Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Br J Haematol ; 205(1): 229-235, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810989

RESUMEN

This study examines spermatogonial numbers in testicular samples from 43 prepubertal patients undergoing haematopoietic stem cell transplantation (HSCT). High-dose chemotherapy and/or radiation during HSCT can impact spermatogenesis requiring fertility preservation. Results show that 49% of patients have decreased and 19% severely depleted spermatogonial pool prior to HSCT. Patients with Fanconi anaemia exhibit significantly reduced spermatogonial numbers. Patients with immunodeficiency or aplastic anaemia generally present within the normal range, while results in patients with myelodysplastic syndrome or myeloproliferative neoplasm vary. The study emphasizes the importance of assessing spermatogonial numbers in patients with severe haematological diseases for informed fertility preservation decisions.


Asunto(s)
Enfermedades Hematológicas , Trasplante de Células Madre Hematopoyéticas , Espermatogonias , Humanos , Masculino , Niño , Espermatogonias/patología , Preescolar , Enfermedades Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Adolescente , Preservación de la Fertilidad/métodos , Testículo/patología , Testículo/efectos de la radiación , Espermatogénesis/efectos de la radiación , Lactante , Síndromes Mielodisplásicos/terapia
2.
Bioelectromagnetics ; 45(5): 235-248, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38725116

RESUMEN

With advances in technology, the emission of radiofrequency radiation (RFR) into the environment, particularly from mobile devices, has become a growing concern. Tyro 3, Axl, and Mer (TAM) receptors and their ligands are essential for spermatogenesis and testosterone production. RFR has been shown to induce testicular cell apoptosis by causing inflammation and disrupting homeostasis. This study aimed to investigate the role of TAM receptors and ligands in the maintenance of homeostasis and elimination of apoptotic cells in the testes (weeks), short-term sham exposure (sham/1 week), and middle-term sham exposure (sham/10 weeks). Testicular morphology was assessed using hematoxylin-eosin staining, while immunohistochemical staining was performed to assess expression levels of TAM receptors and ligands in the testes of all groups. The results showed that testicular morphology was normal in the control, sham/1 week, and sham/10 weeks groups. However, abnormal processes of spermatogenesis and seminiferous tubule morphology were observed in RFR exposure groups. Cleaved Caspase 3 immunoreactivity showed statistically significant difference in 1 and 10 weeks exposure groups compared to control group. Moreover, there was no significant difference in the immunoreactivity of Tyro 3, Axl, Mer, Gas 6, and Pros 1 between groups. Moreover, Tyro 3 expression in Sertoli cells was statistically significantly increased in RFR exposure groups compared to the control. Taken together, the results suggest that RFR exposure negatively affects TAM signalling, preventing the clearance of apoptotic cells, and this process may lead to infection and inflammation. As a result, rat testicular morphology and function may be impaired.


Asunto(s)
Ondas de Radio , Proteínas Tirosina Quinasas Receptoras , Testículo , Masculino , Animales , Testículo/metabolismo , Testículo/efectos de la radiación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ondas de Radio/efectos adversos , Ratas , Ligandos , Apoptosis/efectos de la radiación , Tirosina Quinasa del Receptor Axl , Ratas Wistar , Espermatogénesis/efectos de la radiación , Caspasa 3/metabolismo , Ratas Sprague-Dawley , Factores de Tiempo , Péptidos y Proteínas de Señalización Intercelular
3.
Ecotoxicol Environ Saf ; 279: 116504, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795418

RESUMEN

Cranial radiotherapy is a major treatment for leukemia and brain tumors. Our previous study found abscopal effects of cranial irradiation could cause spermatogenesis disorder in mice. However, the exact mechanisms are not yet fully understood. In the study, adult male C57BL/6 mice were administrated with 20 Gy X-ray cranial irradiation (5 Gy per day for 4 days consecutively) and sacrificed at 1, 2 and 4 weeks. Tandem Mass Tag (TMT) quantitative proteomics of testis was combined with bioinformatics analysis to identify key molecules and signal pathways related to spermatogenesis at 4 weeks after cranial irradiation. GO analysis showed that spermatogenesis was closely related to oxidative stress and inflammation. Severe oxidative stress occurred in testis, serum and brain, while serious inflammation also occurred in testis and serum. Additionally, the sex hormones related to hypothalamic-pituitary-gonadal (HPG) axis were disrupted. PI3K/Akt pathway was activated in testis, which upstream molecule SCF/C-Kit was significantly elevated. Furthermore, the proliferation and differentiation ability of spermatogonial stem cells (SSCs) were altered. These findings suggest that cranial irradiation can cause spermatogenesis disorder through brain-blood-testicular cascade oxidative stress, inflammation and the secretory dysfunction of HPG axis, and SCF/C-kit drive this process through activating PI3K/Akt pathway.


Asunto(s)
Irradiación Craneana , Ratones Endogámicos C57BL , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-kit , Espermatogénesis , Animales , Masculino , Espermatogénesis/efectos de la radiación , Ratones , Proteínas Proto-Oncogénicas c-kit/metabolismo , Estrés Oxidativo/efectos de la radiación , Irradiación Craneana/efectos adversos , Testículo/efectos de la radiación , Testículo/patología , Transducción de Señal/efectos de la radiación , Factor de Células Madre/metabolismo , Inflamación
4.
Reprod Domest Anim ; 56(3): 484-497, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33372327

RESUMEN

Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, we have established an archive system of livestock and wild animals from the surrounding ex-evacuation zone. Wildlife within the alert zone have been exposed to low-dose-rate (LDR) radiation for a long continuous time. In this study, we analysed the morphological characteristics of the testes and in vitro fertilization (IVF) capacity of cryopreserved sperm of racoons from the ex-evacuation zone of the FDNPP accident. The radioactivity of caesium-137 (137 Cs) was measured by gamma-ray spectrometry, and the measured radioactivity concentration was 300-6,630 Bq/kg in the Fukushima raccoons. Notably, normal spermatogenesis was observed in the seminiferous tubules of the testes, with the germinal epithelium composed of a spermatogenic cell lineage with no evident ultrastructural alterations; freeze-thawing sperm penetration ability was confirmed using the interspecific zona pellucida-free mouse oocytes IVF assays. This study revealed that the chronic and LDR radiation exposure associated with the FDNPP accident had no adverse effect on the reproductive characteristics and functions of male raccoons.


Asunto(s)
Radioisótopos de Cesio/efectos adversos , Accidente Nuclear de Fukushima , Mapaches/fisiología , Testículo/efectos de la radiación , Animales , Radioisótopos de Cesio/análisis , Criopreservación/veterinaria , Femenino , Fertilización In Vitro , Especies Introducidas , Japón , Masculino , Ratones Endogámicos ICR , Mapaches/anatomía & histología , Preservación de Semen/veterinaria , Espermatogénesis/efectos de la radiación , Testículo/fisiología , Testículo/ultraestructura
5.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34884637

RESUMEN

The adverse effects of radiation are proportional to the total dose and dose rate. We aimed to investigate the effects of radiation dose rate on different organs in mice. The mice were subjected to low dose rate (LDR, ~3.4 mGy/h) and high dose rate (HDR, ~51 Gy/h) radiation. LDR radiation caused severe tissue toxicity, as observed in the histological analysis of testis. It adversely influenced sperm production, including sperm count and motility, and induced greater sperm abnormalities. The expression of markers of early stage spermatogonial stem cells, such as Plzf, c-Kit, and Oct4, decreased significantly after LDR irradiation, compared to that following exposure of HDR radiation, in qPCR analysis. The compositional ratios of all stages of spermatogonia and meiotic cells, except round spermatid, were considerably reduced by LDR in FACS analysis. Therefore, LDR radiation caused more adverse testicular damage than that by HDR radiation, contrary to the response observed in other organs. Therefore, the dose rate of radiation may have differential effects, depending on the organ; it is necessary to evaluate the effect of radiation in terms of radiation dose, dose rate, organ type, and other conditions.


Asunto(s)
Espermatogénesis/efectos de la radiación , Testículo/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Masculino , Ratones , Modelos Animales , Dosis de Radiación , Espermátides/citología , Espermátides/efectos de la radiación , Espermatogonias/citología , Espermatogonias/efectos de la radiación , Espermatozoides/citología , Espermatozoides/efectos de la radiación , Testículo/citología
6.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093393

RESUMEN

Over the last decade, the number of cancer survivors has increased thanks to progress in diagnosis and treatment. Cancer treatments are often accompanied by adverse side effects depending on the age of the patient, the type of cancer, the treatment regimen, and the doses. The testicular tissue is very sensitive to chemotherapy and radiotherapy. This review will summarize the epidemiological and experimental data concerning the consequences of exposure to chemotherapy during the prepubertal period or adulthood on spermatogenic progression, sperm production, sperm nuclear quality, and the health of the offspring. Studies concerning the gonadotoxicity of anticancer drugs in adult survivors of childhood cancer are still limited compared with those concerning the effects of chemotherapy exposure during adulthood. In humans, it is difficult to evaluate exactly the toxicity of chemotherapeutic agents because cancer treatments often combine chemotherapy and radiotherapy. Thus, it is important to undertake experimental studies in animal models in order to define the mechanism involved in the drug gonadotoxicity and to assess the effects of their administration alone or in combination on immature and mature testis. These data will help to better inform cancer patients after recovery about the risks of chemotherapy for their future fertility and to propose fertility preservation options.


Asunto(s)
Antineoplásicos/efectos adversos , Quimioradioterapia/efectos adversos , Preservación de la Fertilidad , Fertilidad , Neoplasias/terapia , Espermatogénesis , Adulto , Antineoplásicos/uso terapéutico , Niño , Fertilidad/efectos de los fármacos , Fertilidad/efectos de la radiación , Humanos , Masculino , Espermatogénesis/efectos de los fármacos , Espermatogénesis/efectos de la radiación
7.
Hum Reprod ; 34(8): 1404-1415, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31348830

RESUMEN

STUDY QUESTION: What effect does cancer treatment have on levels of spontaneous selfish fibroblast growth factor receptor 2 (FGFR2) point mutations in human sperm? SUMMARY ANSWER: Chemotherapy and radiotherapy do not increase levels of spontaneous FGFR2 mutations in sperm but, unexpectedly, highly-sterilizing treatments dramatically reduce the levels of the disease-associated c.755C > G (Apert syndrome) mutation in sperm. WHAT IS KNOWN ALREADY: Cancer treatments lead to short-term increases in gross DNA damage (chromosomal abnormalities and DNA fragmentation) but the long-term effects, particularly at the single nucleotide resolution level, are poorly understood. We have exploited an ultra-sensitive assay to directly quantify point mutation levels at the FGFR2 locus. STUDY DESIGN, SIZE, DURATION: 'Selfish' mutations are disease-associated mutations that occur spontaneously in the sperm of most men and their levels typically increase with age. Levels of mutations at c.752-755 of FGFR2 (including c.755C > G and c.755C > T associated with Apert and Crouzon syndromes, respectively) in semen post-cancer treatment from 18 men were compared to levels in pre-treatment samples from the same individuals (n = 4) or levels in previously screened population controls (n = 99). PARTICIPANTS/MATERIALS, SETTING, METHODS: Cancer patients were stratified into four different groups based on the treatments they received and the length of time for spermatogenesis recovery. DNA extracted from semen samples was analysed using a previously established highly sensitive assay to identify mutations at positions c.752-755 of FGFR2. Five to ten micrograms of semen genomic DNA was spiked with internal controls for quantification purposes, digested with MboI restriction enzyme and gel extracted. Following PCR amplification, further MboI digestion and a nested PCR with barcoding primers, samples were sequenced on Illumina MiSeq. Mutation levels were determined relative to the spiked internal control; in individuals heterozygous for a nearby common single nucleotide polymorphism (SNP), mutations were phased to their respective alleles. MAIN RESULTS AND THE ROLE OF CHANCE: Patients treated with moderately-sterilizing alkylating regimens and who recovered spermatogenesis within <3 years after therapy (Group 3, n = 4) or non - alkylating chemotherapy and/or low gonadal radiation doses (Group 1, n = 4) had mutation levels similar to untreated controls. However, patients who had highly-sterilizing alkylating treatments (i.e. >5 years to spermatogenesis recovery) (Group 2, n = 7) or pelvic radiotherapy (Group 4, n = 3) exhibited c.755C > G mutation levels at or below background. Two patients (A and B) treated with highly-sterilizing alkylating agents demonstrated a clear reduction from pre-treatment levels; however pre-treatment samples were not available for the other patients with low mutation levels. Therefore, although based on their age we would expect detectable levels of mutations, we cannot exclude the possibility that these patients also had low mutation levels pre-treatment. In three patients with low c.755C > G levels at the first timepoint post-treatment, we observed increasing mutation levels over time. For two such patients we could phase the mutation to a nearby polymorphism (SNP) and determine that the mutation counts likely originated from a single or a small number of mutational events. LIMITATIONS, REASONS FOR CAUTION: This study was limited to 18 patients with different treatment regimens; for nine of the 18 patients, samples from only one timepoint were available. Only 12 different de novo substitutions at the FGFR2 c.752-755 locus were assessed, two of which are known to be disease associated. WIDER IMPLICATIONS OF THE FINDINGS: Our data add to the body of evidence from epidemiological studies and experimental data in humans suggesting that male germline stem cells are resilient to the accumulation of spontaneous mutations. Collectively, these data should provide physicians and health-care professionals with reassuring experimental-based evidence for counselling of male cancer patients contemplating their reproductive options several years after treatment. STUDY FUNDING/COMPETING INTEREST(S): This work was primarily supported by grants from the Wellcome (grant 091182 to AG and AOMW; grant 102 731 to AOMW), the University of Oxford Medical Sciences Division Internal Fund (grant 0005128 to GJM and AG), the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme (to AG) and the US National Institutes of Health (to MLM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. None of the authors has any conflicts of interest to declare. TRIAL REGISTRATION NUMBER: NA.


Asunto(s)
Antineoplásicos/administración & dosificación , Supervivientes de Cáncer , Neoplasias/terapia , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Espermatozoides/efectos de la radiación , Adulto , Antineoplásicos/uso terapéutico , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Humanos , Masculino , Mutación/efectos de los fármacos , Mutación/efectos de la radiación , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Radioterapia , Análisis de Semen , Recuento de Espermatozoides , Espermatogénesis/efectos de los fármacos , Espermatogénesis/efectos de la radiación , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo
8.
BMC Complement Altern Med ; 19(1): 362, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31829240

RESUMEN

BACKGROUND: Infertility and gonadal dysfunction are well known side-effects by cancer treatment in males. In particularly, chemotherapy and radiotherapy induced testicular damage, resulting in prolonged azoospermia. However, information regarding therapeutics to treat spermatogenesis disturbance after cancer treatment is scarce. Recently, we demonstrated that Goshajinkigan, a traditional Japanese medicine, can completely rescue severe busulfan-induced aspermatogenesis in mice. In this study, we aimed to detect the effects of Goshajinkigan on aspermatogenesis after irradiation. METHODS: This is animal research about the effects of traditional Japanese medicine on infertility after cancer treatment. C57BL/6 J male mice received total body irradiation (TBI: a single dose of 6Gy) at 4 weeks of age and after 60 days were reared a Goshajinkigan (TJ107)-containing or TJ107-free control diet from day 60 to day 120. Then, two untreated females were mated with a single male from each experimental group. On day 60, 120 and 150, respectively, the sets of testes and epididymis of the mice in each group after deep anesthetization were removed for histological and cytological examinations. RESULTS: Histological and histopathological data showed that 6Gy TBI treatment decreased the fertility rate (4/10) in the control diet group; in contrast, in the TJ107-diet group, the fertility rate was 10/10 (p < 0.05 vs. 6Gy group). Supplementation with TJ107 was found to rescue the disrupted inter-Sertoli tight junctions via the normalization of claudin11, occludin, and ZO-1 expression and reduce serum anti-germ cell autoantibodies. CONCLUSIONS: These findings show the therapeutic effect on TBI-induced aspermatogenesis and the recovering disrupted gonadal functions by supplementation with TJ107.


Asunto(s)
Azoospermia/patología , Medicamentos Herbarios Chinos/farmacología , Traumatismos Experimentales por Radiación/patología , Protectores contra Radiación/farmacología , Espermatogénesis , Animales , Epidídimo/citología , Epidídimo/patología , Epidídimo/efectos de la radiación , Femenino , Japón , Masculino , Medicina Tradicional de Asia Oriental , Ratones , Ratones Endogámicos C57BL , Espermatogénesis/efectos de los fármacos , Espermatogénesis/efectos de la radiación , Testículo/citología , Testículo/patología , Testículo/efectos de la radiación
9.
Pediatr Surg Int ; 35(1): 137-143, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30386894

RESUMEN

BACKGROUND: Exposure to ionizing radiation results in cytotoxic and genotoxic effects caused mainly by the oxidative damage. In the present study, we investigated the radioprotective effect of novel antioxidant cocktail on germ cell apoptosis and spermatogenesis in rats subjected to whole body radiation (WBIR). METHODS: Adult male rats weighing 250-270 g were divided into four groups, eight rats each. Group 1 served as untreated control, group 2 received an IP single dose of antioxidant cocktail (1 ml). Group 3 was exposed to a WBIR (6 Gy). Group 4 received antioxidant cocktail before WBIR. Rats from each group were killed after 48 h. MDA levels were measured in serum (TBARS assay). Johnsen's criteria and the number of germinal cell layers were used to categorize spermatogenesis. TUNEL assay was used to determine germ cell apoptosis. Statistical analysis was performed using one-way ANOVA test. RESULTS: WBIR resulted in histological testicular damage (decrease in Johnsen's criteria, p < 0.05) that was accompanied by a significant increase in germ cell apoptosis, expressed as the number of apoptotic cells per 100 tubules (AI-1 apoptotic index) and the number of positive tubules per 100 tubules (AI-2 apoptotic index). Treatment with antioxidant cocktail resulted in a significant decrease in germ cell apoptosis (33% decrease in AI-1, p < 0.05 and 34% decrease in AI-2, p < 0.05) that was accompanied by an improved spermatogenesis (increase in Johnsen's criteria, p < 0.05). CONCLUSIONS: In a rat model of WBIR, antioxidant treatment ameliorates oxidative stress-induced testicular damage, decreases germ cell apoptosis and improves spermatogenesis.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Animales , Células Germinativas/patología , Células Germinativas/efectos de la radiación , Masculino , Traumatismos Experimentales por Radiación , Radiación Ionizante , Ratas , Ratas Sprague-Dawley , Espermatogénesis/efectos de la radiación , Testículo/efectos de los fármacos , Testículo/patología , Testículo/efectos de la radiación
10.
Int J Mol Sci ; 20(4)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30813253

RESUMEN

Substantial improvements in cancer treatment have resulted in longer survival and increased quality of life in cancer survivors with minimized long-term toxicity. However, infertility and gonadal dysfunction continue to be recognized as adverse effects of anticancer therapy. In particular, alkylating agents and irradiation induce testicular damage that results in prolonged azoospermia. Although damage to and recovery of spermatogenesis after cancer treatment have been extensively studied, there is little information regarding the role of differences in testicular immunology in cancer treatment-induced male infertility. In this review, we briefly summarize available rodent and human data on immunological differences in chemotherapy or radiotherapy.


Asunto(s)
Antineoplásicos/farmacología , Radioterapia , Espermatogénesis/efectos de los fármacos , Espermatogénesis/efectos de la radiación , Testículo/inmunología , Animales , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/efectos de la radiación , Masculino , Tamaño de los Órganos/efectos de los fármacos , Tamaño de los Órganos/efectos de la radiación , Testículo/efectos de los fármacos , Testículo/efectos de la radiación
11.
Zhonghua Nan Ke Xue ; 25(5): 451-455, 2019 May.
Artículo en Zh | MEDLINE | ID: mdl-32216233

RESUMEN

With the development of Wi-Fi technology and widespread exposure to electromagnetic radiation (EMR), people are increasingly concerned about the health hazards caused by radiofrequency electromagnetic fields as from cellphones and Wi-Fi, particularly about the current decline in sperm concentration and increase in male infertility. Long-term exposure to EMR not only damages male reproductive organs, but also affects the number, morphology, motility and oocyte-binding ability of sperm, and indirectly increases the risk of infertility. However, EMR is not unavoidable. Low-intensity short-term or intermittent exposure to EMR has little adverse effect on reproductive organs and sperm. And many antioxidant and anti-free radical agents, such as vitamin E and melatonin, can protect some special populations from EMR. This review presents an overview of the impacts of EMR from cellphones and Wi-Fi on sperm, some countermeasures, and prospects of EMR protection.


Asunto(s)
Teléfono Celular , Radiación Electromagnética , Infertilidad Masculina/etiología , Ondas de Radio/efectos adversos , Espermatogénesis/efectos de la radiación , Humanos , Masculino , Estrés Oxidativo
12.
Altern Ther Health Med ; 24(4): 24-29, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28646801

RESUMEN

CONTEXT: People are increasingly exposed to low frequency (LF) electromagnetic fields (EMFs), mainly from electricity distribution networks and electronic devices. Critics of this widespread exposure believe that it can have detrimental effects on the human body. On the other hand, many in vivo and in vitro studies have claimed that low frequency electromagnetic therapy can function as a form of alternative medicine and that therapists can treat disease by applying electromagnetic radiation or pulsed EMFs to the body or cells. It is not yet entirely clear, however, whether LF-EMF is beneficial or harmful. OBJECTIVES: This study aimed to examine the effects of LF-EMFs on men's reproductive functions, according to the types of waveform and the frequency and duration of exposure. DESIGN: The study reviewed all available research, both human and animal, on the effects of LF-EMFs on male reproductive functions, covering the literature from January 1978 to June 2016. The documents were obtained from PubMed, Science Direct, and Google Scholar, and any article that was irrelevant or a duplicate was excluded. A total of 61 articles were found, and 27 articles were reviewed. SETTING: This project was performed at the Avicenna Research Center (Tehran, Iran). PARTICIPANTS: Literature included human and animal studies conducted on rabbits, mice, rats, and boars. INTERVENTION: Among these studies, any article that was irrelevant, a duplicate, or published with duplicate data was excluded. At the end, 27 articles were checked. OUTCOME MEASURES: Outcome measures included testing related to reproductive organ weights, reproductive endocrinal hormones, fetal development, and spermatogenesis as well as sperm motility, morphology, and vitality. RESULTS: The reviewed studies provided contradictory results that were highly dependent on the exposure parameters, such as the shape and frequency of wave, intensity, duration, and timing of the exposure. CONCLUSIONS: LF-EMF at 15 Hz with a peak intensity of 8 Gauss, with a square waveform of 50 Hz frequency and a duration of a few hours or less can have a positive effect on sperm quality, motility, and fertility. Exposures at other frequencies either had no effects on the sperm's performance and quality or held biological hazard for cells. It appears that there is still little understanding of how EMF affects cellular functions. Therefore, more standardized and controlled studies should be carried out to understand the effects of EMF on the body.


Asunto(s)
Campos Electromagnéticos , Fertilidad/efectos de la radiación , Reproducción/efectos de la radiación , Espermatogénesis/efectos de la radiación , Animales , Humanos , Irán , Masculino , Ratones , Conejos , Ratas , Motilidad Espermática , Porcinos
13.
Andrologia ; 50(1)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28782295

RESUMEN

Microwave radiation could increase the expression of pro-inflammatory cytokines in rat Sertoli cells, which may impair spermatogenesis. However, the mechanisms that microwave radiation induces the cytokine expression in Sertoli cells remain to be clarified. The activation of TLRs by their ligands can trigger a common signalling pathway to upregulate inflammatory cytokines such as IL-1, IL-6, IL-12 and TNF-α. Microwave radiation can increase the expression of TLRs in lymphocytes. The purpose of this study was to determine the effect of microwave radiation on the TLRs in rat testis. We focus on the effect of TLR2-5 (which is expressed relatively highly) by microwave radiation. The results showed that the expression of TLR2-5 and the pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) was increased both in mRNA and in protein. Furthermore, p-p38, p-ERK1/2, p-JNK and p-NF-κB p65, the key factors of TLR signalling, were also elevated by microwave exposure. And the NF-κB can be induced more dominantly. These results suggest that TLRs signalling can be activated by microwave radiation in testis, which may provide the molecular basis for the in-depth study.


Asunto(s)
Citocinas/metabolismo , Microondas , Transducción de Señal/efectos de la radiación , Espermatogénesis/efectos de la radiación , Testículo/efectos de la radiación , Receptores Toll-Like/metabolismo , Animales , Inflamación/metabolismo , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Espermatogénesis/fisiología , Testículo/metabolismo , Regulación hacia Arriba/efectos de la radiación
14.
Mol Hum Reprod ; 23(3): 141-154, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130393

RESUMEN

Study question: Does irradiation evoke adverse effects in germ and somatic cells in testis xenografts from prepubertal monkeys? Summary answer: In addition to the expected depletion of germ cells, a dose-dependent effect of irradiation was observed at the mRNA and protein level in Sertoli and peritubular myoid cells. What is known already: Testicular irradiation studies in monkeys have focused on the dose-dependent effects on germ cells. Previous studies using intact animals or xenografts reported that germ cells are highly sensitive to irradiation. Their depletion was demonstrated by morphometric and histological analyses. The effect of irradiation on expression of Sertoli and peritubular myoid cell markers, however, has not yet been described. Study design, size, duration: The testes of two prepubertal macaques (Macaca fascicularis) were dissected into testicular fragments. Fragments were randomly exposed in vitro to one of the following three doses of irradiation: 0 Gy, n = 60; 1 Gy, n = 54; 4 Gy, n = 72. Non-irradiated control fragments (0 Gy) were placed into the Faxitron for 6.6 min without irradiation. For 1 Gy and 4 Gy irradiation was applied for 1.7 and 6.6 min, respectively. Grafts were then either immediately analyzed or subcutaneously implanted under the back skin of 39 nude mice and analyzed after 6.5 months. Participants/materials setting methods: Post grafting, 133 testicular xenografts were retrieved. The body weight, serum testosterone level and seminal vesical weight of the host mice as well as the number and weight of retrieved grafts were determined. Larger grafts were used to evaluate both mRNA expression profiles and protein expression patterns. In total, 71 testicular fragments were used for morphometric and histological analysis while 68 fragments were analyzed for gene expression. For PCR arrays, M. fascicularis-specific primer sequences were employed. Irradiation-induced changes in the transcript levels of 34 marker genes were determined for each testicular graft. The effects of irradiation on peritubular myoid cells and Sertoli cells were confirmed by immunohistochemical analysis of chemokine (C-X-C motif) ligand type 11 (CXCL11), alpha smooth muscle actin (SMA) and chemokine (C-X-C motif) ligand type 12 (CXCL12). Main results and the role of chance: The four testes gave rise to 106 xenografts, which were individually analyzed, limiting the role of chance despite using only two monkeys in the study. Prior to grafting, the two donors displayed spermatogonia as the most advanced germ cell type in 95% and 70% of seminiferous tubules, respectively, while remaining tubules contained SCO. No spermatocytes were encountered prior to grafting in either monkey. After 6.5 months, non-irradiated grafts displayed spermatocytes in 15.4% and 1.8% of seminiferous tubules indicating an induction of meiosis. Irradiation resulted in a complete absence of spermatocytes. The percentage of seminiferous tubules containing spermatogonia declined in a dose-dependent manner. In non-irradiated xenografts, ~40% of tubules contained spermatogonia. This proportion was reduced to 3.4% and 4.3% in the 1 Gy treated group and to 1.3% and 0.2% in 4 Gy irradiated grafts. A dose-dependent decline in mRNA levels of selected germ cell marker genes supported the morphologically detected loss of germ cells. Irradiation had no effect on CXCL12 transcript levels. At the protein level, CXCL12-positive Sertoli cells were most abundant in the 1 Gy group compared to the 4 Gy group (P < 0.05), indicating a potential role of CXCL12 during recovery of primate spermatogenesis. The most prominent radiation-evoked changes were for CXCL11, which was localized to smooth muscle cells of blood vessels and seminiferous tubules. Transcript levels declined in a dose-dependent manner in grafts from both monkeys (MM687: P < 0.01 (0 Gy versus 4 Gy), MM627: P < 0.05 (0 Gy versus 4 Gy), P < 0.001 (1 Gy versus 4 Gy)). CXCL11 patterns of protein expression revealed irradiation-dependent changes as well. That peritubular cells are affected by X-irradiation was substantiated by changes at the transcript level between 1 and 4 Gy exposed groups (P < 0.01) and at the protein level of SMA (P < 0.05, 0 Gy versus 4 Gy). Large scale data: n/a. Limitations, reasons for caution: The spermatogonial stem cell system in primates is remarkably different from rodents. Therefore, data from a non-human primate may be more relevant to man. However, species-specific differences amongst primates cannot be fully excluded and the use of only two donors may raise concerns toward the generalization of the findings. There may also be important differences across the prepubertal period (e.g. infancy, early childhood) that are not represented by the ages included in the present study. Wider implications of the findings: This study is the first to indicate relevant testicular somatic cell responses following irradiation of prepubertal primate tissue. In addition to the well-known depletion of germ cells, the changes in Sertoli, and in particular peritubular myoid, cells may have important consequences for spermatogenic recovery. These novel findings should be taken into consideration when irradiation effects are assessed in tumor survivors. Study funding and competing interest(s): Interdisciplinary Center for Clinical Research (IZKF) Münster (Schl2/001/13) and the Excellence Cluster 'Cells in Motion' at the University Münster. There are no conflicts of interest to declare.


Asunto(s)
Coristoma , Xenoinjertos/efectos de la radiación , Túbulos Seminíferos/efectos de la radiación , Células de Sertoli/efectos de la radiación , Espermatogénesis/efectos de la radiación , Espermatogonias/efectos de la radiación , Actinas/genética , Actinas/metabolismo , Animales , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Rayos gamma , Regulación de la Expresión Génica , Xenoinjertos/citología , Xenoinjertos/metabolismo , Macaca fascicularis , Masculino , Ratones , Ratones Desnudos , Túbulos Seminíferos/citología , Túbulos Seminíferos/metabolismo , Células de Sertoli/citología , Células de Sertoli/metabolismo , Maduración Sexual/fisiología , Transducción de Señal , Piel , Espermatogonias/citología , Espermatogonias/metabolismo , Trasplante Heterólogo
15.
Acta Oncol ; 56(1): 17-20, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27420031

RESUMEN

BACKGROUND: The present study investigates the impact of scatter dose radiation to the testis on ejaculate and sperm counts from treatment of prostate cancer with passive-scatter proton therapy. MATERIAL AND METHODS: From March 2010 to November 2014, 20 men with low- or intermediate-risk prostate cancer enrolled in an IRB-approved protocol and provided a semen sample prior to passive-scatter proton therapy and 6-12 months following treatment. Men were excluded if they had high-risk prostate cancer, received androgen deprivation therapy, were on alpha blockers (due to retrograde ejaculation) prior to treatment, had baseline sperm count <1 million, or were unable to produce a pre-treatment sample or could not provide a follow-up specimen. Sperm counts of 0 were considered azoospermia and <15 million/ml were classified as oligospermia. RESULTS: Four patients were unable to provide a sufficient quantity of semen for analysis. Among the 16 remaining patients, only one was found to have oligospermia (7 million/ml). There was a statistically significant reduction in semen volume (median, 0.5 ml) and increase in pH (median 0.5). Although not statistically significant, there appeared to be a decline in sperm concentration (median, 16 million/ml), total sperm count (median, 98.5 million), normal morphology (median, 9%), and rapid progressive motility (median, 9.5%). DISCUSSION: Men did not have azoospermia 6-12 months following passive-scatter proton therapy indicating minimal scatter radiation to the testis during treatment. Changes in semen quantity and consistency may occur due to prostate irradiation, which could impact future fertility and/or sexual activity.


Asunto(s)
Fertilidad/efectos de la radiación , Neutrones , Neoplasias de la Próstata/radioterapia , Terapia de Protones , Preservación de Semen , Espermatogénesis/efectos de la radiación , Anciano , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Estudios Prospectivos , Neoplasias de la Próstata/patología
16.
Toxicol Ind Health ; 33(4): 373-384, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27738269

RESUMEN

Even though there are contradictory reports regarding the cellular and molecular changes induced by mobile phone emitted radiofrequency radiation (RFR), the possibility of any biological effect cannot be ruled out. In view of a widespread and extensive use of mobile phones, this study evaluates alterations in male germ cell transformation kinetics following RFR exposure and after recovery. Swiss albino mice were exposed to RFR (900 MHz) for 4 h and 8 h duration per day for 35 days. One group of animals was terminated after the exposure period, while others were kept for an additional 35 days post-exposure. RFR exposure caused depolarization of mitochondrial membranes resulting in destabilized cellular redox homeostasis. Statistically significant increases in the damage index in germ cells and sperm head defects were noted in RFR-exposed animals. Flow cytometric estimation of germ cell subtypes in mice testis revealed 2.5-fold increases in spermatogonial populations with significant decreases in spermatids. Almost fourfold reduction in spermatogonia to spermatid turnover (1C:2C) and three times reduction in primary spermatocyte to spermatid turnover (1C:4C) was found indicating arrest in the premeiotic stage of spermatogenesis, which resulted in loss of post-meiotic germ cells apparent from testis histology and low sperm count in RFR-exposed animals. Histological alterations such as sloughing of immature germ cells into the seminiferous tubule lumen, epithelium depletion and maturation arrest were also observed. However, all these changes showed recovery to varied degrees following the post-exposure period indicating that the adverse effects of RFR on mice germ cells are detrimental but reversible. To conclude, RFR exposure-induced oxidative stress causes DNA damage in germ cells, which alters cell cycle progression leading to low sperm count in mice.


Asunto(s)
Teléfono Celular , Daño del ADN/efectos de la radiación , Oligospermia/etiología , Traumatismos Experimentales por Radiación/etiología , Ondas de Radio/efectos adversos , Espermatogénesis/efectos de la radiación , Espermatozoides/efectos de la radiación , Animales , Ensayo Cometa , Relación Dosis-Respuesta en la Radiación , Cinética , Masculino , Profase Meiótica I/efectos de la radiación , Potencial de la Membrana Mitocondrial/efectos de la radiación , Ratones , Oligospermia/patología , Estrés Oxidativo/efectos de la radiación , Traumatismos Experimentales por Radiación/patología , Túbulos Seminíferos/patología , Túbulos Seminíferos/efectos de la radiación , Cabeza del Espermatozoide/patología , Cabeza del Espermatozoide/efectos de la radiación , Espermatogonias/patología , Espermatogonias/efectos de la radiación , Espermatozoides/patología , Pruebas de Toxicidad Subcrónica
17.
Bratisl Lek Listy ; 118(11): 676-683, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29216724

RESUMEN

OBJECTIVES: To determine the effects of Egb761 on testicular tissues and semen parameters in rats exposed to cellphone waves. BACKGROUND: EGb761 has antioxidant properties as a free-radical scavenger. Cellphone electromagnetic radiation (EMR) induces oxidative stress in cells. METHODS: Twenty-one Wistar albino male adult rats were divided into three groups (control, experimental, treatment), including seven rats in each. The experimental and treatment groups were exposed to cellphone EMR (0.96 W/kg) for six weeks (4 hrs/day). Egb761 (100 mg/kg/day) was also added to the treatment. Testes, epididymal semen and blood plasma were used for analysis. RESULTS: Exposure to cellular phone radiation resulted in a significant impairment in testicular morphometry and histological structure, reduction of total and motile sperm numbers and plasma testosterone level. Egb761 administration improved testicular damage and led to a marked increase in plasma testosterone levels and total and motile sperm numbers. CONCLUSION: Male reproductive system is susceptible to cellphone radiation. Cellphone waves induce toxic effects in testicular tissues, impair spermatogenesis and cause an imbalance in testosterone hormone levels. Egb761 ameliorated these toxic effects by reversing testicular tissue damage, restoring normal spermatogenesis and hormone levels. This suggests that Egb761 is a potential therapeutic agent against EMR-induced male reproductive toxicity (Tab. 3, Fig. 6, Ref. 45).


Asunto(s)
Teléfono Celular , Campos Electromagnéticos/efectos adversos , Ondas de Radio/efectos adversos , Motilidad Espermática/efectos de la radiación , Espermatogénesis/efectos de la radiación , Espermatozoides/efectos de la radiación , Animales , Modelos Animales de Enfermedad , Radiación Electromagnética , Masculino , Estrés Oxidativo/efectos de la radiación , Ratas , Ratas Wistar , Recuento de Espermatozoides , Testosterona/sangre
19.
Ecotoxicol Environ Saf ; 129: 137-44, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27017260

RESUMEN

We aimed to evaluate the effect of GSM-like radiofrequency electromagnetic radiation (RF-EMR) on the oogenesis, and spermiogenesis of Xenopus laevis, and so the development of the embryos obtained from Normal Females+Normal Males (i.e. "N(F)+N(M)"); Normal Females+RF-exposed Males (i.e. "N(F)+RF(M)"); RF-exposed Female+Normal Male (i.e. "RF(F)+N(M)"); and RF-exposed Female+RF-exposed Male (i.e. "RF(F)+RF(M)". Various, assessments were performed to determine potential teratogenic effects and mortality, body growth and behavior on first generation embryos. After exposing adults frogs of both sexes to 900MHz RF-EMR (at 1.0W/kg) for 8h a day over a 5-week period, the embryos' specific energy absorption rate (SAR) was calculated. In our present study (control group; 2.2% abnormal, 0.0% dead); with the N(F)+RF(M) combination, the long-term exposure of adult males to GSM-like radiation at 900MHz (RF: 2W) for 5 week/8h/day resulted in normal, abnormal and dead embryo ratios of 88.3%, 3.3% and 8.3%, respectively (p<0.001). In the RF(F)+N(M) combination, long-term exposure (5 week/8h/day) of adult females led to normal, abnormal and dead embryo ratios of 76.7%, 11.7%, and 11.7%, respectively (p<0.001). And in the RF(F)+RF(M) combination, long-term exposure (5 week/8h/day) of both adult males and females led to normal, abnormal and dead embryo ratios of 73.3%, 11.7%, and 15%, respectively (p<0.001). With the exception RF(F)+RF(M) group (p<0.001), no significant changes were observed on body growth (lengths) in comparison to the control group. It was also observed that the offspring of female adult Xenopus exposed to RF-EMR during oogenesis exhibited a more aggressive behavior compared to the control group. Cell phones radiation can thus lead to detrimental effects in humans' male and female reproductive cells.


Asunto(s)
Oogénesis/efectos de los fármacos , Ondas de Radio/efectos adversos , Espermatogénesis/efectos de la radiación , Xenopus laevis/fisiología , Animales , Femenino , Masculino , Oogénesis/efectos de la radiación
20.
Toxicol Ind Health ; 32(2): 328-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24097363

RESUMEN

Mobile phones are extensively used throughout the world. There is a growing concern about the possible public health hazards posed by electromagnetic radiation emitted from mobile phones. Potential health risk applies particularly to the most intensive mobile phone users-typically, young people. The aim of this study was to investigate the effects of mobile phone exposure to the testes, by assessing the histopathological and biochemical changes in the testicular germ cells of rats during pubertal development. A total of 12 male Sprague Dawley rats were used. The study group (n = 6) was exposed to a mobile phone for 1 h a day for 45 days, while the control group (n = 6) remained unexposed. The testes were processed with routine paraffin histology and sectioned. They were stained with hematoxylin-eosin, caspase 3, and Ki-67 and then photographed. No changes were observed between the groups (p > 0.05). The interstitial connective tissue and cells of the exposed group were of normal morphology. No abnormalities in the histological appearance of the seminiferous tubules, including the spermatogenic cycle stage, were observed. Our study demonstrated that mobile phones with a low specific absorption rate have no harmful effects on pubertal rat testicles.


Asunto(s)
Teléfono Celular , Radiación Electromagnética , Túbulos Seminíferos/efectos de la radiación , Maduración Sexual/efectos de la radiación , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Espermatogénesis/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA