Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Curr Issues Mol Biol ; 36: 63-66, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31559970

RESUMEN

Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurological diseases that include Creutzfeldt-Jakob disease (CJD) in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle, camel spongiform encephalopathy (CSE) in camels and chronic wasting disease (CWD) in cervids. A key event in prion diseases is the conversion of the cellular, host-encoded prion protein (PrPC) to its abnormal isoform (PrPSc) predominantly in the central nervous system of the infected host (Aguzzi et al., 2004). These diseases are transmissible under some circumstances, but unlike other transmissible disorders, prion diseases can also be caused by mutations in the host gene. The mechanism of prion spread among sheep and goats that develop natural scrapie is unknown. CWD, transmissible mink encephalopathy (TME), BSE, feline spongiform encephalopathy (FSE), and exotic ungulate encephalopathy (EUE) are all thought to occur after the consumption of prion-infected material. Most cases of human prion disease occur from unknown reasons, and greater than 20 mutations in the prion protein (PrP) gene may lead to inherited prion disease. In other instances, prion diseases are contracted by exposure to prion infectivity. These considerations raise the question of how a mere protein aggregate can bypass mucosal barriers, circumvent innate and adoptive immunity, and traverse the blood-brain barrier to give rise to brain disease. Here, we will briefly introduce a few topics in current prion studies.


Asunto(s)
Enfermedades por Prión/genética , Priones/metabolismo , Deficiencias en la Proteostasis/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Inocuidad de los Alimentos , Humanos , Enfermedad de Huntington/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedades por Prión/enzimología , Enfermedades por Prión/metabolismo , Enfermedades por Prión/transmisión , Priones/genética , Priones/patogenicidad , Deficiencias en la Proteostasis/enzimología , Deficiencias en la Proteostasis/genética , Factores de Riesgo , Reacción a la Transfusión/epidemiología
2.
Am J Pathol ; 189(3): 677-686, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553837

RESUMEN

Localization of the abnormal and normal isoforms of prion proteins to detergent-resistant membrane microdomains, lipid rafts, is important for the conformational conversion. Lipid rafts are enriched in sialic acid-containing glycosphingolipids (namely, gangliosides). Alteration in the ganglioside composition of lipid rafts can affect the localization of lipid raft-associated proteins. To investigate the role of gangliosides in the pathogenesis of prion diseases, we performed intracerebral transmission study of a scrapie prion strain Chandler and a Gerstmann-Sträussler-Scheinker syndrome prion strain Fukuoka-1 using various knockout mouse strains ablated with ganglioside synthase gene (ie, GD2/GM2 synthase, GD3 synthase, or GM3 synthase). After challenge with the Chandler strain, GD2/GM2 synthase knockout mice showed 20% reduction of incubation time, reduced prion protein deposition in the brain with attenuated glial reactions, and reduced localization of prion proteins to lipid rafts. These results raise the possibility that the gangliosides may have an important role in prion disease pathogenesis by affecting the localization of prion proteins to lipid rafts.


Asunto(s)
N-Acetilgalactosaminiltransferasas/deficiencia , Neuroglía/enzimología , Proteínas PrPSc/metabolismo , Enfermedades por Prión/enzimología , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Ratones , Ratones Noqueados , Neuroglía/patología , Proteínas PrPSc/genética , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Factores de Tiempo
3.
Neurobiol Dis ; 124: 57-66, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30423473

RESUMEN

Mitochondrial malfunction is a common feature in advanced stages of neurodegenerative conditions, as is the case for the accumulation of aberrantly folded proteins, such as PrP in prion diseases. In this work, we investigated mitochondrial activity and expression of related factors vis a vis PrP accumulation at the subclinical stages of TgMHu2ME199K mice, modeling for genetic prion diseases. While these mice remain healthy until 5-6 months of age, they succumb to fatal disease at 12-14 months. We found that mitochondrial respiratory chain enzymatic activates and ATP/ROS production, were abnormally elevated in asymptomatic mice, concomitant with initial accumulation of disease related PrP. In parallel, the expression of Cytochrome c oxidase (COX) subunit IV isoform 1(Cox IV-1) was reduced and replaced by the activity of Cox IV isoform 2, which operates in oxidative neuronal conditions. At all stages of disease, Cox IV-1 was absent from cells accumulating disease related PrP, suggesting that PrP aggregates may directly compromise normal mitochondrial function. Administration of Nano-PSO, a brain targeted antioxidant, to TgMHu2ME199K mice, reversed functional and biochemical mitochondrial functions to normal conditions regardless of the presence of misfolded PrP. Our results therefore indicate that in genetic prion disease, oxidative damage initiates long before clinical manifestations. These manifest only when aggregated PrP levels are too high for the compensatory mechanisms to sustain mitochondrial activity.


Asunto(s)
Mitocondrias/enzimología , Enfermedades por Prión/enzimología , Enfermedades por Prión/genética , Proteínas Priónicas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/administración & dosificación , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Aceites de Plantas/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo
4.
Neuropathol Appl Neurobiol ; 40(3): 311-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23741998

RESUMEN

AIMS: Transmissible spongiform encephalopathies, also called prion diseases, are characterized by the cerebral accumulation of misfolded prion protein (PrP(SC) ) and subsequent neurodegeneration. However, despite considerable research effort, the molecular mechanisms underlying prion-induced neurodegeneration are poorly understood. Here, we explore the hypothesis that prions induce dysfunction of the PI3K/Akt/GSK-3 signalling pathway. METHODS: We employed two parallel approaches. Using cell cultures derived from mouse primary neurones and from a human neuronal cell line, we identified common elements that were modified by the neurotoxic fragment of PrP(106-126) . These studies were then complemented by comparative analyses in a mouse model of prion infection. RESULTS: The presence of a polymerized fragment of the prion protein (PrP(106-126) ) or of a prion strain altered PI3K-mediated signalling, as evidenced by Akt inhibition and GSK-3 activation. PI3K activation by the addition of insulin or the expression of a constitutively active Akt mutant restored normal levels of Akt and GSK-3 activity. These changes were correlated with a reduction in caspase activity and an increase in neuronal survival. Moreover, we found that activation of caspase 3, Erk and GSK-3 are common features of PrP(106-126) -mediated neurotoxicity in cellular systems and prion infection in the mouse cerebellum, while activation of caspase 12 and JNK was observed in cellular models. CONCLUSIONS: Our findings in cell culture and in vivo models of prion disease demonstrate marked alterations to the PI3K/Akt/GSK-3 pathway and suggest that two additional pathways contribute to PrP-induced neurotoxicity as responsible of JNK and caspase 12 activation.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Enfermedades por Prión/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Fragmentos de Péptidos/metabolismo , Priones/metabolismo
5.
Brain ; 136(Pt 4): 1102-15, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23550113

RESUMEN

Variably protease-sensitive prionopathy is a newly described human prion disease of unknown aetiology lying out with the hitherto recognized phenotypic spectrum of Creutzfeldt-Jakob disease. Two cases that conform to the variably protease-sensitive prionopathy phenotype have been identified prospectively in the U.K. since the first description of the condition in 2008 in the U.S.A. To determine the incidence and phenotype of variably protease-sensitive prionopathy within a single well-defined cohort, we have conducted a retrospective review of patients referred to the National Creutzfeldt-Jakob Disease Research & Surveillance Unit during the period 1991-2008. The approach taken was to screen frozen brain tissue by western blotting for the form of protease-resistant prion protein that characterizes variably protease-sensitive prionopathy, followed by neuropathological and clinical review of candidate cases. Cases diagnosed as sporadic Creutzfeldt-Jakob disease with atypical neuropathology were also reviewed. Four hundred and sixty-five cases were screened biochemically, yielding four candidate cases of variably protease-sensitive prionopathy. One was discounted on pathological and clinical grounds, and one was a known case of variably protease-sensitive prionopathy previously reported, leaving two new cases, which were confirmed biochemically and neuropathologically as variably protease-sensitive prionopathy. A third new case that lacked frozen tissue was recognized retrospectively on neuropathological grounds alone. This means that five cases of variably protease-sensitive prionopathy have been identified (prospectively and retrospectively) during the surveillance period 1991-2011 in the U.K. Assuming ascertainment levels equivalent to that of other human prion diseases, these data indicate that variably protease-sensitive prionopathy is a rare phenotype within human prion diseases, which are themselves rare. Biochemical investigation indicates that the abnormal protease-resistant prion protein fragment that characterizes variably protease-sensitive prionopathy is detectable at low levels in some cases of sporadic Creutzfeldt-Jakob disease and conversely, that the form of abnormal prion protein that characterizes sporadic Creutzfeldt-Jakob disease can be found in certain brain regions of cases of variably protease-sensitive prionopathy, indicating molecular overlaps between these two disorders.


Asunto(s)
Péptido Hidrolasas/metabolismo , Enfermedades por Prión/enzimología , Western Blotting , Síndrome de Creutzfeldt-Jakob/clasificación , Síndrome de Creutzfeldt-Jakob/enzimología , Síndrome de Creutzfeldt-Jakob/patología , Humanos , Neuronas/patología , Enfermedades por Prión/clasificación , Enfermedades por Prión/patología , Priones/química , Priones/metabolismo , Estudios Retrospectivos , Reino Unido/epidemiología
6.
Acta Biochim Biophys Sin (Shanghai) ; 46(7): 531-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24829398

RESUMEN

The hallmark of prion disease is the accumulation of misfolded protein PrP(Sc), which is toxic to neuronal cells. The proteasome system is responsible for the rapid, precise, and timely degradation of proteins and plays an important role in cellular protein quality control. Increasing evidence indicates impaired activity of proteasomes in prion diseases. Accumulated PrP(Sc) can directly or indirectly affect proteasome activity. Misfolded protein may influence the assembly and activity of 19S regulatory particle, or post-translational modification of 20S proteasome, which may adversely affect the protein degradation activity of proteasomes. In this review, we summarized the recent findings concerning the possible regulation of proteasomes in prion and other neurodegenerative diseases. The proteasome system may enhance its degradation activity by changing its structure, and this activity can also be increased by related chaperones when neuronal cells are subject to stress. When the proteasome system is inhibited, degradation of protein aggregates via autophagy may increase as a compensatory system. It is possible that a balance exists between the proteasome and autophagy in vivo; when one is impaired, the activity of the other may increase to maintain homeostasis. However, more studies are needed to elucidate the relationship between the proteasome system and autophagy.


Asunto(s)
Enfermedades por Prión/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Autofagia , Humanos , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/inmunología , Enfermedades por Prión/inmunología , Ubiquitina/metabolismo
7.
J Neurosci ; 32(21): 7345-55, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22623680

RESUMEN

The transmissible agent of prion disease consists of prion protein (PrP) in ß-sheet-rich state (PrP(Sc)) that can replicate its conformation according to a template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide accurately reproduces that of the PrP(Sc) template. Here, three conformationally distinct amyloid states were prepared in vitro using Syrian hamster recombinant PrP (rPrP) in the absence of cellular cofactors. Surprisingly, no signs of prion infection were found in Syrian hamsters inoculated with rPrP fibrils that resembled PrP(Sc), whereas an alternative amyloid state, with a folding pattern different from that of PrP(Sc), induced a pathogenic process that led to transmissible prion disease. An atypical proteinase K-resistant, transmissible PrP form that resembled the structure of the amyloid seeds was observed during a clinically silent stage before authentic PrP(Sc) emerged. The dynamics between the two forms suggest that atypical proteinase K-resistant PrP (PrPres) gave rise to PrP(Sc). While no PrP(Sc) was found in preparations of fibrils using protein misfolding cyclic amplification with beads (PMCAb), rPrP fibrils gave rise to atypical PrPres in modified PMCAb, suggesting that atypical PrPres was the first product of PrP(C) misfolding triggered by fibrils. The current work demonstrates that a new mechanism responsible for prion diseases different from the PrP(Sc)-templated or spontaneous conversion of PrP(C) into PrP(Sc) exists. This study provides compelling evidence that noninfectious amyloids with a structure different from that of PrP(Sc) could lead to transmissible prion disease. This work has numerous implications for understanding the etiology of prion and other neurodegenerative diseases.


Asunto(s)
Enfermedades por Prión/transmisión , Priones/metabolismo , Pliegue de Proteína , Amiloide/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/patología , Cricetinae , Endopeptidasa K/metabolismo , Masculino , Enfermedades por Prión/enzimología , Enfermedades por Prión/patología , Conformación Proteica , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 287(7): 4628-39, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22179611

RESUMEN

Prion diseases or transmissible spongiform encephalopathy diseases are typically characterized by deposition of abnormally folded partially protease-resistant host-derived prion protein (PrPres), which is associated with activated glia and increased release of cytokines. This neuroinflammatory response may play a role in transmissible spongiform encephalopathy pathogenesis. We previously reported that brain homogenates from prion-infected mice induced cytokine protein release in primary astroglial and microglial cell cultures. Here we measured cytokine release by cultured glial cells to determine what factors in infected brain contributed to activation of microglia and astroglia. In assays analyzing IL-12p40 and CCL2 (MCP-1), glial cells were not stimulated in vitro by either PrPres purified from infected mouse brains or prion protein amyloid fibrils produced in vitro. However, significant glial stimulation was induced by clarified scrapie brain homogenates lacking PrPres. This stimulation was greatly reduced both by antibody to cyclophilin A (CyPA), a known mediator of inflammation in peripheral tissues, and by cyclosporine A, a CyPA inhibitor. In biochemical studies, purified truncated CyPA fragments stimulated a pattern of cytokine release by microglia and astroglia similar to that induced by scrapie-infected brain homogenates, whereas purified full-length CyPA was a poor stimulator. This requirement for CyPA truncation was not reported in previous studies of stimulation of peripheral macrophages, endothelial cell cardiomyocytes, and vascular smooth muscle cells. Therefore, truncated CyPA detected in brain following prion infection may have an important role in the activation of brain-derived primary astroglia and microglia in prion disease and perhaps other neurodegenerative or neuroinflammatory diseases.


Asunto(s)
Astrocitos/enzimología , Encéfalo/enzimología , Quimiocina CCL2/metabolismo , Ciclofilina A/metabolismo , Subunidad p40 de la Interleucina-12/metabolismo , Microglía/enzimología , Proteínas del Tejido Nervioso/metabolismo , Enfermedades por Prión/enzimología , Priones/metabolismo , Animales , Anticuerpos/farmacología , Astrocitos/patología , Ratones , Microglía/patología
9.
Neuropathology ; 32(2): 124-32, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21801238

RESUMEN

Intraventricular infusion of pentosan polysulfate (PPS) as a treatment for various human prion diseases has been applied in Japan. To evaluate the influence of PPS treatment we performed pathological examination and biochemical analyses of PrP molecules in autopsied brains treated with PPS (one case of sporadic Creutzfeldt-Jakob disease (sCJD, case 1), two cases of dura mater graft-associated CJD (dCJD, cases 2 and 4), and one case of Gerstmann-Sträussler-Scheinker disease (GSS, case 3). Six cases of sCJD without PPS treatment were examined for comparison. Protease-resistant PrP (PrP(res) ) in the frontal lobe was evaluated by Western blotting after proteinase K digestion. Further, the degree of polymerization of PrP molecules was examined by the size-exclusion gel chromatography assay. PPS infusions were started 3-10 months after disease onset, but the treatment did not achieve any clinical improvements. Postmortem examinations of the treated cases revealed symmetrical brain lesions, including neuronal loss, spongiform change and gliosis. Noteworthy was GFAP in the cortical astrocytes reduced in all treated cases despite astrogliosis. Immunohistochemistry for PrP revealed abnormal synaptic deposits in all treated cases and further plaque-type PrP deposition in case 3 of GSS and case 4 of dCJD. Western blotting showed relatively low ratios of PrP(res) in case 2 of dCJD and case 3 of GSS, while in the treated sCJD (case 1), the ratio of PrP(res) was comparable with untreated cases. The indices of oligomeric PrP were reduced in one sCJD (case 1) and one dCJD (case 2). Although intraventricular PPS infusion might modify the accumulation of PrP oligomers in the brains of patients with prion diseases, the therapeutic effects are still uncertain.


Asunto(s)
Poliéster Pentosan Sulfúrico/administración & dosificación , Péptido Hidrolasas/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/enzimología , Priones/metabolismo , Anciano , Síndrome de Creutzfeldt-Jakob/tratamiento farmacológico , Síndrome de Creutzfeldt-Jakob/enzimología , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Humanos , Infusiones Intraventriculares , Masculino , Persona de Mediana Edad , Enfermedades por Prión/patología
10.
Ann Neurol ; 68(2): 162-72, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20695009

RESUMEN

OBJECTIVE: The objective of the study is to report 2 new genotypic forms of protease-sensitive prionopathy (PSPr), a novel prion disease described in 2008, in 11 subjects all homozygous for valine at codon 129 of the prion protein (PrP) gene (129VV). The 2 new PSPr forms affect individuals who are either homozygous for methionine (129MM) or heterozygous for methionine/valine (129MV). METHODS: Fifteen affected subjects with 129MM, 129MV, and 129VV underwent comparative evaluation at the National Prion Disease Pathology Surveillance Center for clinical, histopathologic, immunohistochemical, genotypical, and PrP characteristics. RESULTS: Disease duration (between 22 and 45 months) was significantly different in the 129VV and 129MV subjects. Most other phenotypic features along with the PrP electrophoretic profile were similar but distinguishable in the 3 129 genotypes. A major difference laid in the sensitivity to protease digestion of the disease-associated PrP, which was high in 129VV but much lower, or altogether lacking, in 129MV and 129MM. This difference prompted the substitution of the original designation with "variably protease-sensitive prionopathy" (VPSPr). None of the subjects had mutations in the PrP gene coding region. INTERPRETATION: Because all 3 129 genotypes are involved, and are associated with distinguishable phenotypes, VPSPr becomes the second sporadic prion protein disease with this feature after Creutzfeldt-Jakob disease, originally reported in 1920. However, the characteristics of the abnormal prion protein suggest that VPSPr is different from typical prion diseases, and perhaps more akin to subtypes of Gerstmann-Sträussler-Scheinker disease.


Asunto(s)
Variación Genética , Péptido Hidrolasas/genética , Enfermedades por Prión/enzimología , Enfermedades por Prión/patología , Priones/genética , Priones/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/enzimología , Encéfalo/patología , Análisis Mutacional de ADN , Demencia/enzimología , Demencia/genética , Demencia/patología , Femenino , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Péptido Hidrolasas/fisiología , Péptido Hidrolasas/toxicidad , Fenotipo , Enfermedades por Prión/genética , Priones/química , Adulto Joven
11.
Eur Biophys J ; 38(2): 209-18, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18813919

RESUMEN

Formation of PrP aggregates is considered to be a characteristic event in the pathogenesis of TSE diseases, accompanied by brain inflammation and neurodegeneration. Factors identified as contributing to aggregate formation are of interest as potential therapeutic targets. We report that in vitro proteolysis of ovine PrP(94-233) (at neutral pH and in the absence of denaturants) by the protease cathepsin S, a cellular enzyme that also shows enhanced expression in pathogenic conditions, occurs selectively in the region 135-156. This results in an unusually efficient, concentration-dependent conformational conversion of a large subfragment of PrP(94-233) into a soluble beta-structured oligomeric intermediate species, that readily forms a thioflavin-T-positive aggregate. N-terminal sequencing of the proteolysis fragments shows the aggregating species have marked sequence similarities to truncated PrP variants known to confer unusually severe pathogenicity when transgenically expressed in PrP(o/o) mice. Circular dichroism analysis shows that PrP fragments 138-233, 144-233 and 156-233 are significantly less stable than PrP(94-233). This implies an important structural contribution of the beta1 sequence within the globular domain of PrP. We propose that the removal or detachment of the beta1 sequence enhances beta-oligomer formation from the globular domain, leading to aggregation. The cellular implications are that specific proteases may have an important role in the generation of membrane-bound, potentially toxic, beta-oligomeric PrP species in pre-amyloid states of prion diseases. Such species may induce cell death by lysis, and also contribute to the transport of PrP to neuronal targets with subsequent amplification of pathogenic effects.


Asunto(s)
Catepsinas/metabolismo , Enfermedades por Prión/enzimología , Priones/metabolismo , Multimerización de Proteína , Animales , Benzotiazoles , Dicroismo Circular , Hidrólisis , Neurotoxinas/metabolismo , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Enfermedades por Prión/fisiopatología , Conformación Proteica , Pliegue de Proteína , Eliminación de Secuencia , Ovinos , Tiazoles/metabolismo
12.
Biochem J ; 416(2): 297-305, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18684106

RESUMEN

Disease-related PrP(Sc) [pathogenic PrP (prion protein)] is classically distinguished from its normal cellular precursor, PrP(C)(cellular PrP) by its detergent insolubility and partial resistance to proteolysis. Although molecular diagnosis of prion disease has historically relied upon detection of protease-resistant fragments of PrP(Sc) using PK (proteinase K), it is now apparent that a substantial fraction of disease-related PrP is destroyed by this protease. Recently, thermolysin has been identified as a complementary tool to PK, permitting isolation of PrP(Sc) in its full-length form. In the present study, we show that thermolysin can degrade PrP(C) while preserving both PK-sensitive and PK-resistant isoforms of disease-related PrP in both rodent and human prion strains. For mouse RML (Rocky Mountain Laboratory) prions, the majority of PK-sensitive disease-related PrP isoforms do not appear to contribute significantly to infectivity. In vCJD (variant Creutzfeldt-Jakob disease), the human counterpart of BSE (bovine spongiform encephalopathy), up to 90% of total PrP present in the brain resists degradation with thermolysin, whereas only approximately 15% of this material resists digestion by PK. Detection of PK-sensitive isoforms of disease-related PrP using thermolysin should be useful for improving diagnostic sensitivity in human prion diseases.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/enzimología , Endopeptidasa K/metabolismo , Enfermedades por Prión/enzimología , Priones/metabolismo , Termolisina/metabolismo , Animales , Detergentes , Humanos , Ratones , Ratones Endogámicos , Priones/aislamiento & purificación , Solubilidad
13.
BMC Biol ; 6: 8, 2008 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-18269734

RESUMEN

BACKGROUND: The transmissible spongiform encephalopathies (TSEs), otherwise known as the prion diseases, occur following the conversion of the normal cellular prion protein (PrPC) to an alternatively folded isoform (PrPSc). The accumulation of PrPSc within the brain leads to neurodegeneration through an unidentified mechanism. Since many neurodegenerative disorders including prion, Parkinson's and Alzheimer's diseases may be modified by cholesterol synthesis inhibitors, the effects of prion infection on the cholesterol balance within neuronal cells were examined. RESULTS: We report the novel observation that prion infection altered the membrane composition and significantly increased total cholesterol levels in two neuronal cell lines (ScGT1 and ScN2a cells). There was a significant correlation between the concentration of free cholesterol in ScGT1 cells and the amounts of PrPSc. This increase was entirely a result of increased amounts of free cholesterol, as prion infection reduced the amounts of cholesterol esters in cells. These effects were reproduced in primary cortical neurons by the addition of partially purified PrPSc, but not by PrPC. Crucially, the effects of prion infection were not a result of increased cholesterol synthesis. Stimulating cholesterol synthesis via the addition of mevalonate, or adding exogenous cholesterol, had the opposite effect to prion infection on the cholesterol balance. It did not affect the amounts of free cholesterol within neurons; rather, it significantly increased the amounts of cholesterol esters. Immunoprecipitation studies have shown that cytoplasmic phospholipase A2 (cPLA2) co-precipitated with PrPSc in ScGT1 cells. Furthermore, prion infection greatly increased both the phosphorylation of cPLA2 and prostaglandin E2 production. CONCLUSION: Prion infection, or the addition of PrPSc, increased the free cholesterol content of cells, a process that could not be replicated by the stimulation of cholesterol synthesis. The presence of PrPSc increased solubilisation of free cholesterol in cell membranes and affected their function. It increased activation of the PLA2 pathway, previously implicated in PrPSc formation and in PrPSc-mediated neurotoxicity. These observations suggest that the neuropathogenesis of prion diseases results from PrPSc altering cholesterol-sensitive processes. Furthermore, they raise the possibility that disturbances in membrane cholesterol are major triggering events in neurodegenerative diseases.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/biosíntesis , Neuronas/metabolismo , Fosfolipasas A2/metabolismo , Enfermedades por Prión/metabolismo , Análisis de Varianza , Animales , Línea Celular , Citoplasma/enzimología , Embrión de Mamíferos , Activación Enzimática , Ensayo de Inmunoadsorción Enzimática , Inmunoprecipitación , Ratones , Neuronas/enzimología , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/enzimología
15.
J Neuroimmunol ; 196(1-2): 16-26, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18396336

RESUMEN

Prion diseases are neurodegenerative infections with gliosis and vacuolation. The mechanisms of degeneration remain unclear, but chemokines may be important. In current experiments CCR1 knock-out (KO) mice succumbed more rapidly to scrapie infection than WT controls. Infected KO mice had upregulation of CCL3, a CCR1 ligand, and CCR5, a receptor with specificity for CCL3. Both infected KO and WT mice had upregulation of CCR5-mediated signaling involving activation of Erk1/2 in astrocytes; however, activation was earlier in KO mice suggesting a role in pathogenesis. In both mouse strains activation of the Erk1/2 pathway may lead to astrocyte dysfunction resulting in neurodegeneration.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas PrPSc/inmunología , Enfermedades por Prión/enzimología , Enfermedades por Prión/genética , Receptores CCR1/deficiencia , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Activación Enzimática/fisiología , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas PrPSc/metabolismo , Enfermedades por Prión/inducido químicamente , Enfermedades por Prión/patología , Receptores CCR5/genética , Receptores CCR5/metabolismo
16.
Curr Alzheimer Res ; 5(2): 202-11, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18393805

RESUMEN

Alzheimer's disease (AD) is by far the most common form of dementia in the elderly and concerns one out of three individuals over 85. Like other neurodegenerative disorders such as Parkinson, Hungtington or prion diseases, AD is characterized by the formation of amyloid plaques in the central nervous system. In the brain of AD patients, the main component of these abnormal deposits is an aggregated form of the so-called amyloid beta-peptide (Abeta), which is produced from a large trans-membrane type-1 protein, the beta-amyloid precursor protein (betaAPP), by the sequential action of the beta- and gamma-secretases. Beside these two amyloidogenic proteolytic attacks, betaAPP is targeted by a third enzyme termed alpha-secretase. Of utmost importance, this cleavage, which can be of constitutive or regulated origin, occurs right in the middle of the Abeta sequence, thus precluding its production. For this reason, and because the sAPPalpha secreted fragment derived from this cleavage displays beneficial effects, tremendous efforts have been made recently in order to both identify the proteases involved and the way they are regulated. More recently, it emerged that alpha-secretase was also responsible for the physiological processing of the cellular prion protein (PrP(c)) in the middle of its toxic 106-126 sequence. This review will focus on the recent advances in the alpha-secretase pathways regulation and will discuss the putative therapeutic approaches that could be envisioned concerning the treatment of two apparently distinct diseases that share common denominators according to their metabolism.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas PrPC/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Enfermedades por Prión/enzimología , Enfermedades por Prión/metabolismo
17.
Acta Neuropathol Commun ; 6(1): 30, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29699569

RESUMEN

Transmissible spongiform encephalopathies, also known as prion diseases, are a group of fatal neurodegenerative disorders affecting both humans and animals. The central pathogenic event in prion disease is the misfolding of normal prion protein (PrPC) into the pathogenic conformer, PrPSc, which self-replicates by converting PrPC to more of itself. The biochemical hallmark of PrPSc is its C-terminal resistance to proteinase K (PK) digestion, which has been historically used to define PrPSc and is still the most widely used characteristic for prion detection. We used PK-resistance as a biochemical measure for the generation of recombinant prion from bacterially expressed recombinant PrP. However, the existence of both PK- resistant and -sensitive PrPSc forms in animal and human prion disease led to the question of whether the in vitro-generated recombinant prion infectivity is due to the PK-resistant or -sensitive recombinant PrP forms. In this study, we compared undigested and PK-digested recombinant prions for their infectivity using both the classical rodent bioassay and the cell-based prion infectivity assay. Similar levels of infectivity were detected in PK-digested and -undigested samples by both assays. A time course study of recombinant prion propagation showed that the increased capability to seed the conversion of endogenous PrP in cultured cells coincided with an increase of the PK-resistant form of recombinant PrP. Moreover, prion infectivity diminished when recombinant prion was subjected to an extremely harsh PK digestion. These results demonstrated that the infectivity of recombinant prion is encoded within the structure of the PK-resistant PrP fragments. This characteristic of recombinant prion, that a simple PK digestion is able to eliminate all PK-sensitive (non-infectious) PrP species, makes possible a more homogenous material that will be ideal for dissecting the molecular basis of prion infectivity.


Asunto(s)
Endopeptidasa K/farmacología , Proteínas PrPSc/efectos de los fármacos , Enfermedades por Prión/enzimología , Animales , Línea Celular Tumoral , Humanos , Priones , Replegamiento Proteico , Proteínas Recombinantes
18.
Ageing Res Rev ; 40: 51-63, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28903070

RESUMEN

Neurons are highly energy demanding cells dependent on the mitochondrial oxidative phosphorylation system. Mitochondria generate energy via respiratory complexes that constitute the electron transport chain. Adenosine triphosphate depletion or glucose starvation act as a trigger for the activation of adenosine monophosphate-activated protein kinase (AMPK). AMPK is an evolutionarily conserved protein that plays an important role in cell survival and organismal longevity through modulation of energy homeostasis and autophagy. Several studies suggest that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. Mild mitochondrial dysfunction leads to activated AMPK signaling, but severe endoplasmic reticulum stress and mitochondrial dysfunction may lead to a shift from autophagy towards apoptosis and perturbed AMPK signaling. Hence, controlling mitochondrial dynamics and autophagic flux via AMPK activation might be a useful therapeutic strategy in neurodegenerative diseases to reinstate energy homeostasis and degrade misfolded proteins. In this review article, we discuss briefly the role of AMPK signaling in energy homeostasis, the structure of AMPK, activation mechanisms of AMPK, regulation of AMPK, the role of AMPK in autophagy, the role of AMPK in neurodegenerative diseases, and finally the role of autophagic flux in prion diseases.


Asunto(s)
Autofagia/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Dinámicas Mitocondriales/fisiología , Enfermedades Neurodegenerativas/enzimología , Enfermedades por Prión/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Metabolismo Energético/fisiología , Humanos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades por Prión/patología , Pliegue de Proteína
19.
Prion ; 10(5): 352-361, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27649856

RESUMEN

Prions and Amyloid beta (Aß) peptides induce synaptic damage via complex mechanisms that include the pathological alteration of intracellular signaling cascades. The host-encoded cellular prion protein (PrPC) acts as a high-affinity cell surface receptor for both toxic species and it can modulate the endocytic trafficking of the N-methyl D-aspartate (NMDA) receptor and E-cadherin adhesive complexes via Src family kinases (SFKs). Interestingly, SFK-mediated control of endocytosis is a widespread mechanism used to regulate the activity of important transmembrane proteins, including neuroreceptors for major excitatory and inhibitory neurotransmitters. Here we discuss our recent work in zebrafish and accumulating evidence suggesting that subversion of this pleiotropic regulatory mechanism by Aß oligomers and prions explains diverse neurotransmission deficits observed in human patients and mouse models of prion and Alzheimer's neurodegeneration. While Aß, PrPC and SFKs constitute potential therapeutic targets on their own, drug discovery efforts might benefit significantly from aiming at protein-protein interactions that modulate the endocytosis of specific SFK targets.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedades por Prión/metabolismo , Familia-src Quinasas/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Cadherinas/metabolismo , Endocitosis , Humanos , Ratones , Enfermedades por Prión/enzimología , Enfermedades por Prión/terapia , Transporte de Proteínas , Transducción de Señal
20.
Med Hypotheses ; 65(5): 865-7, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16081222

RESUMEN

Single amino-acid substitutions in the prion protein have been found to lead to resistance or susceptibility to amyloid fibril formation. In humans, the presence of methionine at position 129 in the prion protein results in increased susceptibility to prion disease, while the presence of valine at that position appears to be protective. It is hypothesized that the codon for M129 is an alternative initiation site for translation, which results in a truncated molecule that is missing the first 128 amino acids, including the signal peptide. This N-terminal truncated form of the prion molecule will not be transported to the extracellular space and thus will accumulate in the cytosol where it is more susceptible to fibril formation and aggregation; this aggregation could hinder normal degradation processes and cause disease. The results of experimental studies on truncated prion molecules support this hypothesis. To test the hypothesis, a gene segment, which when transcribed would result in a prion molecule starting at methionine 129, could be introduced into a convenient experimental animal to see if there is increased incidence of prion disease. Or, fibrils from the brains of affected M129/M129 homozygous individuals could be isolated and the molecules in the fibrils analyzed to determine the identity of the N-terminal amino acid(s). We predict that those isolates will have a preponderance of molecules that start with the methionine at position 129 in the intact protein.


Asunto(s)
Pruebas Genéticas/métodos , Metionina/genética , Polimorfismo Genético , Enfermedades por Prión/enzimología , Enfermedades por Prión/epidemiología , Priones/genética , Medición de Riesgo/métodos , Sustitución de Aminoácidos , Animales , Ensayos Clínicos como Asunto , Codón Iniciador/genética , Análisis Mutacional de ADN/métodos , Medicina Basada en la Evidencia , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Homocigoto , Humanos , Incidencia , Modelos Genéticos , Enfermedades por Prión/genética , Biosíntesis de Proteínas/genética , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA