Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Childs Nerv Syst ; 38(10): 1867-1875, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35962792

RESUMEN

OBJECTIVE: Therapeutic irradiation is commonly used to treat brain cancers but can induce cognitive dysfunction, especially in children. The mechanism is unknown but likely involves alterations in dendritic spine number and structure. METHODS: To explore the impact of radiation exposure on the alteration of dendritic spine morphology in the hippocampus of young brains, 21-day-old Sprague-Dawley rats received cranial irradiation (10 Gy), and changes in spine density and morphology in dentate gyrus (DG) granules and CA1 pyramidal neurons were detected 1 and 3 months later by using Golgi staining. Moreover, we analyzed synapse-associated proteins within dendritic spines after irradiation. RESULT: Our data showed that cognitive deficits were detected in young rats at both time points postirradiation, accompanied by morphological changes in dendritic spines. Our results revealed significant reductions in spine density in the DG at both 1 month (40.58%) and 3 months (28.92%) postirradiation. However, there was a decrease in spine density only at 1 month (33.29%) postirradiation in the basal dendrites of CA1 neurons and no significant changes in the apical dendrites of CA1 neurons at either time point. Notably, among our findings were the significant dynamic changes in spine morphology that persisted 3 months following cranial irradiation. Meanwhile, we found that depletion of the synapse-associated proteins PSD95 and Drebrin coincided with alterations in dendritic spines. CONCLUSION: These data suggest that the decreased levels of PSD95 and Drebrin after ionizing radiation may cause changes in synaptic plasticity by affecting the morphological structure of dendritic spines, blocking the functional connectivity pathways of the brain and leading to cognitive impairment. Although the mechanism involved is unclear, understanding how ionizing radiation affects young brain hippocampal tissue may be useful to gain new mechanistic insights into radiation-induced cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Espinas Dendríticas , Animales , Irradiación Craneana/efectos adversos , Dendritas , Espinas Dendríticas/efectos de la radiación , Hipocampo , Ratas , Ratas Sprague-Dawley
2.
Nature ; 525(7569): 333-8, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26352471

RESUMEN

Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), that can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning task induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble.


Asunto(s)
Memoria/fisiología , Memoria/efectos de la radiación , Corteza Motora/fisiología , Corteza Motora/efectos de la radiación , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de la radiación , Sinapsis/fisiología , Sinapsis/efectos de la radiación , Animales , Espinas Dendríticas/fisiología , Espinas Dendríticas/efectos de la radiación , Hipocampo/citología , Hipocampo/fisiología , Hipocampo/efectos de la radiación , Técnicas In Vitro , Luz , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/efectos de la radiación , Masculino , Ratones , Sondas Moleculares , Corteza Motora/citología , Destreza Motora/fisiología , Destreza Motora/efectos de la radiación , Prueba de Desempeño de Rotación con Aceleración Constante , Análisis Espacio-Temporal
3.
Nature ; 518(7537): 111-114, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25561173

RESUMEN

Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary rat hippocampal neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhanced growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to explore site-specific organelle functions in different model systems.


Asunto(s)
Compartimento Celular/fisiología , Endosomas/metabolismo , Mitocondrias/metabolismo , Optogenética/métodos , Peroxisomas/metabolismo , Animales , Axones/fisiología , Axones/efectos de la radiación , Transporte Biológico/efectos de la radiación , Compartimento Celular/efectos de la radiación , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/efectos de la radiación , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de la radiación , Dineínas/metabolismo , Dineínas/efectos de la radiación , Endosomas/efectos de la radiación , Hipocampo/citología , Espacio Intracelular/metabolismo , Espacio Intracelular/efectos de la radiación , Cinesinas/metabolismo , Cinesinas/efectos de la radiación , Microtúbulos/metabolismo , Microtúbulos/efectos de la radiación , Mitocondrias/efectos de la radiación , Miosina Tipo V/metabolismo , Miosina Tipo V/efectos de la radiación , Peroxisomas/efectos de la radiación , Ratas
4.
Hippocampus ; 28(3): 189-200, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29251803

RESUMEN

The effects of light on cognitive function have been well-documented in human studies, with brighter illumination improving cognitive performance in school children, healthy adults, and patients in early stages of dementia. However, the underlying neural mechanisms are not well understood. The present study examined how ambient light affects hippocampal function using the diurnal Nile grass rats (Arvicanthis niloticus) as the animal model. Grass rats were housed in either a 12:12 h bright light-dark (brLD, 1,000 lux) or dim light-dark (dimLD, 50 lux) cycle. After 4 weeks, the dimLD group showed impaired spatial memory in the Morris Water Maze (MWM) task. The impairment in their MWM performance were reversed when the dimLD group were transferred to the brLD condition for another 4 weeks. The results suggest that lighting conditions influence cognitive function of grass rats in a way similar to that observed in humans, such that bright light is beneficial over dim light for cognitive performance. In addition to the behavioral changes, grass rats in the dimLD condition exhibited reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, most notably in the CA1 subregion. There was also a reduction in dendritic spine density in CA1 apical dendrites in dimLD as compared to the brLD group, and the reduction was mostly in the number of mushroom and stubby spines. When dimLD animals were transferred to the brLD condition for 4 weeks, the hippocampal BDNF and dendritic spine density significantly increased. The results illustrate that not only does light intensity affect cognitive performance, but that it also impacts hippocampal structural plasticity. These studies serve as a starting point to further understand how ambient light modulates neuronal and cognitive functions in diurnal species. A mechanistic understanding of the effects of light on cognition can help to identify risk factors for cognitive decline and contribute to the development of more effective prevention and treatment of cognitive impairment in clinical populations.


Asunto(s)
Espinas Dendríticas/efectos de la radiación , Hipocampo/efectos de la radiación , Luz , Aprendizaje por Laberinto/efectos de la radiación , Muridae , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de la radiación , Fotoperiodo , Memoria Espacial/efectos de la radiación
5.
Int J Radiat Oncol Biol Phys ; 119(3): 912-923, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142839

RESUMEN

PURPOSE: Cranial irradiation induces healthy tissue damage that can lead to neurocognitive complications, negatively affecting patient quality of life. One damage indicator associated with cognitive impairment is loss of neuronal spine density. We previously demonstrated that irradiation-mediated spine loss is microglial complement receptor 3 (CR3) and sex dependent. We hypothesized that these changes are associated with late-delayed cognitive deficits and amenable to pharmacologic intervention. METHODS AND MATERIALS: Our model of cranial irradiation (acute, 10 Gy gamma) used male and female CR3-wild type and CR3-deficient Thy-1 YFP mice of C57BL/6 background. Forty-five days after irradiation and behavioral testing, we quantified spine density and markers of microglial reactivity in the hippocampal dentate gyrus. In a separate experiment, male Thy-1 YFP C57BL/6 mice were treated with leukadherin-1, a modulator of CR3 function. RESULTS: We found that male mice demonstrate irradiation-mediated spine loss and cognitive deficits but that female and CR3 knockout mice do not. These changes were associated with greater reactivity of microglia in male mice. Pharmacologic manipulation of CR3 with LA1 prevented spine loss and cognitive deficits in irradiated male mice. CONCLUSIONS: This work improves our understanding of irradiation-mediated mechanisms and sex dependent responses and may help identify novel therapeutics to reduce irradiation-induced cognitive decline and improve patient quality of life.


Asunto(s)
Disfunción Cognitiva , Irradiación Craneana , Espinas Dendríticas , Ratones Endogámicos C57BL , Microglía , Animales , Masculino , Femenino , Ratones , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/efectos de la radiación , Irradiación Craneana/efectos adversos , Microglía/efectos de los fármacos , Microglía/efectos de la radiación , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Antígeno de Macrófago-1/metabolismo , Ratones Noqueados , Giro Dentado/efectos de los fármacos , Giro Dentado/efectos de la radiación , Factores Sexuales , Compuestos Orgánicos
6.
Brain Res Bull ; 174: 389-399, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197939

RESUMEN

Bright light has been reported to improve spatial memory of diurnal rodents, yet how it will influence the spatial memory of nocturnal rodents is unknown. Here, we found that dynamic changes in spatial memory and anxiety were induced at different time point after bright light treatment. Mice maintained in brighter light exhibited impaired memory in Y maze at one day after bright light exposure, but showed significantly improved spatial memory in the Y maze and Morris water maze at four weeks after bright light exposure. We also found increased anxiety one day after bright light exposure, which could be the reason of impaired memory. However, no change of anxiety was detected after four weeks. Thus, we further explore the underlying mechanism of the beneficial effects of long term bright light on spatial memory. Golgi staining indicated that the structure of dendritic spines changed, accompanied by increased expression of synaptophysin and postsynaptic density 95 in the hippocampus. Further research has found that bright light treatment leads to elevated CaMKII/CREB phosphorylation levels in the hippocampus, which are associated with synaptic function. Moreover, higher expression of brain-derived neurotrophic factor (BDNF) was followed by increased phosphorylated TrkB levels in the hippocampus, indicating that BDNF/TrkB signaling is also activated during this process. Taken together, these findings revealed that bright light exposure with different duration exert different effects on spatial memory in nocturnal rodents, and the potential molecular mechanism by which long term bright light regulates spatial memory was also demonstrated.


Asunto(s)
Luz , Memoria Espacial/efectos de la radiación , Animales , Ansiedad/psicología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Espinas Dendríticas/efectos de la radiación , Homólogo 4 de la Proteína Discs Large/genética , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Fosforilación , Ratas , Receptor trkB/biosíntesis , Receptor trkB/genética , Transducción de Señal/efectos de la radiación , Sinaptofisina/metabolismo
7.
Brain Res ; 1748: 147095, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32896524

RESUMEN

Cranial and craniospinal irradiation are the oldest central nervous system prophylaxis treatments considered for pediatric patients with acute lymphoblastic leukemia (ALL). However, survivors of childhood ALL that received cranial radiotherapy are at increased risk for deficits in neurocognitive skills. The continuous and dynamic response of normal tissue after irradiation has been identified as one of the causative factors for cognitive changes after cranial radiation therapy. The aim of our study was to investigate the radiation effects on social behavior and neuronal morphology in the hippocampus of adult mice. Twenty-oneday-old male C57BL/6 mice were irradiated with the small-animal radiation research platform (SARRP). Animals were given a single 10-Gy dose of radiation of X-ray cranial radiation. One month following irradiation, animals underwent behavioral testing in the Three-Chamber Sociability paradigm. Radiation affected social discrimination during the third stage eliciting an inability to discriminate between the familiar and stranger mouse, while sham successfully spent more time exploring the novel stranger. Proteomic analysis revealed dysregulation of metabolic and signaling pathways associated with neurocognitive dysfunction such as mitochondrial dysfunction, Rac 1 signaling, and synaptogenesis signaling. We observed significant decreases in mushroom spine density in the Cornu Ammonis 2 of the hippocampus, which is associated with sociability processing.


Asunto(s)
Conducta Animal/efectos de la radiación , Irradiación Craneana , Hipocampo/efectos de la radiación , Memoria/efectos de la radiación , Conducta Social , Animales , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de la radiación , Hipocampo/metabolismo , Masculino , Ratones , Neurogénesis/efectos de la radiación , Proteómica , Transducción de Señal/efectos de la radiación , Sirtuinas/metabolismo , Proteína de Unión al GTP rac1/metabolismo
8.
Radiat Res ; 191(3): 278-294, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30664396

RESUMEN

The radiation environment in space remains a major concern for manned space exploration, as there is currently no shielding material capable of fully protecting flight crews. Additionally, there is growing concern for the social and cognitive welfare of astronauts, due to prolonged radiation exposure and confinement they will experience on a mission to Mars. In this artice, we report on the late effects of 16O-particle radiation on social and cognitive behavior and neuronal morphology in the hippocampus of adult female mice. Six-month-old mice received 16O-particle whole-body irradiation at doses of either 0.25 or 0.1 Gy (600 MeV/n; 18-33 cGy/min) at the NASA's Space Radiation Laboratory in Upton, NY. At nine months postirradiation, the animals underwent behavioral testing in the three-chamber sociability, novel object recognition and Y-maze paradigms. Exposure to 0.1 or 0.25 Gy 16O significantly impaired object memory, a 0.25 Gy dose impaired social novelty learning, but neither dosage impaired short-term spatial memory. We observed significant decreases in mushroom spine density and dendrite morphology in the dentate gyrus, cornu ammonis 3, 2 and 1 of the hippocampus, which are critical areas for object novelty and sociability processing. Our data suggest exposure to 16O modulates hippocampal pyramidal and granular neurons and induces behavioral deficits at a time point of nine months after exposure in females.


Asunto(s)
Conducta Animal/efectos de la radiación , Cognición/efectos de la radiación , Hipocampo/fisiología , Hipocampo/efectos de la radiación , Oxígeno/efectos adversos , Conducta Social , Animales , Espinas Dendríticas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Medio Ambiente Extraterrestre , Femenino , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
9.
Radiother Oncol ; 139: 4-10, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31253467

RESUMEN

AIM: To evaluate the impact of ultra-rapid FLASH mouse whole brain irradiation on hippocampal dendritic spines and neuroinflammation, factors associated with cognitive impairment after brain irradiation. METHODS: We administered 30 Gy whole brain irradiation to C57BL6/J mice in sub-second (FLASH) vs. 240 s conventional delivery time keeping all other parameters constant, using a custom configured clinical linac. Ten weeks post-irradiation, we evaluated spatial and non-spatial object recognition using novel object location and object recognition testing. We measured dendritic spine density by tracing Golgi-stained hippocampal neurons and evaluated neuroinflammation by CD68 immunostaining, a marker of activated microglia, and expression of 10 pro-inflammatory cytokines using a multiplex immunoassay. RESULTS: At ten weeks post-irradiation, compared to unirradiated controls, conventional delivery time irradiation significantly impaired novel object location and recognition tasks whereas the same dose given in FLASH delivery did not. Conventional delivery time, but not FLASH, was associated with significant loss of dendritic spine density in hippocampal apical dendrites, with a similar non-significant trend in basal dendrites. Conventional delivery time was associated with significantly increased CD68-positive microglia compared to controls whereas FLASH was not. Conventional delivery time was associated with significant increases in 5 of 10 pro-inflammatory cytokines in the hippocampus (and non-significant increases in another 3), whereas FLASH was associated with smaller increases in only 3. CONCLUSION: Reduced cognitive impairment and associated neurodegeneration were observed with FLASH compared to conventional delivery time irradiation, potentially through decreased induction of neuroinflammation, suggesting a promising approach to increasing therapeutic index in radiation therapy of brain tumors.


Asunto(s)
Disfunción Cognitiva/prevención & control , Irradiación Craneana , Espinas Dendríticas/efectos de la radiación , Hipocampo/efectos de la radiación , Inflamación/prevención & control , Animales , Espinas Dendríticas/patología , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Dosificación Radioterapéutica
10.
Sci Rep ; 9(1): 18899, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827187

RESUMEN

Cranial irradiation is the main therapeutic treatment for primary and metastatic malignancies in the brain. However, cranial radiation therapy produces long-term impairment in memory, information processing, and attention that contribute to a decline in quality of life. The hippocampal neural network is fundamental for proper storage and retrieval of episodic and spatial memories, suggesting that hippocampal signaling dysfunction could be responsible for the progressive memory deficits observed following irradiation. Previous rodent studies demonstrated that irradiation induces significant loss in dendritic spine number, alters spine morphology, and is associated with behavioral task deficits. Additionally, the literature suggests a common mechanism in which synaptic elimination via microglial-mediated phagocytosis is complement dependent and associated with cognitive impairment in aging as well as disease. We demonstrate sexual dimorphisms in irradiation-mediated alterations of microglia activation markers and dendritic spine density. Further, we find that the significant dendritic spine loss observed in male mice following irradiation is microglia complement receptor 3 (CR3)-dependent. By identifying sex-dependent cellular and molecular factors underlying irradiation-mediated spine loss, therapies can be developed to counteract irradiation-induced cognitive decline and improve patient quality of life.


Asunto(s)
Irradiación Craneana , Espinas Dendríticas/efectos de la radiación , Hipocampo/efectos de la radiación , Microglía/efectos de la radiación , Receptores de Complemento/metabolismo , Animales , Forma de la Célula/efectos de la radiación , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Femenino , Hipocampo/patología , Masculino , Ratones , Ratones Noqueados , Microglía/patología , Receptores de Complemento/genética , Factores Sexuales
11.
Artículo en Inglés | MEDLINE | ID: mdl-30869615

RESUMEN

Plasticity of synaptic structure and function play an essential role in neuronal development, cognitive functions, and degenerative diseases. Recently, low-intensity pulsed ultrasound (LIPUS) stimulation has been reported as a promising technology for neuromodulation. However, the effect of LIPUS stimulation on the structural and functional synaptic plasticity in rat hippocampus has not yet been addressed. The aim of this study was to investigate whether LIPUS stimulation could affect the dendritic structure, electrophysiological properties, and expression level of glutamate receptors GluN2A, GluN2B, and GluR1 subunits in rat hippocampus. Transcranial LIPUS was delivered to CA1 of the intact hippocampus of rats ( n = 40 ) for 10 days (10 min/day) with the following parameters: fundamental frequency of 0.5 MHz, pulse repetition frequency (PRF) of 500 Hz, peak negative pressure of 0.42 MPa, and Ispta of 360 mW/cm2. The effect of LIPUS on dendritic structure, electrophysiological properties, and the expression of neurotransmitter receptors was measured using Golgi staining, electrophysiological recording, and western blotting, respectively. Golgi staining and electrophysiological recordings showed that LIPUS stimulation significantly increased the density of dendritic spines (0.72 ± 0.17 versus 0.94 ± 0.19 spines/ [Formula: see text], ) and the frequency of spontaneous excitatory postsynaptic current (0.37 ± 0.14 versus 1.77 ± 0.37 Hz, ) of CA1 hippocampal neurons. Furthermore, the western blotting analysis demonstrated a significant increase in the expression level of GluN2A ( ). The results illustrated the effect of LIPUS on the dendritic structure, function, and neurotransmitter receptors, which may provide a powerful tool for treating neurodegenerative diseases.


Asunto(s)
Región CA1 Hipocampal , Plasticidad Neuronal/efectos de la radiación , Ondas Ultrasónicas , Animales , Región CA1 Hipocampal/química , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/efectos de la radiación , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de la radiación , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
J Neurosci ; 27(34): 8999-9008, 2007 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-17715337

RESUMEN

Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of the apical dendrites of L2/3 neurons in rat brain slices using dual dendritic-somatic patch-clamp recordings and calcium imaging. Unlike L5 cells, L2/3 dendrites displayed little sag in response to long current pulses, which suggests a low density of I(h) in the dendrites and soma. This was also consistent with a slight increase in input resistance with distance from the soma. Brief current injections into the apical dendrite evoked relatively short (half-width 2-4 ms) dendritic spikes that were isolated from the soma for near-threshold currents at sites beyond the middle of the apical dendrite. Regenerative dendritic potentials and large concomitant calcium transients were also elicited by trains of somatic action potentials (APs) above a critical frequency (130 Hz), which was slightly higher than in L5 neurons. Initiation of dendritic spikes was facilitated by backpropagating somatic APs and could cause an additional AP at the soma. As in L5 neurons, we found that distal dendritic calcium transients are sensitive to a long-lasting block by GABAergic inhibition. We conclude that L2/3 pyramidal neurons can generate dendritic spikes, sharing with L5 pyramidal neurons fundamental properties of dendritic excitability and control by inhibition.


Asunto(s)
Potenciales de Acción/fisiología , Dendritas/ultraestructura , Espinas Dendríticas/fisiología , Neocórtex/citología , Células Piramidales/citología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Dendritas/fisiología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Antagonistas del GABA/farmacología , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Inhibición Neural/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Ácidos Fosfínicos/farmacología , Propanolaminas/farmacología , Ratas
13.
J Comp Neurol ; 526(17): 2845-2855, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30198564

RESUMEN

High-energy charged particles are considered particularly hazardous components of the space radiation environment. Such particles include fully ionized energetic nuclei of helium, silicon, and oxygen, among others. Exposure to charged particles causes reactive oxygen species production, which has been shown to result in neuronal dysfunction and myelin degeneration. Here we demonstrate that mice exposed to high-energy charged particles exhibited alterations in dendritic spine density in the hippocampus, with a significant decrease of thin spines in mice exposed to helium, oxygen, and silicon, compared to sham-irradiated controls. Electron microscopy confirmed these findings and revealed a significant decrease in overall synapse density and in nonperforated synapse density, with helium and silicon exhibiting more detrimental effects than oxygen. Degeneration of myelin was also evident in exposed mice with significant changes in the percentage of myelinated axons and g-ratios. Our data demonstrate that exposure to all types of high-energy charged particles have a detrimental effect, with helium and silicon having more synaptotoxic effects than oxygen. These results have important implications for the integrity of the central nervous system and the cognitive health of astronauts after prolonged periods of space exploration.


Asunto(s)
Partículas Elementales , Vaina de Mielina/efectos de la radiación , Sinapsis/efectos de la radiación , Animales , Axones/efectos de la radiación , Axones/ultraestructura , Espinas Dendríticas/efectos de la radiación , Conducta Exploratoria/efectos de la radiación , Helio , Hipocampo/citología , Hipocampo/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/ultraestructura , Oxígeno , Silicio , Sinapsis/ultraestructura
14.
Life Sci Space Res (Amst) ; 17: 63-73, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29753415

RESUMEN

Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.


Asunto(s)
Cognición/efectos de la radiación , Espinas Dendríticas/patología , Hipocampo/patología , Neuronas/patología , Radioisótopos de Oxígeno/efectos adversos , Animales , Espinas Dendríticas/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Hipocampo/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neuronas/efectos de la radiación
15.
Neuro Oncol ; 20(5): 655-665, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29112734

RESUMEN

Background: Memantine has shown clinical utility in preventing radiation-induced cognitive impairment, but the mechanisms underlying its protective effects remain unknown. We hypothesized that abnormal glutamate signaling causes radiation-induced abnormalities in neuronal structure and that memantine prevents synaptic toxicity. Methods: Hippocampal cultures expressing enhanced green fluorescent protein were irradiated or sham-treated and their dendritic spine morphology assessed at acute (minutes) and later (days) times using high-resolution confocal microscopy. Excitatory synapses, defined by co-localization of the pre- and postsynaptic markers vesicular glutamate transporter 1 and postsynaptic density protein 95, were also analyzed. Neurons were pretreated with vehicle, the N-methyl-d-aspartate-type glutamate receptor antagonist memantine, or the glutamate scavenger glutamate pyruvate transaminase to assess glutamate signaling. For animal studies, Thy-1-YFP mice were treated with whole-brain radiotherapy or sham with or without memantine. Results: Unlike previously reported long-term losses of dendritic spines, we found that the acute response to radiation is an initial increase in spines and excitatory synapses followed by a decrease in spine/synapse density with altered spine dynamics. Memantine pre-administration prevented this radiation-induced synaptic remodeling. Conclusion: These results demonstrate that radiation causes rapid, dynamic changes in synaptic structural plasticity, implicate abnormal glutamate signaling in cognitive dysfunction following brain irradiation, and describe a protective mechanism of memantine.


Asunto(s)
Anomalías Inducidas por Radiación/prevención & control , Espinas Dendríticas/efectos de los fármacos , Rayos gamma/efectos adversos , Hipocampo/efectos de los fármacos , Memantina/farmacología , Sinapsis/efectos de los fármacos , Anomalías Inducidas por Radiación/etiología , Anomalías Inducidas por Radiación/patología , Animales , Células Cultivadas , Espinas Dendríticas/patología , Espinas Dendríticas/efectos de la radiación , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/patología , Hipocampo/efectos de la radiación , Ratas , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/patología , Sinapsis/efectos de la radiación
16.
Brain Res ; 1679: 134-143, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29180226

RESUMEN

The popularization of microwave raised concerns about its influence on health including cognitive function which is associated greatly with dendritic spines plasticity. SNK-SPAR is a molecular pathway for neuronal homeostatic plasticity during chronically elevated activity. In this study, Wistar rats were exposed to microwaves (30 mW/cm2 for 6 min, 3 times/week for 6 weeks). Spatial learning and memory function, distribution of dendritic spines, ultrastructure of the neurons and their dendritic spines in hippocampus as well as the related critical molecules of SNK-SPAR pathway were examined at different time points after microwave exposure. There was deficiency in spatial learning and memory in rats, loss of spines in granule cells and shrinkage of mature spines in pyramidal cells, accompanied with alteration of ultrastructure of hippocampus neurons. After exposure to 30 mW/cm2 microwave radiation, the up-regulated SNK induced decrease of SPAR and PSD-95, which was thought to cause the changes mentioned above. In conclusion, the microwave radiation led to shrinkage and even loss of dendritic spines in hippocampus by SNK-SPAR pathway, resulting in the cognitive impairments.


Asunto(s)
Espinas Dendríticas/efectos de la radiación , Proteínas Activadoras de GTPasa/metabolismo , Hipocampo/citología , Microondas/efectos adversos , Neuronas/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de la radiación , Animales , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/ultraestructura , Hipocampo/efectos de la radiación , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Microscopía Electrónica de Transmisión , Neuronas/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tinción con Nitrato de Plata , Sinapsis/metabolismo , Sinapsis/efectos de la radiación , Sinapsis/ultraestructura , Factores de Tiempo , Regulación hacia Arriba/efectos de la radiación
17.
Neuropharmacology ; 52(1): 55-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16895730

RESUMEN

The hippocampal slice is a popular model system in which to study the cellular properties of long-term potentiation (LTP). Synaptogenesis induced by exposure to ice-cold artificial cerebrospinal fluid (ACSF), however, raises the concern that morphological correlates of LTP might be obscured, especially in mature slices. Here we demonstrate that preparation of mature hippocampal slices at room temperature (approximately 25 degrees C) maintains excellent ultrastructure and a synapse density comparable to perfusion-fixed hippocampus. These results suggest that slices prepared at room temperature might provide a better basis from which to detect LTP-related changes in synapse number and morphology.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Temperatura , Análisis de Varianza , Animales , Espinas Dendríticas/efectos de la radiación , Espinas Dendríticas/ultraestructura , Hipocampo/ultraestructura , Imagenología Tridimensional/métodos , Potenciación a Largo Plazo/efectos de la radiación , Microscopía Electrónica de Transmisión/métodos , Técnicas de Cultivo de Órganos , Ratas , Sinapsis/efectos de la radiación , Sinapsis/ultraestructura
18.
PLoS One ; 12(1): e0170586, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28114380

RESUMEN

Long-term structural plasticity of dendritic spines plays a key role in synaptic plasticity, the cellular basis for learning and memory. The biochemical step is mediated by a complex network of signaling proteins in spines. Two-photon imaging techniques combined with two-photon glutamate uncaging allows researchers to induce and quantify structural plasticity in single dendritic spines. However, this method is laborious and slow, making it unsuitable for high throughput screening of factors necessary for structural plasticity. Here we introduce a MATLAB-based module built for Scanimage to automatically track, image, and stimulate multiple dendritic spines. We implemented an electrically tunable lens in combination with a drift correction algorithm to rapidly and continuously track targeted spines and correct sample movements. With a straightforward user interface to design custom multi-position experiments, we were able to adequately image and produce targeted plasticity in multiple dendritic spines using glutamate uncaging. Our methods are inexpensive, open source, and provides up to a five-fold increase in throughput for quantifying structural plasticity of dendritic spines.


Asunto(s)
Automatización , Espinas Dendríticas/efectos de la radiación , Luz , Plasticidad Neuronal/fisiología , Animales , Espinas Dendríticas/fisiología , Ratones , Ratones Endogámicos C57BL
19.
Sci Rep ; 7: 44521, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28303965

RESUMEN

Mounting evidence suggests that exposure to radiofrequency electromagnetic radiation (RF-EMR) can influence learning and memory in rodents. In this study, we examined the effects of single exposure to 1.8 GHz RF-EMR for 30 min on subsequent recognition memory in mice, using the novel object recognition task (NORT). RF-EMR exposure at an intensity of >2.2 W/kg specific absorption rate (SAR) power density induced a significant density-dependent increase in NORT index with no corresponding changes in spontaneous locomotor activity. RF-EMR exposure increased dendritic-spine density and length in hippocampal and prefrontal cortical neurons, as shown by Golgi staining. Whole-cell recordings in acute hippocampal and medial prefrontal cortical slices showed that RF-EMR exposure significantly altered the resting membrane potential and action potential frequency, and reduced the action potential half-width, threshold, and onset delay in pyramidal neurons. These results demonstrate that exposure to 1.8 GHz RF-EMR for 30 min can significantly increase recognition memory in mice, and can change dendritic-spine morphology and neuronal excitability in the hippocampus and prefrontal cortex. The SAR in this study (3.3 W/kg) was outside the range encountered in normal daily life, and its relevance as a potential therapeutic approach for disorders associated with recognition memory deficits remains to be clarified.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Radiación Electromagnética , Reconocimiento Visual de Modelos/efectos de la radiación , Células Piramidales/efectos de la radiación , Potenciales de Acción/efectos de la radiación , Animales , Espinas Dendríticas/patología , Espinas Dendríticas/efectos de la radiación , Hipocampo/fisiopatología , Hipocampo/efectos de la radiación , Memoria , Trastornos de la Memoria/etiología , Trastornos de la Memoria/fisiopatología , Ratones , Células Piramidales/patología , Ondas de Radio/efectos adversos
20.
Cell Rep ; 19(3): 505-520, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423315

RESUMEN

The central circadian pacemaker, the suprachiasmatic nucleus (SCN), encodes day length information by mechanisms that are not well understood. Here, we report that genetic ablation of miR-132/212 alters entrainment to different day lengths and non-24 hr day-night cycles, as well as photoperiodic regulation of Period2 expression in the SCN. SCN neurons from miR-132/212-deficient mice have significantly reduced dendritic spine density, along with altered methyl CpG-binding protein (MeCP2) rhythms. In Syrian hamsters, a model seasonal rodent, day length regulates spine density on SCN neurons in a melatonin-independent manner, as well as expression of miR-132, miR-212, and their direct target, MeCP2. Genetic disruption of Mecp2 fully restores the level of dendritic spines of miR-132/212-deficient SCN neurons. Our results reveal that, by regulating the dendritic structure of SCN neurons through a MeCP2-dependent mechanism, miR-132/212 affects the capacity of the SCN to encode seasonal time.


Asunto(s)
Adaptación Fisiológica/genética , Relojes Circadianos/genética , Dendritas/metabolismo , MicroARNs/metabolismo , Estaciones del Año , Adaptación Fisiológica/efectos de la radiación , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Relojes Circadianos/efectos de la radiación , Dendritas/efectos de la radiación , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de la radiación , Femenino , Eliminación de Gen , Regulación de la Expresión Génica/efectos de la radiación , Luz , Masculino , Mesocricetus , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Neuronas/metabolismo , Fotoperiodo , Proteoma/metabolismo , Transducción de Señal/efectos de la radiación , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efectos de la radiación , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA