Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.152
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Virol ; 97(11): e0128923, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37933966

RESUMEN

IMPORTANCE: Global aquaculture production yielded a record of 122.9 million tons in 2022. However, ~10% of farmed aquatic animal production is lost each year due to various infectious diseases, resulting in substantial economic waste. Therefore, the development of vaccines is important for the prevention and control of aquatic infectious diseases. Gene-deletion live attenuated vaccines are efficacious because they mimic natural pathogen infection and generate a strong antibody response, thus showing good potential for administration via immersion. However, most gene-deletion viruses still have residual virulence, and thus, gene-deletion immersion vaccines for aquatic viruses are rarely developed. In this study, an orf074r deletion strain (Δorf074r) of ISKNV with residual virulence was constructed, and an immunization process was developed to reduce its residual virulence at 22°C, thereby making it a potential immersion vaccine against ISKNV. Our work will aid in the development of an aquatic gene-deletion live-attenuated immersion vaccine.


Asunto(s)
Enfermedades de los Peces , Iridoviridae , Vacunas Virales , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Inmersión , Inmunización/métodos , Inmunización/veterinaria , Iridoviridae/genética , Vacunas Atenuadas , Virulencia , Frío
2.
J Virol ; 97(4): e0005023, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36975794

RESUMEN

Antigen epitope identification is a critical step in the vaccine development process and is a momentous cornerstone for the development of safe and efficient epitope vaccines. In particular, vaccine design is difficult when the function of the protein encoded by the pathogen is unknown. The genome of Tilapia lake virus (TiLV), an emerging virus from fish, encodes protein functions that have not been elucidated, resulting in a lag and uncertainty in vaccine development. Here, we propose a feasible strategy for emerging viral disease epitope vaccine development using TiLV. We determined the targets of specific antibodies in serum from a TiLV survivor by panning a Ph.D.-12 phage library, and we identified a mimotope, TYTTRMHITLPI, referred to as Pep3, which provided protection against TiLV after prime-boost vaccination; its immune protection rate was 57.6%. Based on amino acid sequence alignment and structure analysis of the target protein from TiLV, we further identified a protective antigenic site (399TYTTRNEDFLPT410) which is located on TiLV segment 1 (S1). The epitope vaccine with keyhole limpet hemocyanin (KLH-S1399-410) corresponding to the mimotope induced the tilapia to produce a durable and effective antibody response after immunization, and the antibody depletion test confirmed that the specific antibody against S1399-410 was necessary to neutralize TiLV. Surprisingly, the challenge studies in tilapia demonstrated that the epitope vaccine elicited a robust protective response against TiLV challenge, and the survival rate reached 81.8%. In conclusion, this study revealed a concept for screening antigen epitopes of emerging viral diseases, providing promising approaches for development and evaluation of protective epitope vaccines against viral diseases. IMPORTANCE Antigen epitope determination is an important cornerstone for developing efficient vaccines. In this study, we attempted to explore a novel approach for epitope discovery of TiLV, which is a new virus in fish. We investigated the immunogenicity and protective efficacy of all antigenic sites (mimotopes) identified in serum of primary TiLV survivors by using a Ph.D.-12 phage library. We also recognized and identified the natural epitope of TiLV by bioinformatics, evaluated the immunogenicity and protective effect of this antigenic site by immunization, and revealed 2 amino acid residues that play important roles in this epitope. Both Pep3 and S1399-410 (a natural epitope identified by Pep3) elicited antibody titers in tilapia, but S1399-410 was more prominent. Antibody depletion studies showed that anti-S1399-410-specific antibodies were essential for neutralizing TiLV. Our study demonstrated a model for combining experimental and computational screens to identify antigen epitopes, which is attractive for epitope-based vaccine development.


Asunto(s)
Formación de Anticuerpos , Enfermedades de los Peces , Infecciones por Virus ARN , Tilapia , Vacunas Virales , Técnicas de Visualización de Superficie Celular , Simulación por Computador , Epítopos/inmunología , Vacunas Virales/inmunología , Formación de Anticuerpos/inmunología , Tilapia/virología , Línea Celular , Virus ARN/inmunología , Animales , Anticuerpos Antivirales/sangre , Inmunidad Humoral/inmunología , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/virología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología
3.
Appl Environ Microbiol ; 90(3): e0143923, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349149

RESUMEN

Aquaculture provides a rich resource of high-quality protein; however, the production is challenged by emerging pathogens such as Vibrio crassostreae. While probiotic bacteria have been proposed as a sustainable solution to reduce pathogen load in aquaculture, their application requires a comprehensive assessment across the aquaculture food chain. The purpose of this study was to determine the antagonistic effect of the potential probiotic bacterium Phaeobacter piscinae against the emerging fish pathogen V. crassostreae in aquaculture feed algae that can be an entry point for pathogens in fish and shellfish aquaculture. P. piscinae strain S26 produces the antibacterial compound tropodithietic acid (TDA). In a plate-based assay, P. piscinae S26 was equally to more effective than the well-studied Phaeobacter inhibens DSM17395 in its inhibition of the fish pathogens Vibrio anguillarum 90-11-286 and V. crassostreae DMC-1. When co-cultured with the microalgae Tetraselmis suecica and Isochrysis galbana, P. piscinae S26 reduced the maximum cell density of V. crassostreae DMC-1 by 2 log and 3-4 log fold, respectively. A TDA-deficient mutant of P. piscinae S26 inhibited V. crassostreae DMC-1 to a lesser extent than the wild type, suggesting that the antagonistic effect involves TDA and other factors. TDA is the prime antagonistic agent of the inhibition of V. anguillarum 90-11-286. Comparative genomics of V. anguillarum 90-11-286 and V. crassostreae DMC-1 revealed that V. crassostreae DMC-1 carries a greater arsenal of antibiotic resistance genes potentially contributing to the reduced effect of TDA. In conclusion, P. piscinae S26 is a promising new candidate for inhibition of emerging pathogens such as V. crassostreae DMC-1 in algal feed systems and could contribute to a more sustainable aquaculture industry.IMPORTANCEThe globally important production of fish and shellfish in aquaculture is challenged by disease outbreaks caused by pathogens such as Vibrio crassostreae. These outbreaks not only lead to substantial economic loss and environmental damage, but treatment with antibiotics can also lead to antibiotic resistance affecting human health. Here, we evaluated the potential of probiotic bacteria, specifically the newly identified strain Phaeobacter piscinae S26, to counteract these threats in a sustainable manner. Through a systematic assessment of the antagonistic effect of P. piscinae S26 against V. crassostreae DMC-1, particularly within the context of algal feed systems, the study demonstrates the effectiveness of P. piscinae S26 as probiotic and thereby provides a strategic pathway for addressing disease outbreaks in aquaculture. This finding has the potential of significantly contributing to the long-term stability of the industry, highlighting the potential of probiotics as an efficient and environmentally conscious approach to safeguarding aquaculture productivity against the adverse impact of pathogens.


Asunto(s)
Enfermedades de los Peces , Probióticos , Rhodobacteraceae , Vibrio , Animales , Humanos , Vibrio/fisiología , Peces , Acuicultura , Probióticos/farmacología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología
4.
Microb Pathog ; 189: 106591, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401591

RESUMEN

The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.


Asunto(s)
Anguilla , Enfermedades de los Peces , Vibriosis , Vibrio , Animales , Vacunas Atenuadas/genética , Muramidasa , Vacunas Bacterianas , Vibriosis/prevención & control , Vibriosis/veterinaria , Vibrio/genética , Superóxido Dismutasa/genética , Inmunoglobulina M , Enfermedades de los Peces/prevención & control
5.
Microb Pathog ; 190: 106614, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492825

RESUMEN

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Asunto(s)
Aeromonas hydrophila , Antioxidantes , Carpas , Eleutherococcus , Fermentación , Enfermedades de los Peces , Lacticaseibacillus rhamnosus , Probióticos , Animales , Lacticaseibacillus rhamnosus/metabolismo , Carpas/microbiología , Probióticos/farmacología , Probióticos/administración & dosificación , Antioxidantes/metabolismo , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/inmunología , Alimentación Animal , Inflamación/prevención & control , Citocinas/metabolismo , Acuicultura
6.
Arch Microbiol ; 206(5): 219, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627275

RESUMEN

Aeromonas hydrophila is one of the major freshwater fish pathogens. In the current study, a cocktail of D6 and CF7 phages was given orally to Labeo rohita to assess phage survival in fish organs as well as to determine the therapeutic efficacy of phage treatment against fish mortality caused by A. hydrophila. In the phage-coated feed, prepared by simple spraying method, phage counts were quite stable for up to 2 months with a decline of ≤ 0.23 log10 and ≤ 1.66 log10 PFU/g feed during 4 oC and room temperature storage. Throughout the experimental period of 7 days, both phages could be detected in the gut of fish fed with phage-coated feed. Besides, both CF7 and D6 phages were also detected in fish kidneys indicating the ability of both the phage to cross the intestinal barrier. During challenge studies with LD50 dose of A. hydrophila, phage cocktail doses of 1 × 106 - 1 × 108 PFU/g feed prevented the mortality in L. rohita with relative percentage survival (RPS) of 8.7-65.2. When challenged with LD90 dose of A. hydrophila, an RPS value of 28.6 was obtained at a phage cocktail dose of 1 × 108 PFU/g feed. The RPS data showed that orally-fed phage cocktail protected the fish against the mortality caused by A. hydrophila in a dose-dependent manner. Simple practical approaches for phage cocktail development, medicated feed preparation and oral administration along with phage survival and protection data make the current study useful for farmer-level application.


Asunto(s)
Bacteriófagos , Cyprinidae , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria
7.
Protein Expr Purif ; 215: 106412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104792

RESUMEN

Aeromonas veronii is an emerging bacterial pathogen that causes serious systemic infections in cultured Nile tilapia (Oreochromis niloticus), leading to massive deaths. Therefore, there is an urgent need to identify effective vaccine candidates to control the spread of this emerging disease. TonB-dependent receptor (Tdr) of A. veronii, which plays a role in the virulence factor of the organism, could be useful in terms of protective antigens for vaccine development. This study aims to evaluate the potential use of Tdr protein as a novel subunit vaccine against A. veronii infection in Nile tilapia. The Tdr gene from A. veronii was cloned into the pET28b expression vector, and the recombinant protein was subsequently produced in Escherichia coli strain BL21 (DE3). Tdr was expressed as an insoluble protein and purified by affinity chromatography. Antigenicity test indicated that this protein was recognized by serum from A. veronii infected fish. When Nile tilapia were immunized with the Tdr protein, specific antibody levels increased significantly (p-value <0.05) at 7 days post-immunization (dpi), and peaked at 21 dpi compared to antibody levels at 0 dpi. Furthermore, bacterial agglutination activity was observed in the fish serum immunized with the Tdr protein, indicating that specific antibodies in the serum can detect Tdr on the bacterial cell surface. These results suggest that Tdr protein has potential as a vaccine candidate. However, challenging tests with A.veronii in Nile tilapia needs to be investigated to thoroughly evaluate its protective efficacy for future applications.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Animales , Aeromonas veronii/genética , Inmunización , Proteínas Recombinantes/genética , Vacunas de Subunidad/genética , Enfermedades de los Peces/prevención & control
8.
Fish Shellfish Immunol ; 144: 109284, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092092

RESUMEN

Micropterus salmoides rhabdovirus (MSRV) is a significant viral pathogen in largemouth bass aquaculture, causing substantial annual economic losses. However, effective prevention methods remain elusive for various reasons. Medicinal plant extracts have emerged as valuable tools in preventing and managing aquatic animal diseases. Thus, the search for immunomodulators with straightforward, safe structures in plant extracts is imperative to ensure the continued health and growth of the largemouth bass industry. In our research, we employed epithelioma papulosum cyprinid (EPC) cells and largemouth bass as models to assess the anti-MSRV properties and immunomodulatory effects of ten plant-derived bioactive compounds. Among them, rhein demonstrated noteworthy potential, exhibiting a 75 % reduction in viral replication in vitro at a concentration of 50 mg/L. Furthermore, rhein pre-treatment significantly inhibited MSRV genome replication in EPC cells, with the highest inhibition rate reaching 64.8 % after 24 h, underscoring rhein's preventive impact against MSRV. Likewise, rhein displayed remarkable therapeutic effects on EPC cells during the early stages of MSRV infection, achieving a maximum inhibition rate of 85.6 % in viral replication. Subsequent investigations unveiled that rhein, with its consistent activity, effectively mitigated cytopathic effects (CPE) and nuclear damage induced by MSRV infection. Moreover, it restrained mitochondrial membrane depolarization and reduced the apoptosis rate by 38.8 %. In vivo experiments reinforced these findings, demonstrating that intraperitoneal injection of rhein enhanced the expression levels of immune related genes in multiple organs, hindered virus replication, and curtailed the mortality rate of MSRV-infected largemouth bass by 29 %. Collectively, our study endorses the utility of rhein as an immunomodulator to combat MSRV infections in largemouth bass. This not only underscores the potential of rhein as a broad-spectrum antiviral and means to bolster the immune response but also highlights the role of apoptosis as an immunological marker, making it an invaluable addition to the armamentarium against aquatic viral pathogens.


Asunto(s)
Lubina , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Factores Inmunológicos/metabolismo , Poder Psicológico , Enfermedades de los Peces/prevención & control
9.
Fish Shellfish Immunol ; 148: 109494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499217

RESUMEN

Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection-a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.


Asunto(s)
Enfermedades de los Peces , Vacunas de ADN , Vibriosis , Vibrio , Animales , Vibriosis/prevención & control , Vibriosis/veterinaria , Valina , Vacunas Bacterianas , Peces , Enfermedades de los Peces/prevención & control
10.
Fish Shellfish Immunol ; 144: 109267, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043875

RESUMEN

Streptococcosis is a highly contagious aquatic bacterial disease that poses a significant threat to tilapia. Vaccination is a well-known effective measure to prevent and control fish bacterial diseases. Among the various immunization methods, immersion vaccination is simple and can be widely used in aquaculture. Besides, nanocarrier delivery technology has been reported as an effective solution to improve the immune effect of immersion vaccine. In this study, the surface immunogenic protein (Sip) was proved to be conserved and potential to provide cross-immunoprotection for both Streptococcus agalactiae (S. agalactiae) and Streptococcus iniae (S. iniae) by multiple sequences alignment and Western blotting analysis. On this basis, we expressed and obtained the recombinant protein rSip and connected it with functionalized carbon nanotubes (CNT) to construct the nanocarrier vaccine system CNT-rSip. After immersion immunization, the immune effect of CNT-rSip against above two streptococcus infections was evaluated in tilapia based on some aspects including the serum specific antibody level, non-specific enzyme activities, immune-related genes expression and relative percent survival (RPS) after bacteria challenge. The results showed that compared with control group, CNT-rSip significantly (P < 0.05) increased the serum antibody levels, related enzyme activities including acid phosphatase, alkaline phosphatase, lysozyme and total antioxidant capacity activities, as well as the expression levels of immune-related genes from 2 to 4 weeks post immunization (wpi), and all these indexes peaked at 3 wpi. Besides, the above indexes of CNT-rSip were higher than those of rSip group with different extend during the experiment. Furthermore, the challenge test indicated that CNT-rSip provided cross-immunoprotection against S. agalactiae and S. iniae infection with RPS of 75 % and 72.41 %, respectively, which were much higher than those of other groups. Our study indicated that the nanocarrier immersion vaccine CNT-rSip could significantly improve the antibody titer and confer cross-immuneprotection against S. agalactiae and S. iniae infection in tilapia.


Asunto(s)
Vacunas Bacterianas , Enfermedades de los Peces , Nanotubos de Carbono , Infecciones Estreptocócicas , Tilapia , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Inmersión , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae , Streptococcus iniae
11.
Fish Shellfish Immunol ; 144: 109293, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104696

RESUMEN

Asian seabass (Lates calcarifer) holds significant economic value in fish farming in the Asia-Pacific region. Vibriosis caused by Vibrio harveyi (Vh) is a severe infectious disease affecting intensive farming of this species, for which prevention strategies by vaccination have been developed. This study investigated an alternative approach to injectable vaccination to prevent vibriosis in Asian seabass juveniles. The strategy begins with an immersion prime vaccination with a heat-inactivated Vh vaccine, followed by two oral booster doses administered at 14- and 28-days post-vaccination (dpv). Expression of five immune genes TNFα, IL1ß, CD4, CD8, and IgM in the head kidney and spleen, along with investigation of anti-Vh antibody response (IgM) in both systemic and mucosal systems, was conducted on a weekly basis. The efficacy of the vaccines was assessed by a laboratory challenge test at 43 dpv. The results showed that the immunized fish displayed higher levels of mRNA transcripts of the immune genes after the immersion prime and the first oral booster dose compared to the control group. The expression levels peaked at 14 and 28 dpv and then declined to baseline at 35 and 42 dpv. Serum specific IgM antibodies were detected as early as 7 dpv (the first time point investigated) and exhibited a steady increase, reaching the first peak at 21 dpv, and a second peak at 35 dpv. Although the antibody levels gradually declined over subsequent weeks, they remained significantly higher than the control group throughout the experiment. A similar antibody response pattern was also observed in the mucosal compartment. The laboratory challenge test demonstrated high protection by injection with 1.65 × 104 CFU/fish, with a relative percent of survival (RPS) of 72.22 ± 7.86 %. In conclusion, our findings highlight the potential of an immersion prime-oral booster vaccination strategy as a promising approach for preventing vibriosis in Asian seabass.


Asunto(s)
Vacunas Bacterianas , Lubina , Enfermedades de los Peces , Perciformes , Vibriosis , Animales , Enfermedades de los Peces/prevención & control , Inmersión , Inmunidad , Inmunoglobulina M , Vacunación/métodos , Vacunación/veterinaria , Vacunas de Productos Inactivados , Vibriosis/prevención & control , Vibriosis/veterinaria , Vacunas Bacterianas/administración & dosificación
12.
Fish Shellfish Immunol ; 149: 109557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608847

RESUMEN

Immersion vaccination, albeit easier to administer than immunization by injection, sometimes has challenges with antigen uptake, resulting in sub-optimal protection. In this research, a new strategy to enhance antigen uptake of a heat-inactivated Vibrio harveyi vaccine in Asian seabass (Lates calcarifer) using oxygen nanobubble-enriched water (ONB) and positively charged chitosan (CS) was explored. Antigen uptake in fish gills was assessed, as was the antibody response and vaccine efficacy of four different combinations of vaccine with ONB and CS, and two control groups. Pre-mixing of ONB and CS before introducing the vaccine, referred to as (ONB + CS) + Vac, resulted in superior antigen uptake and anti-V. harveyi antibody (IgM) production in both serum and mucus compared to other formulas. The integration of an oral booster (4.22 × 108 CFU/g, at day 21-25) within a vaccine trial experiment set out to further evaluate how survival rates post exposure to V. harveyi might be improved. Antibody responses were measured over 42 days, and vaccine efficacy was assessed through an experimental challenge with V. harveyi. The expression of immune-related genes IL1ß, TNFα, CD4, CD8, IgT and antibody levels were assessed at 1, 3, and 7-day(s) post challenge (dpc). The results revealed that antibody levels in the group (ONB + CS) + Vac were consistently higher than the other groups post immersion immunization and oral booster, along with elevated expression of immune-related genes after challenge with V. harveyi. Ultimately, this group demonstrated a significantly higher relative percent survival (RPS) of 63 % ± 10.5 %, showcasing the potential of the ONB-CS-Vac complex as a promising immersion vaccination strategy for enhancing antigen uptake, stimulating immunological responses, and improving survival of Asian seabass against vibriosis.


Asunto(s)
Vacunas Bacterianas , Quitosano , Enfermedades de los Peces , Vacunación , Vibriosis , Vibrio , Animales , Vibrio/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Quitosano/administración & dosificación , Vibriosis/veterinaria , Vibriosis/prevención & control , Vibriosis/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunación/veterinaria , Oxígeno , Lubina/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación
13.
Fish Shellfish Immunol ; 146: 109419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301812

RESUMEN

Peroxiredoxins (Prxs) are a family of antioxidant enzymes crucial for shielding cells against oxidative damage from reactive oxygen species (ROS). In this study, we cloned and analyzed two grass carp peroxiredoxin genes, CiPrx5 and CiPrx6. These genes exhibited ubiquitous expression across all sampled tissues, with their expression levels significantly modulated upon exposure to grass carp reovirus (GCRV). CiPrx5 was localized in the mitochondria, while CiPrx6 was uniformly distributed in the whole cells. Transfection or transformation of CiPrx5 and CiPrx6 into fish cells or E. coli significantly enhanced host resistance to H2O2 and heavy metals, leading to increased cell viability and reduced cell apoptosis rates. Furthermore, purified recombinant CiPrx5 and CiPrx6 proteins effectively protected DNA against oxidative damage. Notably, overexpression of both peroxiredoxins in fish cells effectively inhibited GCRV replication, reduced intracellular ROS levels induced by GCRV infection and H2O2 treatment, and induced autophagy. Significantly, these functions of CiPrx5 and CiPrx6 in GCRV replication and ROS mitigation were abolished upon treatment with an autophagy inhibitor. In summation, our findings suggest that grass carp Prx5 and Prx6 promote autophagy to inhibit GCRV replication, decrease intracellular ROS, and provide protection against oxidative stress.


Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Animales , Carpas/genética , Carpas/metabolismo , Especies Reactivas de Oxígeno , Peroxirredoxinas/genética , Escherichia coli , Peróxido de Hidrógeno , Infecciones por Reoviridae/prevención & control , Estrés Oxidativo , Autofagia , Enfermedades de los Peces/prevención & control
14.
Fish Shellfish Immunol ; 149: 109572, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636739

RESUMEN

Streptococcosis outbreaks caused by Streptococcus agalactiae infection in tilapia aquaculture have been consistently reported and associated with high mortality and morbidity leading to significant economic losses. Existing vaccine candidates against Streptococcus spp. are designed for intraperitoneal injections that are not practical and labor-intensive which have prompted farmers to protect aquatic animals with antibiotics, thus encouraging the emergence of multidrug resistant bacteria. In this study, a live recombinant L. lactis vaccine expressing a 1403 bp surface immunogenic protein (SIP) and a 1100 bp truncated SIP (tSIP) gene was developed and evaluated against S. agalactiae infection in tilapia. Both SIP and tSIP sequences were cloned and transformed into L. lactis. The recombinant L.lactis vaccine was orally administered to juvenile tilapia for a month. Detection of SIP-specific serum IgM in vaccinated groups compared to control groups indicated that recombinant proteins expressed from L. lactis could elicit immunogenic reactions in tilapia. Fish immunized with the tSIP vaccine also showed the highest level of protection compared to other test groups, and the mortality rate was significantly reduced compared to both control groups. The relative percentage of survival (RPS) against S. agalactiae for both SIP and tSIP-vaccinated groups was 50 % and 89 %, respectively, at 14 days post-challenge. Significant up-regulation of IgM, IL-1ß, IL-10, TNF-α and IFN-γ were observed at day 34 between the vaccinated and control groups. These results indicated that the recombinant lactococcal tSIP vaccine can elicit both cell-mediated and humoral responses and is recommended as a potential oral vaccine against S. agalactiae infection. Future work will include further in vivo challenge assessments of this vaccine candidate fused with adjuvants to boost immunogenicity levels in tilapia.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Streptococcus agalactiae/inmunología , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Cíclidos/inmunología , Administración Oral , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Estreptocócicas/inmunología , Vacunas Estreptocócicas/administración & dosificación , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Lactococcus lactis/genética , Lactococcus lactis/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética
15.
Fish Shellfish Immunol ; 149: 109567, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641215

RESUMEN

Streptococcosis, an emerging infectious disease caused by Streptococcus agalactiae, has had adverse effects on farmed tilapia. Several vaccines have been developed to prevent this disease and induce a specific immune response against S. agalactiae infection. In this study the use of MONTANIDE™ GR01, a new adjuvant for oral vaccination, was optimized for use in tilapia under laboratory and field studies. In the laboratory trial the immune response and protective efficacy of two doses of MONTANIDE™ GR01, 20 % (w/w) and 2 % (w/w), included into the feed-based adjuvanted vaccines were assessed comparatively. Following immunization, the innate immune parameters studied in serum, including lysozyme, myeloperoxidase, catalase and glutathione peroxidase activity, were all increased significantly. Furthermore, specific IgM antibodies against S. agalactiae were induced significantly in serum post-vaccination, with higher levels observed in both groups that received the feed-based adjuvanted vaccine. Under both injection and immersion challenge conditions, the relative percent survival for the feed-based adjuvanted vaccine groups ranged from 78 % to 84 %. Following use of the low dose concentration of MONTANIDE™ GR01 for oral vaccination of tilapia in cage culture systems, several innate immune parameters were effectively enhanced in the immunized fish. Similarly, the levels of specific IgM antibodies in the serum of feed-based vaccinated fish were significantly enhanced, reaching their highest levels 2-5 months post-vaccination. Cytokines associated with innate and adaptive immunity were also examined, and the expression levels of several genes showed significant up-regulation. This indicates that both cellular and humoral immune responses were induced by the feed-based adjuvanted vaccine. The economic impact of a feed-based adjuvanted vaccine was examined following vaccination, considering the growth performance and feed utilization of the fish. It was found that the Economic Performance Index and Economic Conversion Ratio were unaffected by vaccination, further demonstrating that there are no negative impacts associated with administering a feed-based vaccine to fish. In conclusion, the data from this study indicate that MONTANIDE™ GR01 is a highly valuable adjuvant for oral vaccination, as demonstrated by its ability to induce a strong immune response and effectively prevent streptococcal disease in Nile tilapia.


Asunto(s)
Adyuvantes Inmunológicos , Cíclidos , Enfermedades de los Peces , Inmunidad Innata , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Streptococcus agalactiae/inmunología , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Cíclidos/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Administración Oral , Alimentación Animal/análisis , Vacunas Estreptocócicas/inmunología , Vacunas Estreptocócicas/administración & dosificación , Vacunación/veterinaria
16.
Fish Shellfish Immunol ; 150: 109663, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821228

RESUMEN

Persistent nocardiosis has prompted exploration of the effectiveness of heterologous approaches to prevent severe infections. We have previously reported the efficacy of a nucleic acid vaccine in protecting groupers from highly virulent Nocardia seriolae infections. Ongoing research has involved the supplementation of recombinant cholesterol oxidase (rCho) proteins through immunization with a DNA vaccine to enhance the protective capacity of orange-spotted groupers. Recombinant rCho protein exhibited a maturity and biological structure comparable to that expressed in N. seriolae, as confirmed by Western blot immunodetection assays. The immune responses observed in vaccinated groupers were significantly higher than those observed in single-type homologous vaccinations, DNA or recombinant proteins alone (pcD:Cho and rCho/rCho), especially cell-mediated immune and mucosal immune responses. Moreover, the reduction in N. seriolae occurrence in internal organs, such as the head, kidney, and spleen, was consistent with the vaccine's efficacy, which increased from approximately 71.4 % to an undetermined higher percentage through heterologous vaccination strategies of 85.7 %. This study underscores the potential of Cho as a novel vaccine candidate and a heterologous approach for combating chronic infections such as nocardiosis.


Asunto(s)
Vacunas Bacterianas , Enfermedades de los Peces , Nocardiosis , Nocardia , Animales , Nocardiosis/veterinaria , Nocardiosis/prevención & control , Nocardiosis/inmunología , Nocardia/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas de ADN/inmunología , Vacunas de ADN/administración & dosificación , Lubina/inmunología , Colesterol Oxidasa/inmunología , Colesterol Oxidasa/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/administración & dosificación
17.
J Immunol ; 208(5): 1099-1114, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101892

RESUMEN

Circular RNA (circRNA) is produced by splicing head to tail and is widely distributed in multicellular organisms, and circRNA reportedly can participate in various cell biological processes. In this study, we discovered a novel exon-intron circRNA derived from probable E3 ubiquitin-protein ligase RNF217 (RNF217) gene, namely, circRNF217, which was related to the antibacterial responses in teleost fish. Results indicated that circRNF217 played essential roles in host antibacterial immunity and inhibited the Vibrio anguillarum invasion into cells. Our study also found a microRNA miR-130-3p, which could inhibit antibacterial immune response and promote V. anguillarum invasion into cells by targeting NOD1. Moreover, we also found that the antibacterial effect inhibited by miR-130-3p could be reversed with circRNF217. In mechanism, our data revealed that circRNF217 was a competing endogenous RNA of NOD1 by sponging miR-130-3p, leading to activation of the NF-κB pathway and then enhancing the innate antibacterial responses. In addition, we also found that circRNF217 can promote the antiviral response caused by Siniperca chuatsi rhabdovirus through targeting NOD1. Our study provides new insights for understanding the impact of circRNA on host-pathogen interactions and formulating fish disease prevention to resist the severely harmful V. anguillarum infection.


Asunto(s)
Enfermedades de los Peces/inmunología , Inmunidad Innata/inmunología , MicroARNs/genética , Percas/inmunología , ARN Circular/genética , Vibrio/inmunología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Percas/virología , Rhabdoviridae/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
BMC Vet Res ; 20(1): 290, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965554

RESUMEN

Edwardsiellosis is a bacterial fish disease that mostly occurs in freshwater farms and is characterized by a high mortality rate. Edwardsiella tarda strain was recovered from 17 fish out of 50 Nile tilapia, which were harboring clinical signs of systemic septicemia. The level of un-ionized ammonia (NH3) in the fish farm's water was 0.11-0.15 mg/L, which was stressful for the Nile tilapia.Sequencing of the gyrB1 gene confirmed that the isolate was E. tarda JALO4, and it was submitted to NCBI under the accession number PP449014. The isolated E. tarda harbored the virulence gene edw1 AHL-synthase (quorum sensing). In addition, the isolate was sensitive to trimethoprim and sulfamethoxazole mean while it was intermediate to florfenicol. The median lethal dose (LD50) of E. tarda JALO4 was determined to be 1.7 × 105 CFU/mL in Nile tilapia.In the indoor experiment, Nile tilapia (45.05 ± 0.4 g), which received dietary Spirulina platensis (5 and 10 g/kg fish feed), showed optimum growth and feed utilization. Meanwhile, after receiving dietary S. platensis, the fish's feed conversion ratio (FCR) was significantly enhanced compared to the control, which was 1.94, 1.99, and 2.88, respectively. The expression of immune-related genes interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were upsurged in E. tarda-challenged fish with higher intensity in S. platensis groups. Dietary S. platensis at a dose of 10 g/kg fish feed could provide a relative protection level (RPL) of 22.2% Nile tilapia challenged against E. tarda. Nile tilapia experimentally infected E. tarda, drastically altering their behavior: higher operculum movement, low food apprehension, and abnormal swimming dietary S. platensis (10 g/kg fish feed) could rapidly restore normal status.It was concluded that Edwardsiellosis could alter Nile tilapia behavior with a high loss in fish population. Fish received dietary-S. platensis could rapidly restore normal behavior after E. tarda infection. It is recommended the incorporation of S. platensis at doses of 10 g/kg into the Nile tilapia diet to boost their immunity and counteract E. tarda infection.


Asunto(s)
Alimentación Animal , Cíclidos , Edwardsiella tarda , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Spirulina , Animales , Cíclidos/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Alimentación Animal/análisis , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/prevención & control , Acuicultura , Dieta/veterinaria
19.
BMC Vet Res ; 20(1): 231, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802892

RESUMEN

BACKGROUND: Moringa oleifera, a well-known medicinal plant, has been used in aquafeed as a dietary supplement. Based on previous studies, insufficient research is available on the dietary supplementation of Nile tilapia with M. oleifera leaf and seed mixtures, specifically the fermented form. Therefore, this study aimed to investigate the efficacy of fermented (FMO) versus non-fermented M. oleifera (MO) leaf and seed mixtures on immunological parameters, antioxidant activity, growth performance, and resistance to A. hydrophila infection after a 30-day feeding trial on Nile tilapia. METHODS: A total of 180 fingerlings were randomly divided into four groups in addition to the control group (36 fish each, in triplicate). Fish in the tested groups were fed on basal diet supplemented with MO5%, MO10%, FMO5%, and FMO10%, while those in control were fed on basal diet only. After the feeding trial, fish were challenged with A. hydrophila. The immunomodulatory activity of M. oleifera was evaluated in terms of phagocytic and lysozyme activities, immune-related cytokines and IgM gene expression. Antioxidants, and growth-promoting activities were also assessed. RESULTS: The results revealed that fish supplemented FMO markedly in FMO10% group followed by FMO5%, exhibited significant (P < 0.05) improvement in the tested immunological, hepatic antioxidants, and growth performance parameters. Furthermore, the highest survival rate post-challenge with mild clinical symptoms, and the lowest A. hydrophila bacterial count were reported in these groups. Meanwhile, MO10%-supplementation exhibited the opposite trend. CONCLUSIONS: The study' conclusion suggests that fermented M. oleifera leaf and seed mixture is a promising growth-promoting and immunostimulatory feed-additive candidate for Nile tilapia and could reduce the losses caused by A. hydrophila infection.


Asunto(s)
Aeromonas hydrophila , Alimentación Animal , Antioxidantes , Cíclidos , Dieta , Suplementos Dietéticos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Moringa oleifera , Animales , Moringa oleifera/química , Cíclidos/crecimiento & desarrollo , Cíclidos/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Antioxidantes/metabolismo , Alimentación Animal/análisis , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Dieta/veterinaria , Hojas de la Planta/química , Fermentación , Semillas/química
20.
BMC Vet Res ; 20(1): 267, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902724

RESUMEN

BACKGROUND: Scale drop disease virus (SDDV) threatens Asian seabass (Lates calcarifer) aquaculture production by causing scale drop disease (SDD) in Asian seabass. Research on the development of SDDV vaccines is missing an in-depth examination of long-term immunity and the immune reactions it provokes. This study investigated the long-term immune protection and responses elicited by an SDDV vaccine. The research evaluated the effectiveness of a formalin-inactivated SDDV vaccine (SDDV-FIV) using both prime and prime-booster vaccination strategies in Asian seabass. Three groups were used: control (unvaccinated), single-vaccination (prime only), and booster (prime and booster). SDDV-FIV was administered via intraperitoneal route, with a booster dose given 28 days post-initial vaccination. RESULTS: The immune responses in vaccinated fish (single and booster groups) showed that SDDV-FIV triggered both SDDV-specific IgM and total IgM production. SDDV-specific IgM levels were evident until 28 days post-vaccination (dpv) in the single vaccination group, while an elevated antibody response was maintained in the booster group until 70 dpv. The expression of immune-related genes (dcst, mhc2a1, cd4, ighm, cd8, il8, ifng, and mx) in the head kidney and peripheral blood lymphocytes (PBLs) of vaccinated and challenged fish were significantly upregulated within 1-3 dpv and post-SDDV challenge. Fish were challenged with SDDV at 42 dpv (challenge 1) and 70 dpv (challenge 2). In the first challenge, the group that received booster vaccinations demonstrated notably higher survival rates than the control group (60% versus 20%, P < 0.05). However, in the second challenge, while there was an observable trend towards improved survival rates for the booster group compared to controls (42% versus 25%), these differences did not reach statistical significance (P > 0.05). These findings suggest that the SDDV-FIV vaccine effectively stimulates both humoral and cellular immune responses against SDDV. Booster vaccination enhances this response and improves survival rates up to 42 dpv. CONCLUSIONS: This research provides valuable insights into the development of efficient SDDV vaccines and aids in advancing strategies for immune modulation to enhance disease management in the aquaculture of Asian seabass.


Asunto(s)
Enfermedades de los Peces , Inmunización Secundaria , Vacunas de Productos Inactivados , Vacunas Virales , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Inmunización Secundaria/veterinaria , Iridoviridae/inmunología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/prevención & control , Infecciones por Virus ADN/inmunología , Formaldehído , Anticuerpos Antivirales/sangre , Vacunación/veterinaria , Inmunoglobulina M/sangre , Perciformes/inmunología , Lubina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA