Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
J Biol Chem ; 297(4): 101168, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487760

RESUMEN

LysO, a prototypical member of the LysO family, mediates export of L-lysine (Lys) and resistance to the toxic Lys antimetabolite, L-thialysine (Thl) in Escherichia coli. Here, we have addressed unknown aspects of LysO function pertaining to its membrane topology and the mechanism by which it mediates Lys/Thl export. Using substituted cysteine (Cys) accessibility, here we delineated the membrane topology of LysO. Our studies support a model in which both the N- and C-termini of LysO are present at the periplasmic face of the membrane with a transmembrane (TM) domain comprising eight TM segments (TMSs) between them. In addition, a feature of intramembrane solvent exposure in LysO is inferred with the identification of membrane-located solvent-exposed Cys residues. Isosteric substitutions of a pair of conserved acidic residues, one E233, located in the solvent-exposed TMS7 and the other D261, in a solvent-exposed intramembrane segment located between TMS7 and TMS8, abolished LysO function in vivo. Thl, but not Lys, elicited proton release in inside-out membrane vesicles, a process requiring the presence of both E233 and D261. We postulate that Thl may be exported in antiport with H+ and that Lys may be a low-affinity export substrate. Our findings are compatible with a physiological scenario wherein in vivo LysO exports the naturally occurring antimetabolite Thl with higher affinity over the essential cellular metabolite Lys, thus affording protection from Thl toxicity and limiting wasteful export of Lys.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/química , Membrana Celular/química , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Transporte Biológico Activo , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
2.
J Biol Chem ; 297(6): 101419, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801550

RESUMEN

A profound understanding of the molecular interactions between receptors and ligands is important throughout diverse research, such as protein design, drug discovery, or neuroscience. What determines specificity and how do proteins discriminate against similar ligands? In this study, we analyzed factors that determine binding in two homologs belonging to the well-known superfamily of periplasmic binding proteins, PotF and PotD. Building on a previously designed construct, modes of polyamine binding were swapped. This change of specificity was approached by analyzing local differences in the binding pocket as well as overall conformational changes in the protein. Throughout the study, protein variants were generated and characterized structurally and thermodynamically, leading to a specificity swap and improvement in affinity. This dataset not only enriches our knowledge applicable to rational protein design but also our results can further lay groundwork for engineering of specific biosensors as well as help to explain the adaptability of pathogenic bacteria.


Asunto(s)
Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas de Unión Periplasmáticas/química , Receptores de Amina Biogénica/química , Espermidina/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Unión Proteica , Receptores de Amina Biogénica/genética , Receptores de Amina Biogénica/metabolismo , Espermidina/metabolismo
3.
Rapid Commun Mass Spectrom ; 35(1): e8941, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32885498

RESUMEN

RATIONALE: Tracing isotopically labeled water into proteins allows for the detection of species-specific metabolic activity in complex communities. However, a stress response may alter the newly synthesized proteins. METHODS: We traced 18-oxygen from heavy water into proteins of Escherichia coli K12 grown from permissive to retardant temperatures. All samples were analyzed using UPLC/Orbitrap Q-Exactive-MS/MS operating in positive electrospray ionization mode. RESULTS: We found that warmer temperatures resulted in significantly (P-value < 0.05) higher incorporation of 18-oxygen as seen by both substrate utilization as relative isotope abundance (RIA) and growth as labeling ratio (LR). However, the absolute number of peptides with incorporation of 18-oxygen showed no significant correlation to temperature, potentially caused by the synthesis of different proteins at low temperatures, namely, proteins related to cold stress response. CONCLUSIONS: Our results unveil the species-specific cold stress response of E. coli K12 that could be misinterpreted as general growth; this is why the quantity as RIA and LR but also the quality as absolute number of peptides with incorporation (relative abundance, RA) and their function must be considered to fully understand the activity of microbial communities.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Escherichia coli K12 , Proteínas de Escherichia coli , Marcaje Isotópico/métodos , Isótopos de Oxígeno , Cromatografía Líquida de Alta Presión/métodos , Frío , Escherichia coli K12/química , Escherichia coli K12/metabolismo , Escherichia coli K12/fisiología , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/metabolismo , Espectrometría de Masas en Tándem/métodos
4.
Proc Natl Acad Sci U S A ; 115(28): 7422-7427, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941571

RESUMEN

Initial attachment and subsequent colonization of the intestinal epithelium comprise critical events allowing enteric pathogens to survive and express their pathogenesis. In enterotoxigenic Escherichia coli (ETEC), these are mediated by a long proteinaceous fiber termed type IVb pilus (T4bP). We have reported that the colonization factor antigen/III (CFA/III), an operon-encoded T4bP of ETEC, possesses a minor pilin, CofB, that carries an H-type lectin domain at its tip. Although CofB is critical for pilus assembly by forming a trimeric initiator complex, its importance for bacterial attachment remains undefined. Here, we show that T4bP is not sufficient for bacterial attachment, which also requires a secreted protein CofJ, encoded within the same CFA/III operon. The crystal structure of CofB complexed with a peptide encompassing the binding region of CofJ showed that CofJ interacts with CofB by anchoring its flexible N-terminal extension to be embedded deeply into the expected carbohydrate recognition site of the CofB H-type lectin domain. By combining this structure and physicochemical data in solution, we built a plausible model of the CofJ-CFA/III pilus complex, which suggested that CofJ acts as a molecular bridge by binding both T4bP and the host cell membrane. The Fab fragments of a polyclonal antibody against CofJ significantly inhibited bacterial attachment by preventing the adherence of secreted CofJ proteins. These findings signify the interplay between T4bP and a secreted protein for attaching to and colonizing the host cell surface, potentially constituting a therapeutic target against ETEC infection.


Asunto(s)
Adhesión Bacteriana , Escherichia coli Enterotoxigénica/química , Proteínas de Escherichia coli/química , Fimbrias Bacterianas/química , Cristalografía por Rayos X , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/metabolismo , Escherichia coli Enterotoxigénica/patogenicidad , Escherichia coli K12/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Operón , Dominios Proteicos
5.
Biochemistry ; 59(22): 2069-2077, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32437133

RESUMEN

YcjR from Escherichia coli K-12 MG1655 catalyzes the manganese-dependent reversible epimerization of 3-keto-α-d-gulosides to the corresponding 3-keto-α-d-glucosides as a part of a proposed catabolic pathway for the transformation of d-gulosides to d-glucosides. The three-dimensional structure of the manganese-bound enzyme was determined by X-ray crystallography. The divalent manganese ion is coordinated to the enzyme by ligation to Glu-146, Asp-179, His-205, and Glu-240. When either of the two active site glutamate residues is mutated to glutamine, the enzyme loses all catalytic activity for the epimerization of α-methyl-3-keto-d-glucoside at C4. However, the E240Q mutant can catalyze hydrogen-deuterium exchange of the proton at C4 of α-methyl-3-keto-d-glucoside in solvent D2O. The E146Q mutant does not catalyze this exchange reaction. These results indicate that YcjR catalyzes the isomerization of 3-keto-d-glucosides via proton abstraction at C4 by Glu-146 to form a cis-enediolate intermediate that is subsequently protonated on the opposite face by Glu-240 to generate the corresponding 3-keto-d-guloside. This conclusion is supported by docking of the cis-enediolate intermediate into the active site of YcjR based on the known binding orientation of d-fructose and d-psicose in the active site of d-psicose-3-epimerase.


Asunto(s)
Escherichia coli K12/química , Proteínas de Escherichia coli/metabolismo , Glucósidos/metabolismo , Cristalografía por Rayos X , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/química , Glucósidos/química , Modelos Moleculares , Conformación Molecular , Estereoisomerismo
6.
Proc Natl Acad Sci U S A ; 114(17): E3396-E3403, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28396444

RESUMEN

Recent work suggests that bacterial YjeQ (RsgA) participates in the late stages of assembly of the 30S subunit and aids the assembly of the decoding center but also binds the mature 30S subunit with high affinity. To determine the function and mechanisms of YjeQ in the context of the mature subunit, we determined the cryo-EM structure of the fully assembled 30S subunit in complex with YjeQ at 5.8-Å resolution. We found that binding of YjeQ stabilizes helix 44 into a conformation similar to that adopted by the subunit during proofreading. This finding indicates that, along with acting as an assembly factor, YjeQ has a role as a checkpoint protein, consisting of testing the proofreading ability of the 30S subunit. The structure also informs the mechanism by which YjeQ implements the release from the 30S subunit of a second assembly factor, called RbfA. Finally, it reveals how the 30S subunit stimulates YjeQ GTPase activity and leads to release of the protein. Checkpoint functions have been described for eukaryotic ribosome assembly factors; however, this work describes an example of a bacterial assembly factor that tests a specific translation mechanism of the 30S subunit.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli K12/química , Proteínas de Escherichia coli/química , GTP Fosfohidrolasas/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Escherichia coli K12/metabolismo , Escherichia coli K12/ultraestructura , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
7.
Biochemistry ; 58(26): 2875-2882, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31199144

RESUMEN

In the absence of arabinose, the dimeric Escherichia coli regulatory protein of the l-arabinose operon, AraC, represses expression by looping the DNA between distant half-sites. Binding of arabinose to the dimerization domains forces AraC to preferentially bind two adjacent DNA half-sites, which stimulates RNA polymerase transcription of the araBAD catabolism genes. Prior genetic and biochemical studies hypothesized that arabinose allosterically induces a helix-coil transition of a linker between the dimerization and DNA binding domains that switches the AraC conformation to an inducing state [Brown, M. J., and Schleif, R. F. (2019) Biochemistry, preceding paper in this issue (DOI: 10.1021/acs.biochem.9b00234)]. To test this hypothesis, hydrogen-deuterium exchange mass spectrometry was utilized to identify structural regions involved in the conformational activation of AraC by arabinose. Comparison of the hydrogen-deuterium exchange kinetics of individual dimeric dimerization domains and the full-length dimeric AraC protein in the presence and absence of arabinose reveals a prominent arabinose-induced destabilization of the amide hydrogen-bonded structure of linker residues (I167 and N168). This destabilization is demonstrated to result from an increased probability to form a helix capping motif at the C-terminal end of the dimerizing α-helix of the dimerization domain that preceeds the interdomain linker. These conformational changes could allow for quaternary repositioning of the DNA binding domains required for induction of the araBAD promoter through rotation of peptide backbone dihedral angles of just a couple of residues. Subtle changes in exchange rates are also visible around the arabinose binding pocket and in the DNA binding domain.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Arabinosa/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Factor de Transcripción de AraC/química , Sitios de Unión , ADN Bacteriano/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína
8.
J Biol Chem ; 293(16): 5834-5846, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29414773

RESUMEN

The Min system negatively regulates the position of the Z ring, which serves as a scaffold for the divisome that mediates bacterial cytokinesis. In Escherichia coli, this system consists of MinC, which antagonizes assembly of the tubulin homologue FtsZ. MinC is recruited to the membrane by MinD and induced by MinE to oscillate between the cell poles. MinC is a dimer with each monomer consisting of functionally distinct MinCN and MinCC domains, both of which contact FtsZ. According to one model, MinCC/MinD binding to the FtsZ tail positions MinCN at the junction of two GDP-containing subunits in the filament, leading to filament breakage. Others posit that MinC sequesters FtsZ-GDP monomers or that MinCN caps the minus end of FtsZ polymers and that MinCC interferes with lateral interactions between FtsZ filaments. Here, we isolated minC mutations that impair MinCN function and analyzed FtsZ mutants resistant to MinC/MinD. Surprisingly, we found mutations in both minC and ftsZ that differentiate inhibition by MinC from inhibition by MinC/MinD. Analysis of these mutations suggests that inhibition of the Z ring by MinC alone is due to sequestration, whereas inhibition by MinC/MinD is not. In conclusion, our genetic and biochemical data support the model that MinC/MinD fragments FtsZ filaments.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Escherichia coli K12/química , Escherichia coli K12/citología , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína
9.
Proteins ; 87(4): 337-347, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30615212

RESUMEN

Adenylate kinase is a monomeric phosphotransferase with important biological function in regulating concentration of adenosine triphosphate (ATP) in cells, by transferring the terminal phosphate group from ATP to adenosine monophosphate (AMP) and forming two adenosine diphosphate (ADP) molecules. During this reaction, the kinase may undergo a large conformational transition, forming different states with its substrates. Although many structures of the protein are available, atomic details of the whole process remain unclear. In this article, we use both conventional molecular dynamics (MD) simulation and an enhanced sampling technique called parallel cascade selection MD simulation to explore different conformational states of the Escherichia coli adenylate kinase. Based on the simulation results, we propose a possible entrance/release order of substrates during the catalytic cycle. The substrate-free protein prefers an open conformation, but changes to a closed state once ATP·Mg enters into its binding pocket first and then AMP does. After the reaction of ATP transferring the terminal phosphate group to AMP, ADP·Mg and ADP are released sequentially, and finally the whole catalyze cycle is completed. Detailed contact and distance analysis reveals that the entrance/release order of substrates may be largely controlled by electrostatic interactions between the protein and the substrates.


Asunto(s)
Adenilato Quinasa/metabolismo , Escherichia coli K12/enzimología , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/química , Dominio Catalítico , Escherichia coli K12/química , Escherichia coli K12/metabolismo , Magnesio/metabolismo , Simulación de Dinámica Molecular , Electricidad Estática , Especificidad por Sustrato
10.
Anal Chem ; 91(14): 9221-9228, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31187982

RESUMEN

Interactions of glycans with proteins, cells, and microorganisms play important roles in cell-cell adhesion and host-pathogen interaction. Glycan microarray technology, in which multiple glycan structures are immobilized on a single glass slide and interrogated with glycan-binding proteins (GBPs), has become an indispensable tool in the study of protein-glycan interactions. Despite its great success, the current format of the glycan microarray requires expensive, specialized instrumentation and labor-intensive assay and image processing procedures, which limit automation and possibilities for high-throughput analyses. Furthermore, the current microarray is not suitable for assaying interaction with intact cells due to their large size compared to the two-dimensional microarray surface. To address these limitations, we developed the next-generation glycan microarray (NGGM) based on artificial DNA coding of glycan structures. In this novel approach, a glycan library is presented as a mixture of glycans and glycoconjugates, each of which is coded with a unique oligonucleotide sequence (code). The glycan mixture is interrogated by GBPs followed by the separation of unbound coded glycans. The DNA sequences that identify individual bound glycans are quantitatively sequenced (decoded) by powerful next-generation sequencing (NGS) technology, and copied numbers of the DNA codes represent relative binding specificities of corresponding glycan structures to GBPs. We demonstrate that NGGM generates glycan-GBP binding data that are consistent with that generated in a slide-based glycan microarray. More importantly, the solution phase binding assay is directly applicable to identifying glycan binding to intact cells, which is often challenging using glass slide-based glycan microarrays.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , ADN/química , Glicoconjugados/metabolismo , Análisis por Micromatrices/métodos , Polisacáridos/metabolismo , Acinetobacter baumannii/química , Animales , Química Clic , Escherichia coli K12/química , Glicoconjugados/química , Secuenciación de Nucleótidos de Alto Rendimiento , Polisacáridos/química , Unión Proteica , Staphylococcus aureus/química , Porcinos
11.
Biochem Biophys Res Commun ; 514(1): 37-43, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31014676

RESUMEN

HigA functions as the antitoxin in HigB-HigA toxin-antitoxin system. It neutralizes HigB-mediated toxicity by forming a stable toxin-antitoxin complex. Here the crystal structure of isolated HigA from Escherichia coli str. K-12 has been determined to 2.0 Šresolution. The structural differences between HigA and HigA in HigBA complex imply that HigA undergoes drastic conformational changes upon the binding of HigB. The conformational changes are achieved by rigid motions of N-terminal and C-terminal domains of HigA around its central linker domain, which is different from other known forms of regulation patterns in other organisms. As a transcriptional regulator, HigA bind to its operator DNA through the C-terminal HTH motif, in which key residues were identified in this study.


Asunto(s)
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Cristalografía por Rayos X , Infecciones por Escherichia coli/microbiología , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína
12.
Biochem Biophys Res Commun ; 512(3): 448-452, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30902387

RESUMEN

Purified membrane proteins are most frequently studied solubilized in detergent, but the properties of detergent micelles are very different from those of lipid bilayers. Therefore, there is an increasing interest in studying membrane proteins under conditions that resemble the membrane protein native environment more closely. Although there are indications of differences between membrane proteins in detergent and in lipid bilayers, direct functional and structural comparisons are very hard to find. Nanodiscs have been established as a new platform that consists of two molecules of a membrane scaffold protein that surround a small lipid-bilayer patch. Here, we undertook the task of comparing the function and conformational states of the transport protein MsbA in detergent and nanodiscs using ATPase activity and luminescence resonance energy transfer (LRET) measurements to assess differences in activity and conformational states, respectively. MsbA is a prototypical member of the ATP binding cassette protein superfamily. MsbA activity was higher in nanodiscs vs detergent, which had clear structural correlates: an increase in the fraction of molecules displaying closed nucleotide-binding domain dimers in the apo state, and a decrease in the distance of the "dissociated" nucleotide-binding domains. Our LRET studies support the notion that the widely separated nucleotide binding domains observed in the MsbA x-ray structures in detergent do not correspond to physiological conformations. Although our studies focus on a particular ABC exporter, the possibility of similar environment effects on other membrane proteins should be carefully considered.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Detergentes/química , Escherichia coli K12/química , Membrana Dobles de Lípidos/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli K12/metabolismo , Modelos Moleculares , Nanoestructuras/química , Conformación Proteica , Multimerización de Proteína
13.
Langmuir ; 35(26): 8840-8849, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31177781

RESUMEN

Tuning surface composition and stiffness is now an established strategy to improve the integration of medical implants. Recent evidence suggests that matrix stiffness affects bacterial adhesion, but contradictory findings have been reported in the literature. Distinguishing between the effects of bacterial adhesion and attachment strength on these surfaces may help interpret these findings. Here, we develop a precision microfluidic shear assay to quantify bacterial adhesion strength on stiffness-tunable and biomolecule-coated silicone materials. We demonstrate that bacteria are more strongly attached to soft silicones, compared to stiff silicones; as determined by retention against increasing shear flows. Interestingly, this effect is reduced when the surface is coated with matrix biomolecules. These results demonstrate that bacteria do sense and respond to stiffness of the surrounding environment and that precisely defined assays are needed to understand the interplay among surface mechanics, composition, and bacterial binding.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Escherichia coli K12/química , Técnicas Analíticas Microfluídicas , Siliconas/química , Adhesión Bacteriana , Materiales Biocompatibles Revestidos/síntesis química , Tamaño de la Partícula , Resistencia al Corte , Propiedades de Superficie
14.
Org Biomol Chem ; 17(8): 2223-2231, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30720838

RESUMEN

N-Methylation of DNA/RNA bases can be regulatory or damaging and is linked to diseases including cancer and genetic disorders. Bacterial AlkB and human FTO are DNA/RNA demethylases belonging to the Fe(ii) and 2-oxoglutarate oxygenase superfamily. Modelling studies reveal conformational dynamics influence structure-function relationships of AlkB and FTO, e.g. why 1-methyladenine is a better substrate for AlkB than 6-methyladenine. Simulations show that the flexibility of the double stranded DNA substrate in AlkB influences correlated motions, including between the core jelly-roll fold and an active site loop involved in substrate binding. The FTO N- and C-terminal domains move in respect to one another in a manner likely important for substrate binding. Substitutions, including clinically observed ones, influencing catalysis contribute to the network of correlated motions in AlkB and FTO. Overall, the calculations highlight the importance of the overall protein environment and its flexibility to the geometry of the reactant complexes.


Asunto(s)
Enzimas AlkB/química , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/química , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Adenina/análogos & derivados , Adenina/metabolismo , Enzimas AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Metilación de ADN , ADN de Cadena Simple/metabolismo , Escherichia coli K12/química , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
15.
Int J Mol Sci ; 20(3)2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30764475

RESUMEN

The outer membrane of Gram-negative bacteria contains ß-barrel proteins that form high-conducting ion channels providing a path for hydrophilic molecules, including antibiotics. Traditionally, these proteins have been considered to exist only in an open state so that regulation of outer membrane permeability was accomplished via protein expression. However, electrophysiological recordings show that ß-barrel channels respond to transmembrane voltages by characteristically switching from a high-conducting, open state, to a so-called 'closed' state, with reduced permeability and possibly exclusion of large metabolites. Here, we use the bacterial porin OmpF from E. coli as a model system to gain insight on the control of outer membrane permeability by bacterial porins through the modulation of their open state. Using planar bilayer electrophysiology, we perform an extensive study of the role of membrane lipids in the OmpF channel closure by voltage. We pay attention not only to the effects of charges in the hydrophilic lipid heads but also to the contribution of the hydrophobic tails in the lipid-protein interactions. Our results show that gating kinetics is governed by lipid characteristics so that each stage of a sequential closure is different from the previous one, probably because of intra- or intermonomeric rearrangements.


Asunto(s)
Escherichia coli K12/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fosfolípidos/metabolismo , Porinas/metabolismo , Acilación , Escherichia coli K12/química , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico , Membrana Dobles de Lípidos/química , Modelos Moleculares , Fosfolípidos/química , Porinas/química , Conformación Proteica en Lámina beta , Multimerización de Proteína
16.
Biochemistry ; 57(6): 1045-1053, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29338257

RESUMEN

Bacterial outer membrane TonB-dependent transporters function by executing cycles of binding and unbinding to the inner membrane protein TonB. In the vitamin B12 transporter BtuB and the ferric citrate transporter FecA, substrate binding increases the periplasmic exposure of the Ton box, an energy-coupling segment. This increased exposure appears to enhance the affinity of the transporter for TonB. Here, continuous wave and pulse EPR spectroscopy were used to examine the state of the Ton box in the Escherichia coli ferrichrome transporter FhuA. In its apo state, the Ton box of FhuA samples a broad range of positions and multiple conformational substates. When bound to ferrichrome, the Ton box does not extend further into the periplasm, although the structural states sampled by the FhuA Ton box are altered. When bound to a soluble fragment of TonB, the TonB-FhuA complex remains heterogeneous and dynamic, indicating that TonB does not make strong, specific contacts with either the FhuA barrel or the core region of the transporter. This result differs from that seen in the crystal structure of the TonB-FhuA complex. These data indicate that unlike BtuB and FecA, the periplasmic exposure of the Ton box in FhuA does not change significantly in the presence of substrate and that allosteric control of transporter-TonB interactions functions by a different mechanism than that seen in either BtuB or FecA. Moreover, the data indicate that models involving a rotation of TonB relative to the transporter are unlikely to underlie the mechanism that drives TonB-dependent transport.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica
17.
J Proteome Res ; 17(11): 3671-3680, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277077

RESUMEN

De novo sequencing offers an alternative to database search methods for peptide identification from mass spectra. Since it does not rely on a predetermined database of expected or potential sequences in the sample, de novo sequencing is particularly appropriate for samples lacking a well-defined or comprehensive reference database. However, the low accuracy of many de novo sequence predictions has prevented the widespread use of the variety of sequencing tools currently available. Here, we present a new open-source tool, Postnovo, that postprocesses de novo sequence predictions to find high-accuracy results. Postnovo uses a predictive model to rescore and rerank candidate sequences in a manner akin to database search postprocessing tools such as Percolator. Postnovo leverages the output from multiple de novo sequencing tools in its own analyses, producing many times the length of amino acid sequence information (including both full- and partial-length peptide sequences) at an equivalent false discovery rate (FDR) compared to any individual tool. We present a methodology to reliably screen the sequence predictions to a desired FDR given the Postnovo sequence score. We validate Postnovo with multiple data sets and demonstrate its ability to identify proteins that are missed by database search even in samples with paired reference databases.


Asunto(s)
Algoritmos , Péptidos/aislamiento & purificación , Proteínas/química , Análisis de Secuencia de Proteína/estadística & datos numéricos , Programas Informáticos , Animales , Bacillus subtilis/química , Abejas/química , Desulfovibrio vulgaris/química , Drosophila melanogaster/química , Embrión no Mamífero/química , Escherichia coli K12/química , Humanos , Solanum lycopersicum/química , Methanosarcina/química , Ratones , Péptidos/química , Péptidos/clasificación , Proteolisis , Rhodopseudomonas/química , Synechococcus/química
18.
J Biol Chem ; 292(3): 979-993, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27899450

RESUMEN

In Escherichia coli, the peptidoglycan cell wall is synthesized by bifunctional penicillin-binding proteins such as PBP1b that have both transpeptidase and transglycosylase activities. The PBP1b transpeptidase domain is a major target of ß-lactams, and therefore it is important to attain a detailed understanding of its inhibition. The peptidoglycan glycosyltransferase domain of PBP1b is also considered an excellent antibiotic target yet is not exploited by any clinically approved antibacterials. Herein, we adapt a pyrophosphate sensor assay to monitor PBP1b-catalyzed glycosyltransfer and present an improved crystallographic model for inhibition of the PBP1b glycosyltransferase domain by the potent substrate analog moenomycin. We elucidate the structure of a previously disordered region in the glycosyltransferase active site and discuss its implications with regards to peptidoglycan polymerization. Furthermore, we solve the crystal structures of E. coli PBP1b bound to multiple different ß-lactams in the transpeptidase active site and complement these data with gel-based competition assays to provide a detailed structural understanding of its inhibition. Taken together, these biochemical and structural data allow us to propose new insights into inhibition of both enzymatic domains in PBP1b.


Asunto(s)
Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas de Unión a las Penicilinas/química , Peptidoglicano Glicosiltransferasa/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , beta-Lactamas/química , Cristalografía por Rayos X , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano Glicosiltransferasa/genética , Dominios Proteicos , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
19.
Proteins ; 86(10): 1037-1046, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30035820

RESUMEN

Elongation factor Tu (EF-Tu) is a three-domain protein that is responsible for delivering aminoacyl-tRNA (aa-tRNA) molecules to the ribosome. During the delivery process, EF-Tu undergoes a large-scale (~50Å) conformational transition that results in rearrangement of domain I, relative to the II/III superdomain. Despite the central role of EF-Tu during protein synthesis, little is known about the structural and energetic properties of this reordering process. To study the physical-chemical properties of domain motion, we constructed a multi-basin structure-based (i.e., Go-like) model, with which we have simulated hundreds of spontaneous conformational rearrangements. By analyzing the statistical properties of these events, we show that EF-Tu is likely to adopt a disordered intermediate ensemble during this transition. We further show that this disordered intermediate will favor a specific sequence of conformational substeps when bound to the ribosome, and the disordered ensemble can influence the kinetics of the incoming aa-tRNA molecule. Overall, this study highlights the dynamic nature of EF-Tu by revealing a relationship between conformational disorder and biological function.


Asunto(s)
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Factor Tu de Elongación Peptídica/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Ribosomas/metabolismo , Electricidad Estática
20.
Proteins ; 86(2): 237-247, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29194754

RESUMEN

The Escherichia coli maltose transporter MalFGK2 -E belongs to the protein superfamily of ATP-binding cassette (ABC) transporters. This protein is composed of heterodimeric transmembrane domains (TMDs) MalF and MalG, and the homodimeric nucleotide-binding domains (NBDs) MalK2 . In addition to the TMDs and NBDs, the periplasmic maltose binding protein MalE captures maltose and shuttle it to the transporter. In this study, we performed all-atom molecular dynamics (MD) simulations on the maltose transporter and found that both the binding of MalE to the periplasmic side of the TMDs and binding of ATP to the MalK2 are necessary to facilitate the conformational change from the inward-facing state to the occluded state, in which MalK2 is completely dimerized. MalE binding suppressed the fluctuation of the TMDs and MalF periplasmic region (MalF-P2), and thus prevented the incorrect arrangement of the MalF C-terminal (TM8) helix. Without MalE binding, the MalF TM8 helix showed a tendency to intrude into the substrate translocation pathway, hindering the closure of the MalK2 . This observation is consistent with previous mutagenesis experimental results on MalF and provides a new point of view regarding the understanding of the substrate translocation mechanism of the maltose transporter.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Cationes Bivalentes/metabolismo , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Magnesio/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA