence of toxicity but retained antibacterial activity and showed efficacy in murine sepsis infections. Our evidence indicates the PIMs have potential as candidates for development of new drugs for treatment of pan-resistant bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Drogas de Diseño/farmacología , Imidazoles/farmacología , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Muerte Celular/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Drogas de Diseño/química , Drogas de Diseño/uso terapéutico , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Imidazoles/química , Imidazoles/uso terapéutico , Potenciales de la Membrana/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/efectos de los fármacos , Sepsis/tratamiento farmacológico , Sepsis/prevención & control , Piel/efectos de los fármacos , Piel/microbiología , Piel/patología
11.
Magn Reson Chem ; 61(2): 66-72, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34404110

RESUMEN

The dissemination of spectral information of new psychoactive substances (NPS) acquired on benchtop nuclear magnetic resonance (NMR) spectrometers is of high importance considering the emerging application of such portable and accessible instruments in forensic analyses. Seven members of the 2C-X series (2C-B, 2C-C, 2C-D, 2C-E, 2C-P, 2C-T2, and 2C-T7) of NPS were analyzed via 60 MHz 1 H benchtop NMR spectroscopy and their molecular structural relations are discussed with respect to the observed proton NMR spectra.


Asunto(s)
Drogas de Diseño , Alucinógenos , Alucinógenos/química , Drogas de Diseño/química , Aminas , Espectroscopía de Resonancia Magnética/métodos
12.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674489

RESUMEN

Chitosan is an interesting polymer to produce hydrogels suitable for the 3D printing of customized drug delivery systems. This study aimed at the achievement of chitosan-based scaffolds suitable for the incorporation of active components in the matrix or loaded into the pores. Several scaffolds were printed using different chitosan-based hydrogels. To understand which parameters would have a greater impact on printability, an optimization study was conducted. The scaffolds with the highest printability were obtained with a chitosan hydrogel at 2.5 wt%, a flow speed of 0.15 mm/s and a layer height of 0.41 mm. To improve the chitosan hydrogel printability, starch was added, and a design of experiments with three factors and two responses was carried out to find out the optimal starch supplementation. It was possible to conclude that the addition of starch (13 wt%) to the chitosan hydrogel improved the structural characteristics of the chitosan-based scaffolds. These scaffolds showed potential to be tested in the future as drug-delivery systems.


Asunto(s)
Quitosano , Drogas de Diseño , Andamios del Tejido/química , Quitosano/química , Hidrogeles/química , Sistemas de Liberación de Medicamentos , Impresión Tridimensional , Ingeniería de Tejidos
13.
J Neurophysiol ; 128(5): 1133-1142, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976060

RESUMEN

Pompe disease is a lysosomal storage disease resulting from absence or deficiency of acid α-glucosidase (GAA). Tongue-related disorders including dysarthria, dysphagia, and obstructive sleep apnea are common in Pompe disease. Our purpose was to determine if designer receptors exclusively activated by designer drugs (DREADDs) could be used to stimulate tongue motor output in a mouse model of Pompe disease. An adeno-associated virus serotype 9 (AAV9) encoding an excitatory DREADD (AAV9-hSyn-hM3D(Gq)-mCherry, 2.44 × 1010 vg) was administered to the posterior tongue of 5-7-wk-old Gaa null (Gaa-/-) mice. Lingual EMG responses to intraperitoneal injection of saline or a DREADD ligand (JHU37160-dihydrochloride, J60) were assessed 12 wk later during spontaneous breathing. Saline injection produced no consistent changes in lingual EMG. Following the DREADD ligand, there were statistically significant (P < 0.05) increases in both tonic and phasic inspiratory EMG activity recorded from the posterior tongue. Brainstem histology confirmed mCherry expression in hypoglossal (XII) motoneurons in all mice, thus verifying retrograde movement of the AAV9 vector. Morphologically, Gaa-/- XII motoneurons showed histological characteristics that are typical of Pompe disease, including an enlarged soma and vacuolization. We conclude that lingual delivery of AAV9 can be used to drive functional expression of DREADD in XII motoneurons in a mouse model of Pompe disease.NEW & NOTEWORTHY In a mouse model of Pompe disease, lingual injection of adeno-associated virus (AAV) serotype 9 encoding DREADD was histologically verified to produce transgene expression in hypoglossal motoneurons. Subsequent intraperitoneal delivery of a DREADD ligand stimulated tonic and phase tongue motor output.In a mouse model of Pompe disease, lingual injection of adeno-associated virus (AAV) serotype 9 encoding DREADD was histologically verified to produce transgene expression in hypoglossal motoneurons. Subsequent intravenous delivery of a DREADD ligand stimulated tonic and phase tongue motor output.


Asunto(s)
Drogas de Diseño , Enfermedad del Almacenamiento de Glucógeno Tipo II , Ratones , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , alfa-Glucosidasas/metabolismo , Ligandos , Dependovirus/genética , Neuronas Motoras/metabolismo , Modelos Animales de Enfermedad , Nervio Hipogloso/metabolismo
14.
Pharm Res ; 39(10): 2607-2620, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36071351

RESUMEN

OBJECTIVE: Customization of the rate of drug delivered based on individual patient requirements is of paramount importance in the design of drug delivery devices. Advances in manufacturing may enable multilayer drug delivery devices with different initial drug distributions in each layer. However, a robust mathematical understanding of how to optimize such capabilities is critically needed. The objective of this work is to determine the initial drug distribution needed in a spherical drug delivery device such as a capsule in order to obtain a desired drug release profile. METHODS: This optimization problem is posed as an inverse mass transfer problem, and optimization is carried out using the solution of the forward problem. Both non-erodible and erodible multilayer spheres are analyzed. Cases with polynomial forms of initial drug distribution are also analyzed. Optimization is also carried out for a case where an initial burst in drug release rate is desired, followed by a constant drug release rate. RESULTS: More than 60% reduction in root-mean-square deviation of the actual drug release rate from the ideal constant drug release rate is reported. Typically, the optimized initial drug distribution in these cases prevents or minimizes large drug release rate at early times, leading to a much more uniform drug release overall. CONCLUSIONS: Results demonstrate potential for obtaining a desired drug delivery profile over time by carefully engineering the drug distribution in the drug delivery device. These results may help engineer devices that offer customized drug delivery by combining advanced manufacturing with mathematical optimization.


Asunto(s)
Drogas de Diseño , Algoritmos , Cápsulas , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Preparaciones Farmacéuticas
15.
Am J Respir Crit Care Med ; 203(1): 102-110, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673075

RESUMEN

Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.


Asunto(s)
Drogas de Diseño/uso terapéutico , Nervio Hipogloso/efectos de los fármacos , Músculos Faríngeos/efectos de los fármacos , Receptores de Droga/efectos de los fármacos , Respiración/efectos de los fármacos , Apnea Obstructiva del Sueño/tratamiento farmacológico , Apnea Obstructiva del Sueño/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
16.
Am J Forensic Med Pathol ; 43(4): 372-375, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36281064

RESUMEN

ABSTRACT: Clonazolam is a derivative of the Xanax active ingredient, alprazolam. Classified as a designer benzodiazepine, clonazolam availability has been rising because of its circulation on illegal internet drug markets and marginal cost in comparison to its parent analogs. Clonazolam's accessibility encourages abuse prevalence and use of designer benzodiazepines. In our case, a 14-year-old male was found unresponsive the morning after ingesting multiple tablets believed to be Xanax. Toxicology testing indicated 140 ng/mL of 8-aminoclonazolam, a clonazolam metabolite, in the decedent's system. Alprazolam was not identified. Pathological analysis determined cerebral and respiratory depression to be the mechanism of death, resulting from acute clonazolam intoxication. This case presents the first death induced by clonazolam alone. Current literature identifies a gap in designer benzodiazepine confirmatory testing and a lack of awareness within the forensic and medical communities. Knowledge of designer benzodiazepines is needed to better understand their potency and to help prevent future intoxications. We present this case to aid in the recognition of novel benzodiazepines by medical examiners and coroners, to encourage their consideration in suspected Xanax and other substance related investigations, and to be aware of the capabilities of toxicological testing to improve novel benzodiazepine identification and subsequent interpretation.


Asunto(s)
Alprazolam , Drogas de Diseño , Masculino , Humanos , Adolescente , Detección de Abuso de Sustancias , Drogas de Diseño/metabolismo , Benzodiazepinas
17.
Pharmacol Rev ; 71(2): 123-156, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30814274

RESUMEN

For more than 60 years, dopamine (DA) has been known as a critical modulatory neurotransmitter regulating locomotion, reward-based motivation, and endocrine functions. Disturbances in DA signaling have been linked to an array of different neurologic and psychiatric disorders, including Parkinson's disease, schizophrenia, and addiction, but the underlying pathologic mechanisms have never been fully elucidated. One major obstacle limiting interpretation of standard pharmacological and transgenic interventions is the complexity of the DA system, which only appears to widen as research progresses. Nonetheless, development of new genetic tools, such as chemogenetics, has led to an entirely new era for functional studies of neuronal signaling. By exploiting receptors that are engineered to respond selectively to an otherwise inert ligand, so-called Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), chemogenetics enables pharmacological remote control of neuronal activity. Here we review the recent, extensive application of this technique to the DA field and how its use has advanced the study of the DA system and contributed to our general understanding of DA signaling and related behaviors. Moreover, we discuss the challenges and pitfalls associated with the chemogenetic technology, such as the metabolism of the DREADD ligand clozapine N-oxide (CNO) to the D2 receptor antagonist clozapine. We conclude that despite the recent concerns regarding CNO, the chemogenetic toolbox provides an exceptional approach to study neuronal function. The huge potential should promote continued investigations and additional refinements to further expound key mechanisms of DA signaling and circuitries in normal as well as maladaptive behaviors.


Asunto(s)
Dopamina/metabolismo , Animales , Conducta/efectos de los fármacos , Drogas de Diseño/farmacología , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal
18.
Molecules ; 27(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36144500

RESUMEN

The ongoing development of more and more new psychoactive substances continues to be a huge problem in 2022 affecting the European and international drug market. Through slight alterations in the structure of illicit drugs, a way to circumvent the law is created, as the created derivatives serve as legal alternatives with similar effects. A common way of structure modification is the induction of a halogen residue. Recently, halogenated derivatives of the well-known designer drug 4-methylaminorex appeared on the market and are available in various online shops. In this study, three novel halogenated 4-methylaminorex derivatives, namely 4'-fluoro-4-methylaminorex, 4'-chloro-4-methylaminorex, and 4'-bromo-4-methylaminorex, were purchased online and characterized using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography-high-resolution mass spectrometry (LC-HRMS), and chiral high-performance liquid chromatography with ultraviolet detection (HPLC-UV). These derivatives possess two stereogenic centers, and analyses revealed that all of them were present as a racemic mixture of the trans diastereomeric form.


Asunto(s)
Drogas de Diseño , Drogas Ilícitas , Drogas de Diseño/química , Halógenos , Drogas Ilícitas/química , Oxazoles/farmacología
19.
J Neurochem ; 158(3): 603-620, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33540469

RESUMEN

DREADDs (Designer Receptors Exclusively Activated by a Designer Drug) are designer G protein-coupled receptors (GPCRs) that are widely used in the neuroscience field to modulate neuronal activity. In this review, we will focus on DREADD studies carried out with genetically engineered mice aimed at elucidating signaling pathways important for maintaining proper glucose and energy homeostasis. The availability of muscarinic receptor-based DREADDs endowed with selectivity for one of the four major classes of heterotrimeric G proteins (Gs , Gi , Gq , and G12 ) has been instrumental in dissecting the physiological and pathophysiological roles of distinct G protein signaling pathways in metabolically important cell types. The novel insights gained from this work should inform the development of novel classes of drugs useful for the treatment of several metabolic disorders including type 2 diabetes and obesity.


Asunto(s)
Drogas de Diseño/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Drogas de Diseño/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Hippocampus ; 31(10): 1051-1067, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34107138

RESUMEN

The hippocampus and medial prefrontal cortex (mPFC) interact during a myriad of cognitive processes including decision-making and long-term memory consolidation. Exactly how the mPFC and hippocampus interact during goal-directed decision-making remains to be fully elucidated. During periods of rest, bursts of high-frequency oscillations, termed sharp-wave ripple (SWR), appear in the local field potential. Impairing SWRs on the maze or during post-learning rest can interfere with memory-guided decision-making and memory consolidation. We hypothesize that the hippocampus and mPFC bidirectionally interact during SWRs to support memory consolidation and decision-making. Rats were trained on the neuroeconomic spatial decision-making task, Restaurant Row, to make serial stay-skip decisions where the amount of effort (delay to reward) varied upon entry to each restaurant. Hippocampal cells and SWRs were recorded in rats with the mPFC transduced with inhibitory DREADDs. We found that disrupting the mPFC impaired consolidating SWRs in the hippocampus. Hippocampal SWR rates depended on the internalized value of the reward (derived from individual flavor preferences), a parameter important in decision-making, and disrupting the mPFC changed this relationship. Additionally, we found a dissociation between SWRs that occurred while rats were on the maze dependent upon whether those SWRs occurred while the rat was anticipating food reward or during post-reward consumption.


Asunto(s)
Drogas de Diseño , Consolidación de la Memoria , Animales , Cognición , Drogas de Diseño/farmacología , Hipocampo , Corteza Prefrontal , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA