Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.582
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(9): 2524-2524.e1, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33930299

RESUMEN

Animals have co-evolved with a vast diversity of microorganisms, collectively named the microbiome, which are important modulators of host gastrointestinal, immune, metabolic, and behavioral functions. In this SnapShot, we provide an overview of the neurodevelopmental and functional influence of host-microbial interactions in the "microbiota-gut-brain axis," which refers to the bidirectional communication between the central nervous system and the gastrointestinal microbiome. To view this SnapShot, open or download the PDF.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/inmunología , Microbioma Gastrointestinal , Trastornos del Neurodesarrollo/patología , Animales , Encéfalo/microbiología , Humanos , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/metabolismo
2.
Nat Immunol ; 20(5): 559-570, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30996332

RESUMEN

The C-type lectin receptor-Syk (spleen tyrosine kinase) adaptor CARD9 facilitates protective antifungal immunity within the central nervous system (CNS), as human deficiency in CARD9 causes susceptibility to fungus-specific, CNS-targeted infection. CARD9 promotes the recruitment of neutrophils to the fungus-infected CNS, which mediates fungal clearance. In the present study we investigated host and pathogen factors that promote protective neutrophil recruitment during invasion of the CNS by Candida albicans. The cytokine IL-1ß served an essential function in CNS antifungal immunity by driving production of the chemokine CXCL1, which recruited neutrophils expressing the chemokine receptor CXCR2. Neutrophil-recruiting production of IL-1ß and CXCL1 was induced in microglia by the fungus-secreted toxin Candidalysin, in a manner dependent on the kinase p38 and the transcription factor c-Fos. Notably, microglia relied on CARD9 for production of IL-1ß, via both transcriptional regulation of Il1b and inflammasome activation, and of CXCL1 in the fungus-infected CNS. Microglia-specific Card9 deletion impaired the production of IL-1ß and CXCL1 and neutrophil recruitment, and increased fungal proliferation in the CNS. Thus, an intricate network of host-pathogen interactions promotes antifungal immunity in the CNS; this is impaired in human deficiency in CARD9, which leads to fungal disease of the CNS.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/inmunología , Candidiasis/inmunología , Quimiocina CXCL1/inmunología , Interleucina-1beta/inmunología , Microglía/inmunología , Neutrófilos/inmunología , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/microbiología , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Candida albicans/inmunología , Candida albicans/fisiología , Candidiasis/genética , Candidiasis/microbiología , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microglía/metabolismo , Microglía/microbiología , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología
3.
Nature ; 615(7952): 472-481, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859544

RESUMEN

The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.


Asunto(s)
Encéfalo , Meninges , Meningitis Bacterianas , Neuroinmunomodulación , Humanos , Encéfalo/inmunología , Encéfalo/microbiología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Meninges/inmunología , Meninges/microbiología , Meninges/fisiopatología , Dolor/etiología , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Meningitis Bacterianas/complicaciones , Meningitis Bacterianas/inmunología , Meningitis Bacterianas/microbiología , Meningitis Bacterianas/patología , Streptococcus agalactiae/inmunología , Streptococcus agalactiae/patogenicidad , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/patogenicidad , Nociceptores/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo
4.
Mol Cell ; 78(4): 577-583, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32275853

RESUMEN

Host-associated microbiomes are emerging as important modifiers of brain activity and behavior. Metabolic, immune, and neuronal pathways are proposed to mediate communication across the so-called microbiota-gut-brain axis. However, strong mechanistic evidence, especially for direct signaling between microbes and sensory neurons, is lacking. Here, we discuss microbial regulation of short-chain fatty acids, neurotransmitters, as-yet-uncharacterized biochemicals, and derivatives of neuromodulatory drugs as important areas for assessing microbial interactions with the nervous system.


Asunto(s)
Encéfalo/microbiología , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Neurotransmisores/metabolismo , Células Receptoras Sensoriales/microbiología , Encéfalo/metabolismo , Tracto Gastrointestinal/metabolismo , Interacciones Huésped-Patógeno , Humanos , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
5.
Proc Natl Acad Sci U S A ; 121(17): e2320311121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635627

RESUMEN

Listeria monocytogenes is a bacterial pathogen that can cause life-threatening central nervous system (CNS) infections. While mechanisms by which L. monocytogenes and other pathogens traffic to the brain have been studied, a quantitative understanding of the underlying dynamics of colonization and replication within the brain is still lacking. In this study, we used barcoded L. monocytogenes to quantify the bottlenecks and dissemination patterns that lead to cerebral infection. Following intravenous (IV) inoculation, multiple independent invasion events seeded all parts of the CNS from the blood, however, only one clone usually became dominant in the brain. Sequential IV inoculations and intracranial inoculations suggested that clones that had a temporal advantage (i.e., seeded the CNS first), rather than a spatial advantage (i.e., invaded a particular brain region), were the main drivers of clonal dominance. In a foodborne model of cerebral infection with immunocompromised mice, rare invasion events instead led to a highly infected yet monoclonal CNS. This restrictive bottleneck likely arose from pathogen transit into the blood, rather than directly from the blood to the brain. Collectively, our findings provide a detailed quantitative understanding of the L. monocytogenes population dynamics that lead to CNS infection and a framework for studying the dynamics of other cerebral infections.


Asunto(s)
Infecciones del Sistema Nervioso Central , Listeria monocytogenes , Listeriosis , Ratones , Animales , Listeria monocytogenes/fisiología , Listeriosis/microbiología , Encéfalo/microbiología
6.
Physiol Rev ; 99(4): 1877-2013, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31460832

RESUMEN

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.


Asunto(s)
Bacterias/metabolismo , Encefalopatías/microbiología , Encéfalo/microbiología , Microbioma Gastrointestinal , Intestinos/microbiología , Factores de Edad , Envejecimiento , Animales , Bacterias/inmunología , Bacterias/patogenicidad , Conducta , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Encefalopatías/psicología , Disbiosis , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/microbiología , Sistema Nervioso Entérico/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Intestinos/inmunología , Neuroinmunomodulación , Plasticidad Neuronal , Factores de Riesgo
7.
N Engl J Med ; 386(9): 861-868, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35235727

RESUMEN

Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an uncommon infection that is typically associated with exposure to soil and water in tropical and subtropical environments. It is rarely diagnosed in the continental United States. Patients with melioidosis in the United States commonly report travel to regions where melioidosis is endemic. We report a cluster of four non-travel-associated cases of melioidosis in Georgia, Kansas, Minnesota, and Texas. These cases were caused by the same strain of B. pseudomallei that was linked to an aromatherapy spray product imported from a melioidosis-endemic area.


Asunto(s)
Aromaterapia/efectos adversos , Burkholderia pseudomallei/aislamiento & purificación , Brotes de Enfermedades , Melioidosis/epidemiología , Aerosoles , Encéfalo/microbiología , Encéfalo/patología , Burkholderia pseudomallei/genética , COVID-19/complicaciones , Preescolar , Resultado Fatal , Femenino , Genoma Bacteriano , Humanos , Pulmón/microbiología , Pulmón/patología , Masculino , Melioidosis/complicaciones , Persona de Mediana Edad , Filogenia , Choque Séptico/microbiología , Estados Unidos/epidemiología
8.
Cell ; 143(7): 1149-60, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183077

RESUMEN

Following pilus-mediated adhesion to human brain endothelial cells, meningococcus (N. meningitidis), the bacterium causing cerebrospinal meningitis, initiates signaling cascades, which eventually result in the opening of intercellular junctions, allowing meningeal colonization. The signaling receptor activated by the pathogen remained unknown. We report that N. meningitidis specifically stimulates a biased ß2-adrenoceptor/ß-arrestin signaling pathway in endothelial cells, which ultimately traps ß-arrestin-interacting partners, such as the Src tyrosine kinase and junctional proteins, under bacterial colonies. Cytoskeletal reorganization mediated by ß-arrestin-activated Src stabilizes bacterial adhesion to endothelial cells, whereas ß-arrestin-dependent delocalization of junctional proteins results in anatomical gaps used by bacteria to penetrate into tissues. Activation of ß-adrenoceptor endocytosis with specific agonists prevents signaling events downstream of N. meningitidis adhesion and inhibits bacterial crossing of the endothelial barrier. The identification of the mechanism used for hijacking host cell signaling machineries opens perspectives for treatment and prevention of meningococcal infection.


Asunto(s)
Arrestinas/metabolismo , Encéfalo/microbiología , Células Endoteliales/microbiología , Infecciones Meningocócicas/metabolismo , Neisseria meningitidis/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Adhesión Bacteriana , Barrera Hematoencefálica , Línea Celular , Humanos , Infecciones Meningocócicas/microbiología , beta-Arrestinas
9.
J Infect Dis ; 230(Supplement_2): S117-S127, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255391

RESUMEN

Dysbiosis within microbiomes has been increasingly implicated in many systemic illnesses, such as cardiovascular disease, metabolic syndrome, respiratory infections, and Alzheimer disease (Ad). The correlation between Ad and microbial dysbiosis has been repeatedly shown, yet the etiologic cause of microbial dysbiosis remains elusive. From a neuropathology perspective, abnormal (often age-related) changes in the brain, associated structures, and bodily lumens tend toward an accumulation of oxygen-depleted pathologic structures, which are anaerobically selective niches. These anaerobic environments may promote progressive change in the microbial community proximal to the brain and thus deserve further investigation. In this review, we identify and explore what is known about the anaerobic niche near or associated with the brain and the anaerobes that it is harbors. We identify the anaerobe stakeholders within microbiome communities and the impacts on the neurodegenerative processes associated with Ad. Chronic oral dysbiosis in anaerobic dental pockets and the composition of the gut microbiota from fecal stool are the 2 largest anaerobic niche sources of bacterial transference to the brain. At the blood-brain barrier, cerebral atherosclerotic plaques are predominated by anaerobic species intimately associated with the brain vasculature. Focal cerebritis/brain abscess and corpora amylacea may also establish chronic anaerobic niches in direct proximity to brain parenchyma. In exploring the anaerobic niche proximal to the brain, we identify research opportunities to explore potential sources of microbial dysbiosis associated with Ad.


Asunto(s)
Enfermedad de Alzheimer , Bacterias Anaerobias , Encéfalo , Disbiosis , Microbioma Gastrointestinal , Humanos , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/etiología , Disbiosis/microbiología , Bacterias Anaerobias/patogenicidad , Encéfalo/patología , Encéfalo/microbiología , Barrera Hematoencefálica/microbiología , Microbiota
10.
J Infect Dis ; 230(Supplement_2): S109-S116, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255392

RESUMEN

Periodontitis is a chronic inflammatory disease driven by dysbiosis in subgingival microbial communities leading to increased abundance of a limited number of pathobionts, including Porphyromonas gingivalis and Treponema denticola. Oral health, particularly periodontitis, is a modifiable risk factor for Alzheimer disease (AD) pathogenesis, with components of both these bacteria identified in postmortem brains of persons with AD. Repeated oral inoculation of mice with P. gingivalis results in brain infiltration of bacterial products, increased inflammation, and induction of AD-like biomarkers. P. gingivalis displays synergistic virulence with T. denticola during periodontitis. The aim of the current study was to determine the ability of P. gingivalis and T. denticola, grown in physiologically relevant conditions, individually and in combination, to induce AD-like pathology following chronic oral inoculation of female mice over 12 weeks. P. gingivalis alone significantly increased all 7 brain pathologies examined: neuronal damage, activation of astrocytes and microglia, expression of inflammatory cytokines interleukin 1ß (IL-1ß) and interleukin 6 and production of amyloid-ß plaques and hyperphosphorylated tau, in the hippocampus, cortex and midbrain, compared to control mice. T. denticola alone significantly increased neuronal damage, activation of astrocytes and microglia, and expression of IL-1ß, in the hippocampus, cortex and midbrain, compared to control mice. Coinoculation of P. gingivalis with T. denticola significantly increased activation of astrocytes and microglia in the hippocampus, cortex and midbrain, and increased production of hyperphosphorylated tau and IL-1ß in the hippocampus only. The host brain response elicited by oral coinoculation was less than that elicited by each bacterium, suggesting coinoculation was less pathogenic.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Bacteroidaceae , Encéfalo , Modelos Animales de Enfermedad , Porphyromonas gingivalis , Treponema denticola , Animales , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/patología , Ratones , Femenino , Encéfalo/patología , Encéfalo/microbiología , Infecciones por Bacteroidaceae/microbiología , Periodontitis/microbiología , Periodontitis/patología , Microglía/microbiología , Infecciones por Treponema/microbiología , Infecciones por Treponema/patología , Ratones Endogámicos C57BL , Astrocitos/microbiología , Astrocitos/patología , Placa Amiloide/patología , Placa Amiloide/microbiología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Péptidos beta-Amiloides/metabolismo
11.
J Infect Dis ; 230(Supplement_2): S95-S108, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255397

RESUMEN

BACKGROUND: Klebsiella pneumoniae is infamous for hospital-acquired infections and sepsis, which have also been linked to Alzheimer disease (AD)-related neuroinflammatory and neurodegenerative impairment. However, its causative and mechanistic role in AD pathology remains unstudied. METHODS: A preclinical model of K. pneumoniae enteric infection and colonization is developed in an AD model (3xTg-AD mice) to investigate whether and how K. pneumoniae pathogenesis exacerbates neuropathogenesis via the gut-blood-brain axis. RESULTS: K. pneumoniae, particularly under antibiotic-induced dysbiosis, was able to translocate from the gut to the bloodstream by penetrating the gut epithelial barrier. Subsequently, K. pneumoniae infiltrated the brain by breaching the blood-brain barrier. Significant neuroinflammatory phenotype was observed in mice with K. pneumoniae brain infection. K. pneumoniae-infected mice also exhibited impaired neurobehavioral function and elevated total tau levels in the brain. Metagenomic analyses revealed an inverse correlation of K. pneumoniae with gut biome diversity and commensal bacteria, highlighting how antibiotic-induced dysbiosis triggers an enteroseptic "pathobiome" signature implicated in gut-brain perturbations. CONCLUSIONS: The findings demonstrate how infectious agents following hospital-acquired infections and consequent antibiotic regimen may induce gut dysbiosis and pathobiome and increase the risk of sepsis, thereby increasing the predisposition to neuroinflammatory and neurobehavioral impairments via breaching the gut-blood-brain barrier.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Disbiosis , Microbioma Gastrointestinal , Infecciones por Klebsiella , Klebsiella pneumoniae , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Animales , Ratones , Disbiosis/microbiología , Disbiosis/inducido químicamente , Enfermedad de Alzheimer/microbiología , Enfermedades Neuroinflamatorias/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Infecciones por Klebsiella/microbiología , Barrera Hematoencefálica/microbiología , Encéfalo/patología , Encéfalo/microbiología , Antibacterianos/farmacología , Eje Cerebro-Intestino , Masculino , Humanos
12.
J Infect Dis ; 230(Supplement_2): S141-S149, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255394

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with limited therapeutic options. Accordingly, new approaches for prevention and treatment are needed. One focus is the human microbiome, the consortium of microorganisms that live in and on us, which contributes to human immune, metabolic, and cognitive development and that may have mechanistic roles in neurodegeneration. AD and Alzheimer's disease-related dementias (ADRD) are recognized as spectrum disorders with complex pathobiology. AD/ADRD onset begins before overt clinical signs, but initiation triggers remain undefined. We posit that disruption of the normal gut microbiome in early life leads to a pathological cascade within septohippocampal and cortical brain circuits. We propose investigation to understand how early-life microbiota changes may lead to hallmark AD pathology in established AD/ADRD models. Specifically, we hypothesize that antibiotic exposure in early life leads to exacerbated AD-like disease endophenotypes that may be amenable to specific microbiological interventions. We propose suitable models for testing these hypotheses.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Animales , Humanos , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/fisiopatología , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Encéfalo/microbiología , Encéfalo/patología , Encéfalo/fisiopatología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Modelos Animales de Enfermedad , Eje Cerebro-Intestino/efectos de los fármacos , Eje Cerebro-Intestino/fisiología
13.
J Bacteriol ; 206(6): e0008724, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38771039

RESUMEN

Bacterial meningitis is a life-threatening infection of the central nervous system (CNS) that occurs when bacteria are able to cross the blood-brain barrier (BBB) or the meningeal-cerebrospinal fluid barrier (mBCSFB). The BBB and mBCSFB comprise highly specialized brain endothelial cells (BECs) that typically restrict pathogen entry. Group B Streptococcus (GBS or Streptococcus agalactiae) is the leading cause of neonatal meningitis. Until recently, identification of GBS virulence factors has relied on genetic screening approaches. Instead, we here conducted RNA-seq analysis on GBS when interacting with induced pluripotent stem cell-derived BECs (iBECs) to pinpoint virulence-associated genes. Of the 2,068 annotated protein-coding genes of GBS, 430 transcripts displayed significant changes in expression after interacting with BECs. Notably, we found that the majority of differentially expressed GBS transcripts were downregulated (360 genes) during infection of iBECs. Interestingly, codY, encoding a pleiotropic transcriptional repressor in low-G + C Gram-positive bacteria, was identified as being highly downregulated. We conducted qPCR to confirm the codY downregulation observed via RNA-seq during the GBS-iBEC interaction and obtained codY mutants in three different GBS background parental strains. As anticipated from the RNA-seq results, the [Formula: see text]codY strains were more adherent and invasive in two in vitro BEC models. Together, this demonstrates the utility of RNA-seq during the BEC interaction to identify GBS virulence modulators. IMPORTANCE: Group B Streptococcus (GBS) meningitis remains the leading cause of neonatal meningitis. Research work has identified surface factors and two-component systems that contribute to GBS disruption of the blood-brain barrier (BBB). These discoveries often relied on genetic screening approaches. Here, we provide transcriptomic data describing how GBS changes its transcriptome when interacting with brain endothelial cells. Additionally, we have phenotypically validated these data by obtaining mutants of a select regulator that is highly down-regulated during infection and testing on our BBB model. This work provides the research field with a validated data set that can provide an insight into potential pathways that GBS requires to interact with the BBB and open the door to new discoveries.


Asunto(s)
Encéfalo , Células Endoteliales , Streptococcus agalactiae , Transcriptoma , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidad , Células Endoteliales/microbiología , Humanos , Encéfalo/microbiología , Encéfalo/metabolismo , Barrera Hematoencefálica/microbiología , Barrera Hematoencefálica/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Virulencia , Infecciones Estreptocócicas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Meningitis Bacterianas/microbiología
14.
Neurobiol Dis ; 195: 106484, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583642

RESUMEN

Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial meningitis globally, and pneumococcal meningitis is associated with increased risk of long-term neurological sequelae. These include several sensorimotor functions that are controlled by specific brain regions which, during bacterial meningitis, are damaged by a neuroinflammatory response and the deleterious action of bacterial toxins in the brain. However, little is known about the invasion pattern of the pneumococcus into the brain. Using a bacteremia-derived meningitis mouse model, we combined 3D whole brain imaging with brain microdissection to show that all brain regions were equally affected during disease progression, with the presence of pneumococci closely associated to the microvasculature. In the hippocampus, the invasion provoked microglial activation, while the neurogenic niche showed increased proliferation and migration of neuroblasts. Our results indicate that, even before the outbreak of symptoms, the bacterial load throughout the brain is high and causes neuroinflammation and cell death, a pathological scenario which ultimately leads to a failing regeneration of new neurons.


Asunto(s)
Bacteriemia , Encéfalo , Meningitis Neumocócica , Streptococcus pneumoniae , Animales , Meningitis Neumocócica/patología , Ratones , Encéfalo/patología , Encéfalo/microbiología , Bacteriemia/patología , Bacteriemia/microbiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Femenino
15.
Appl Environ Microbiol ; 90(9): e0033324, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39109874

RESUMEN

Parasites can manipulate host behavior to facilitate parasite transmission. One such host-pathogen interaction occurs between the fungus Ophiocordyceps sinensis and the ghost moth Thitarodes xiaojinensis. O. sinensis is involved in the mummification process of infected host larvae. However, the underlying molecular and chemical mechanism for this phenomenon is unknown. We characterized the small molecules regulating host behaviors and the altered metabolites in infected and mummified host larvae. Lipid-related metabolites, such as phosphatidylcholine, were identified in infected and mummified larvae. Decreased levels of the neurotransmitter acetylcholine (ACh) and elevated choline levels were observed in the brains of both the infected and mummified larvae. The aberrant activity of acetylcholinesterase (AChE) and relative mRNA expression of ACE2 (acetylcholinesterase) may mediate the altered transformation between ACh and choline, leading to the brain dysfunction of mummified larvae. Caspofungin treatment inhibited the mummification of infected larvae and the activity of AChE. These findings indicate the importance of ACh in the mummification of host larvae after O. sinensis infection.IMPORTANCEOphiocordyceps sinensis-infected ghost moth larvae are manipulated to move to the soil surface with their heads up in death. A fruiting body then grows from the caterpillar's head, eventually producing conidia for dispersal. However, the underlying molecular and chemical mechanism has not been characterized. In this study, we describe the metabolic profile of Thitarodes xiaojinensis host larvae after O. sinensis infection. Altered metabolites, particularly lipid-related metabolites, were identified in infected and mummified larvae, suggesting that lipids are important in O. sinensis-mediated behavioral manipulation of host larvae. Decreased levels of the neurotransmitter acetylcholine were observed in both infected and mummified larvae brains. This suggests that altered or reduced acetylcholine can mediate brain dysfunction and lead to aberrant behavior. These results reveal the critical role of acetylcholine in the mummification process of infected host larvae.


Asunto(s)
Acetilcolina , Hypocreales , Larva , Mariposas Nocturnas , Animales , Larva/microbiología , Larva/crecimiento & desarrollo , Acetilcolina/metabolismo , Mariposas Nocturnas/microbiología , Hypocreales/metabolismo , Hypocreales/genética , Hypocreales/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Neurotransmisores/metabolismo , Encéfalo/microbiología , Encéfalo/metabolismo , Acetilcolinesterasa/metabolismo
16.
J Psychiatry Neurosci ; 49(5): E289-E300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39299780

RESUMEN

BACKGROUND: Increasing evidence suggests an important role of the gut microbiome in the pathogenesis of mental disorders, including depression, along the microbiota-gut-brain axis. We sought to explore the interactions between gut microbe composition and neural circuits in late-life depression (LLD). METHODS: We performed fecal 16S ribosomal RNA (rRNA) sequencing and resting-state functional magnetic resonance imaging in a case-control cohort of older adults with LLD and healthy controls to characterize the association between gut microbiota and brain functional connectivity (FC). We used the Hamilton Depression Rating Scale (HAMD) to assess depressive symptoms. RESULTS: We included 32 adults with LLD and 16 healthy controls. At the genus level, the relative abundance of Enterobacter, Akkermansiaceae, Hemophilus, Burkholderia, and Rothia was significantly higher among patients with LDD than controls. Reduced FC within mood regulation circuits was mainly found in the frontal cortex (e.g., the right superior and inferior frontal gyrus, right lateral occipital cortex, left middle frontal gyrus, and left caudate) among patients with MDD. Group-characterized gut microbes among controls and patients showed opposite correlations with seed-based FC, which may account for the aberrant emotion regulation among patients with LDD. The abundance of Enterobacter (dominant genus among patients with LLD) was positively correlated with both HAMD scores (r = 0.49, p = 0.0004) and group-characterized FC (r = -0.37, p < 0.05), while Odoribacter (dominant genus among controls) was negatively correlated with both HAMD scores (r = -0.30, p = 0.04) and group-characterized FC. LIMITATIONS: The study's cross-sectional design and small sample size limit causal inferences; larger longitudinal studies are required for detailed subgroup analyses. CONCLUSION: We identified significant correlations between LDD-characterized gut microbes and brain FC, as well as depression severity, which may contribute to the pathophysiology of depression development among patients with LLD. Specific microbes were linked to altered brain connectivity, suggesting potential targets for treating LLD.


Asunto(s)
Microbioma Gastrointestinal , Imagen por Resonancia Magnética , Humanos , Microbioma Gastrointestinal/fisiología , Masculino , Femenino , Anciano , Estudios de Casos y Controles , Eje Cerebro-Intestino/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/microbiología , Heces/microbiología , ARN Ribosómico 16S/genética , Trastorno Depresivo Mayor/microbiología , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Persona de Mediana Edad
17.
Vet Res ; 55(1): 104, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210406

RESUMEN

Meningitis induced by Pasteurella multocida has been substantially described in clinical practice in both human and veterinary medicine, but the underlying mechanisms have not been previously reported. In this study, we investigated the influence of P. multocida infection on the permeability of the blood-brain barrier (BBB) using different models. Our in vivo tests in a mouse model and in vitro tests using human brain microvascular endothelial cell (hBMEC) model showed that P. multocida infection increased murine BBB permeability in mice and hBMEC monolayer permeability. Furthermore, we observed that P. multocida infection resulted in decreased expression of tight junctions (ZO1, claudin-5, occludin) and adherens junctions (E-cadherin) between neighboring hBMECs. Subsequent experiments revealed that P. multocida infection promoted the activation of hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor A (VEGFA) signaling and NF-κB signaling, and suppressed the HIF-1α/VEGFA significantly remitted the decrease in ZO1/E-cadherin induced by P. multocida infection (P < 0.001). NF-κB signaling was found to contribute to the production of chemokines such as TNF-1α, IL-ß, and IL-6. Additionally, transmission electron microscopy revealed that paracellular migration might be the strategy employed by P. multocida to cross the BBB. This study provides the first evidence of the migration strategy used by P. multocida to traverse the mammalian BBB. The data presented herein will contribute to a better understanding of the pathogenesis of the zoonotic pathogen P. multocida.


Asunto(s)
Uniones Adherentes , Barrera Hematoencefálica , Células Endoteliales , Infecciones por Pasteurella , Pasteurella multocida , Uniones Estrechas , Animales , Pasteurella multocida/fisiología , Barrera Hematoencefálica/microbiología , Ratones , Uniones Adherentes/metabolismo , Infecciones por Pasteurella/veterinaria , Infecciones por Pasteurella/microbiología , Células Endoteliales/microbiología , Células Endoteliales/fisiología , Uniones Estrechas/metabolismo , Humanos , Encéfalo/microbiología , Encéfalo/irrigación sanguínea
18.
BMC Infect Dis ; 24(1): 1016, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304798

RESUMEN

BACKGROUND: Nocardia, a rare but potentially fatal pathogen, can induce systemic infections with diverse manifestations. This study aimed to investigate the tissue and organ damage caused by Nocardia farcinica (N. farcinica) in mice via different infection routes, evaluate the resulting host immune responses, and assess its invasiveness in brain tissue. METHODS: BALB/c mice were infected with N. farcinica through intranasal, intraperitoneal, and intravenous routes (doses: 1 × 10^8, 1 × 10^7, 1 × 10^7 CFU in 50 µl PBS). Over a 7-day period, body temperature, weight, and mortality were monitored, and samples were collected for histopathological analysis and bacterial load assessment. Serum was isolated for cytokine detection via ELISA. For RNA-seq analysis, mice were infected with 1 × 107 CFU through three infection routes, after which brain tissue was harvested. RESULTS: Intraperitoneal and intravenous N. farcinica infections caused significant clinical symptoms, mortality, and neural disruption in mice, resulting in severe systemic infection. Conversely, intranasal infection primarily affected the lungs without causing significant damage to other organs. Intraperitoneal and intravenous infections significantly increased serum cytokines, particularly TNF-α and IFN-γ. RNA-seq analysis of brains from intravenously infected mice revealed significant differential gene expression, whereas the intranasal and intraperitoneal routes showed limited differences (only three genes). The enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the intravenous group were primarily related to immune processes. CONCLUSION: The study demonstrated that intravenous N. farcinica infection induces significant clinical symptoms, triggers an inflammatory response, damages multiple organs, and leads to systemic infections.


Asunto(s)
Encéfalo , Citocinas , Ratones Endogámicos BALB C , Nocardiosis , Nocardia , Animales , Nocardia/genética , Nocardiosis/microbiología , Nocardiosis/inmunología , Ratones , Citocinas/sangre , Femenino , Encéfalo/microbiología , Encéfalo/patología , Pulmón/microbiología , Pulmón/patología , Modelos Animales de Enfermedad , Carga Bacteriana
19.
BMC Infect Dis ; 24(1): 477, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720244

RESUMEN

We report a very rare case of Listeria multiple brain abscesses manifested as delirium, which represented diagnostic and therapeutic challenges overcome only by the close cooperation between Infectious Diseases and Neuroradiology, without which a satisfactory outcome would not be achieved.An elderly man presented with confusion and drowsiness with a background of type-II diabetes mellitus. Although computed tomography of the brain only showed frontal lobe oedema, contrast magnetic resonance (MR) imaging showed numerous irregular rim-enhancing lesions containing central diffusion restriction, suggesting multiple pyogenic cerebral abscesses of unclear aetiology. Thereafter, Listeria monocytogenes was isolated from blood cultures, suggesting this as the causative organism. Deemed unsuitable for neurosurgical drainage, the patient received medical management with a protracted course of antibiotics. This case was extremely challenging, due to 1) the impossibility of source control, 2) the small number of effective antibiotics available to treat this condition, and 3) the inevitable antibiotic side-effects, derived from long-term exposure. A successful outcome was only possible thanks to strict close multidisciplinary follow up, requiring frequent MR imaging and a judicious antibiotic choice, including monitoring of their side-effects. Due to the rarity of this condition, there is lack of guidance on its management, hence the importance of multidisciplinary involvement with very close imaging and antibiotic monitoring.


Asunto(s)
Antibacterianos , Absceso Encefálico , Listeria monocytogenes , Listeriosis , Humanos , Masculino , Absceso Encefálico/microbiología , Absceso Encefálico/tratamiento farmacológico , Absceso Encefálico/diagnóstico por imagen , Listeriosis/tratamiento farmacológico , Listeriosis/microbiología , Listeriosis/diagnóstico , Antibacterianos/uso terapéutico , Listeria monocytogenes/aislamiento & purificación , Anciano , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/microbiología , Delirio/tratamiento farmacológico
20.
Epilepsy Behav ; 157: 109899, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885595

RESUMEN

Epilepsy a prevalent childhood neurological disorder, arises from chronic brain dysfunction caused by oversynchronized firing of neurons. Frequent seizures often lead to both physical and intellectual damage in children, seriously affecting their growth and development, life and health. Recent research studies have shown that the intestinal microbes in pediatric epilepsy is significantly different from that of healthy children, characterised by changes in the abundance of specific microbe communities and a reduction in diversity. These alterations may influence epileptic seizures through various pathways, including the microbiota-gut-brain axis by modulating neurotransmitters metabolism, affecting gut barrier function and immune responses, and directly impacting brain activity via the vagus nerves. This review highlights the alterations in gut microbes and their metabolites in epileptic children, analyzes their impact on seizures, and explores potential associations.


Asunto(s)
Epilepsia , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Epilepsia/microbiología , Epilepsia/fisiopatología , Niño , Eje Cerebro-Intestino/fisiología , Encéfalo/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA