Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Invertebr Pathol ; 172: 107364, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32201241

RESUMEN

Outbreaks of Marteilia cochillia have caused massive mortalities of common cockle, Cerastoderma edule, in some natural beds in Galicia (NW Spain) since 2012. The life cycle of Marteilia spp. is still unresolved and the most accepted hypothesis suggests that an additional host is involved. Researchers have assumed that sporangia are shed into the environment in the faeces, but details about this process have not been reported previously. Here, we report the massive liberation of Marteilia cochillia sporangia through the exhalant siphon into the environment, packaged as faeces. Using light microscopy observations on fresh samples, imprints and histology, we also describe a thick (ca. 5 µm) transparent envelope covering the sporangia that has not been reported previously. The massive release of encapsulated sporangia reported here ensures that millions of infective stages of M. cochillia cycle through the environment and become available for infection. The elucidation of the role played by the sporangia envelope would be of utmost importance for the understanding M. cochillia life cycle.


Asunto(s)
Cardiidae/parasitología , Cercozoos/fisiología , Agua de Mar/parasitología , Animales , Cercozoos/citología , Heces/parasitología , España , Esporangios/citología , Esporangios/fisiología
2.
Mol Plant Microbe Interact ; 32(5): 515-526, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30480479

RESUMEN

Sporangia of Phytophthora infestans from pure cultures on agar plates are typically used in lab studies, whereas sporangia from leaflet lesions drive natural infections and epidemics. Multiple assays were performed to determine if sporangia from these two sources are equivalent. Sporangia from plate cultures showed much lower rates of indirect germination and produced much less disease in field and moist-chamber tests. This difference in aggressiveness was observed whether the sporangia had been previously incubated at 4°C (to induce indirect germination) or at 21°C (to prevent indirect germination). Furthermore, lesions caused by sporangia from plates produced much less sporulation. RNA-Seq analysis revealed that thousands of the >17,000 P. infestans genes with a RPKM (reads per kilobase of exon model per million mapped reads) >1 were differentially expressed in sporangia obtained from plate cultures of two independent field isolates compared with sporangia of those isolates from leaflet lesions. Among the significant differentially expressed genes (DEGs), putative RxLR effectors were overrepresented, with almost half of the 355 effectors with RPKM >1 being up- or downregulated. DEGs of both isolates include nine flagellar-associated genes, and all were down-regulated in plate sporangia. Ten elicitin genes were also detected as DEGs in both isolates, and nine (including INF1) were up-regulated in plate sporangia. These results corroborate previous observations that sporangia produced from plates and leaflets sometimes yield different experimental results and suggest hypotheses for potential mechanisms. We caution that use of plate sporangia in assays may not always produce results reflective of natural infections and epidemics.


Asunto(s)
Phytophthora infestans/fisiología , Solanum lycopersicum , Esporangios/fisiología , Transcriptoma , Solanum lycopersicum/parasitología , Phytophthora infestans/genética , Phytophthora infestans/crecimiento & desarrollo , Esporangios/genética , Esporangios/crecimiento & desarrollo
3.
Mol Microbiol ; 107(6): 718-733, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29363196

RESUMEN

The rare actinomycete Actinoplanes missouriensis forms terminal sporangia containing a few hundred flagellated spores, which can swim in aquatic environments after release from sporangium. However, gene regulation for its characteristic morphological development is largely unknown. Here, we report the functional analysis of an orphan response regulator, TcrA, which is encoded next to the chemotaxis-flagellar gene cluster. The tcrA null (ΔtcrA) mutant formed sporangium, in which sporulation proceeded. However, many distorted spores were produced and some spores ectopically germinated in the mutant sporangia. In addition, spores were hardly released from the mutant sporangia. A comparative RNA-Seq analysis between the wild-type and ΔtcrA strains showed that TcrA upregulated the transcription of more than 263 genes, which were integrated into 185 transcriptional units. In silico searches identified a 21-bp direct repeat sequence, 5'-nnGCA(A/C)CCG-n4 -GCA(A/C)CCGn-3', as the TcrA box, which was confirmed by electrophoretic mobility shift assays. Finally, we identified 34 transcriptional units as the TcrA regulon. TcrA seems to regulate a few hundred genes through the transcriptional activation of three FliA-family sigma factor genes besides its own regulon. We concluded that TcrA is a global transcriptional activator that controls many aspects of sporangium formation, including flagellar biogenesis, spore dormancy and sporangium dehiscence.


Asunto(s)
Actinobacteria/fisiología , Actinobacteria/genética , Actinobacteria/crecimiento & desarrollo , Actinobacteria/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulón , Esporangios/genética , Esporangios/crecimiento & desarrollo , Esporangios/metabolismo , Esporangios/fisiología , Esporas Bacterianas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Plant Res ; 128(3): 445-57, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25773305

RESUMEN

Clathropteris was a typical dipterid fern with well documented fossil record and was widely dispersed during the Mesozoic; however, our knowledge of fertile structures including in situ spores for this genus is still very limited. Here we report well-preserved compression specimens of Clathropteris obovata Oishi from the Late Triassic of Guangyuan, Sichuan Province, China. The specimens show round to oval and exindusiate sori, vertical to oblique annuli in sporangia, and in situ trilete spores with verrucate and baculate sculptures, which are comparable to dispersed spore genera of Converrucosisporites and Conbaculatisporites. Comparisons of relevant fossil taxa suggest that specimens of C. obovata from Triassic of China provide for the first time in Asia the detailed fertile structures with in situ spore characters of dipterid fossil Clathropteris. Unlike living Dipteris, Mesozoic fossils of Dipteridaceae show a high diversity and a range of complex morphology of in situ spores, thus are significant for the evolutionary links between Dipteridaceae and other related fern clade, including Gleicheniaceae and Matoniaceae of the Gleicheniales.


Asunto(s)
Helechos/fisiología , Esporangios/fisiología , Evolución Biológica , China , Helechos/ultraestructura , Fertilidad , Fósiles , Filogenia , Esporangios/ultraestructura , Esporas/ultraestructura
5.
Microbiology (Reading) ; 159(Pt 8): 1545-1551, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23619000

RESUMEN

Despite numerous studies of the Rhinosporidum seeberi parasitic phase, the stages of its nuclear cycle leading to the formation of endoconidia have yet to be properly described. R. seeberi resists culture and can only be investigated on histological preparations. We have evaluated tissue sections collected from 35 host species with rhinosporidosis searching for the presence of mitotic figures during sporangia development. This study found that soon after endoconidia release, the prominent reddish vesicles typical of this stage vanished leading to the development of juvenile sporangia (JS) 12-70 µm in diameter. This stage possesses granular cytoplasm, a thick cell wall, and a central reddish nucleus with a conspicuous nucleolus. The first nuclear division takes place in the JS. It is a rarely encountered event characterized by the development of a distorted nucleus leading to the formation of two nuclei without cytokinesis. The finding of multiple nuclear divisions at prophase-, metaphase- and telophase-like stages without cytokinesis was detected in intermediate sporangia (IS). IS with multiple dividing nuclei seem to be at the same stage of nuclear partitioning, suggesting synchronized nuclear division. In these sporangia, the nuclei continue divisions without cytokinesis until the sporangia reach ≥300 µm in diameter. The last nuclear division prior to cytokinesis appears to take place in very large sporangia with thousands of nuclei. The build-up of cytoplasm around each nucleus and the formation of a thin cell wall lead to the formation of endoconidia. This study revealed the presence of several mechanisms of pathogenesis in R. seeberi that deserved further investigation.


Asunto(s)
División del Núcleo Celular , Citocinesis , Estadios del Ciclo de Vida , Rhinosporidium/fisiología , Esporangios/fisiología , Animales , Rhinosporidium/citología , Esporangios/citología
6.
New Phytol ; 197(1): 251-263, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23153246

RESUMEN

Assortative mating resulting from host plant specialization has been proposed to facilitate rapid ecological divergence in biotrophic plant pathogens. Downy mildews, a major group of biotrophic oomycetes, are prime candidates for testing speciation by host plant specialization. Here, we combined a phylogenetic and morphological approach with cross-pathogenicity tests to investigate host plant specialization and host range expansion in grapevine downy mildew. This destructive disease is caused by Plasmopara viticola, an oomycete endemic to North America on wild species and cultivated grapevines. Multiple genealogies and sporangia morphology provide evidence that P. viticola is a complex of four cryptic species, each associated with different host plants. Cross-inoculation experiments showed complete host plant specialization on Parthenocissus quinquefolia and on Vitis riparia, whereas cryptic species found on V. aestivalis, V. labrusca and V. vinifera were revealed to be less specific. We reconstructed the recent host range expansion of P. viticola from wild to cultivated grapevines, and showed that it was accompanied by an increase in aggressiveness of the pathogen. This case study on grapevine downy mildew illustrates how biotrophic plant pathogens can diversify by host plant specialization and emerge in agrosystems by shifting to cultivated hosts. These results might have important implications for viticulture, including breeding for resistance and disease management.


Asunto(s)
Genoma Fúngico , Oomicetos/genética , Filogenia , Vitis/microbiología , Adaptación Biológica , Alelos , Productos Agrícolas/microbiología , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Ecosistema , Evolución Molecular , Especificidad del Huésped , América del Norte , Oomicetos/clasificación , Oomicetos/patogenicidad , Oomicetos/fisiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Especificidad de la Especie , Esporangios/genética , Esporangios/fisiología , Estadísticas no Paramétricas
7.
Phytopathology ; 103(1): 64-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22950738

RESUMEN

To study the influence of environmental conditions on sporulation of Plasmopara viticola lesions under vineyard's conditions, unsprayed vines were inspected every second or third day and the numbers of sporulating and nonsporulating lesions were counted in two North Italy vineyards in 2008 to 2010. Infected leaves were removed so that only fresh lesions were assessed at each field assessment. Sporulation was studied at two scales, across field assessments and across the seasonal population of lesions. Frequencies of sporulating lesions were positively correlated with the numbers of moist hours in the preceding dark period (i.e., the number of hours between 8:00 p.m. and 7:00 a.m. with relative humidity ≥80%, rainfall >0 mm, or wetness duration >30 min). In a receiver operating characteristic analysis, predicted sporulation based on the occurrence of ≥3 moist hours at night provided overall accuracy of 0.85. To study the time course of sporulation on lesions which were not washed by rainfall, numbers of sporangia produced per square millimeter of lesion were estimated on individual cohorts of lesions over the whole infectious period. The numbers of sporangia per square millimeter of lesion increased rapidly during the first 4 days after the beginning of sporulation and then tapered off prior to a halt; the time course of cumulative sporangia production by a lesion followed a monomolecular growth model (R(2) = 0.97). The total number of sporangia produced by a square millimeter of lesion increased as the maximum temperature decreased and moist hours in the dark increased. To study the release pattern of the sporangia, spore samplers were placed near grapevines with sporulating lesions. Airborne sporangia were caught in 91.2% of the days over a wide range of weather conditions, including rainless periods. The results of this study provide quantitative information on production of P. viticola sporangia that may help refine epidemiological models used as decision aids in grape disease management programs.


Asunto(s)
Oomicetos/fisiología , Enfermedades de las Plantas/parasitología , Esporangios/fisiología , Vitis/parasitología , Oscuridad , Humedad , Italia , Oomicetos/crecimiento & desarrollo , Hojas de la Planta/parasitología , Lluvia , Esporangios/crecimiento & desarrollo , Esporas/crecimiento & desarrollo , Esporas/fisiología , Temperatura , Factores de Tiempo , Tiempo (Meteorología)
8.
Science ; 380(6650): 1188-1192, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319203

RESUMEN

Lateral plant organs, including leaves and reproductive structures, are arranged on stems in distinct patterns termed phyllotaxis. Most extant plants exhibit phyllotactic patterns that are mathematically described by the Fibonacci series. However, it remains unclear what lateral organ arrangements were present in early leafy plants. To investigate this, we quantified phyllotaxis in fossils of the Early Devonian lycopod Asteroxylon mackiei. We report diverse phyllotaxis in leaves, including whorls and spirals. Spirals were all n:(n+1) non-Fibonacci types. We also show that leaves and reproductive structures occurred in the same phyllotactic series, indicating developmental similarities between the organs. Our findings shed light on the long-standing debate about leaf origins and demonstrate the antiquity of non-Fibonacci spirals in plants.


Asunto(s)
Evolución Biológica , Hojas de la Planta , Esporangios , Hojas de la Planta/fisiología , Esporangios/fisiología , Fósiles
9.
BMC Evol Biol ; 12: 158, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22929005

RESUMEN

BACKGROUND: Indehiscent sporangia are reported for only a few of derived leptosporangiate ferns. Their evolution has been likely caused by conditions in which promotion of self-fertilization is an evolutionary advantageous strategy such as the colonization of isolated regions and responds to stressful habitat conditions. The Lepisorus clathratus complex provides the opportunity to test this hypothesis because these derived ferns include specimens with regular dehiscent and irregular indehiscent sporangia. The latter occurs preferably in well-defined regions in the Himalaya. Previous studies have shown evidence for multiple origins of indehiscent sporangia and the persistence of populations with indehiscent sporangia at extreme altitudinal ranges of the Qinghai-Tibetan Plateau (QTP). RESULTS: Independent phylogenetic relationships reconstructed using DNA sequences of the uniparentally inherited chloroplast genome and two low-copy nuclear genes confirmed the hypothesis of multiple origins of indehiscent sporangia and the restriction of particular haplotypes to indehiscent sporangia populations in the Lhasa and Nyingchi regions of the QTP. In contrast, the Hengduan Mountains were characterized by high haplotype diversity and the occurrence of accessions with and without indehiscent sporangia. Evidence was found for polyploidy and reticulate evolution in this complex. The putative case of chloroplast capture in the Nyingchi populations provided further evidence for the promotion of isolated but persistent populations by indehiscent sporangia. CONCLUSIONS: The presented results confirmed the hypothesis that indehiscent sporangia promote the establishment of persistent population in different regions of the QTP. These results are consistent with the expectations of reproductive reassurance by promotion of self-fertilization that played a critical role in the assembly of populations in isolated locations and/or extreme habitats.


Asunto(s)
Altitud , Helechos/genética , Variación Genética , Esporangios/genética , Núcleo Celular/genética , ADN de Cloroplastos/química , ADN de Cloroplastos/genética , ADN de Plantas/química , ADN de Plantas/genética , Helechos/clasificación , Helechos/fisiología , Genética de Población , Genoma del Cloroplasto/genética , Geografía , Haplotipos , Datos de Secuencia Molecular , Filogenia , Autofecundación , Análisis de Secuencia de ADN , Especificidad de la Especie , Esporangios/fisiología , Tibet
10.
Planta ; 236(6): 1817-29, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22910875

RESUMEN

Net fluxes of Ca(2+) and H(+) ions were measured non-invasively close to the surface of Phycomyces blakesleeanus sporangiophores stage I using ion-selective vibrating microelectrodes. The measurements were performed on a wild type (Wt) and a gravitropic mutant A909 kept in either vertical or tilted orientation. Microelectrodes were positioned 4 µm from the surface of sporangiophore, and ion fluxes were recorded from the apical (0-20 µm) and subapical (50-100 µm) regions. The magnitude and direction of ionic fluxes measured were dependent on the distance from the tip along the growing zone of sporangiophore. Vertically oriented sporangiophores displayed characteristic tip-to-base ion fluxes patterns. Ca(2+) and H(+) fluxes recorded from apical region of Wt sporangiophores were inward-directed, while ion fluxes from subapical locations occurred in both directions. In contrast to Wt, mutant A909 showed opposite (outward) direction of Ca(2+) fluxes and reduced H(+) influxes in the apical region. Following gravistimulation, the magnitude and direction of ionic fluxes were altered. Wt sporangiophore exhibited oppositely directed fluxes on the lower (influx) and the upper (efflux) sides of the cell, while mutant A909 did not show such patterns. A variable elongation growth in vertical position and reduced growth rate upon gravistimulation were observed in both strains. The data show that tip-growing sporangiophores exhibit a tip-to-base ion flux pattern which changes characteristically upon gravistimulation in Wt in contrast to the mutant A909 with a strongly reduced gravitropic response.


Asunto(s)
Calcio/metabolismo , Gravitropismo/fisiología , Phycomyces/fisiología , Esporangios/fisiología , Transporte Biológico , Membrana Celular/metabolismo , Gravitación , Electrodos de Iones Selectos , Microelectrodos , Mutación , Phycomyces/crecimiento & desarrollo , Protones , Esporangios/crecimiento & desarrollo
11.
Sex Plant Reprod ; 25(3): 227-46, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22669467

RESUMEN

Cell fate, development timing and occurrence of reproductive versus apomictic development in gymnosperms are shown to be influenced by culture conditions in vitro. In this study, female parthenogenetic apomixis (fPA), androsporogenetic parthenogenesis (mAP) and progenesis were demonstrated using embryonal initials of Araucaria angustifolia in scaled-up cell suspensions passing through a single-cell bottleneck in darkness and in an artificial sporangium (AS). Expression was based on defined nutrition, hormones and feedforward-adaptive feedback process controls at 23-25 °C and in darkness. In fPA, the nucleus of an embryonal initial undergoes endomitosis and amitosis, forming a diploid egg-equivalent and an apoptotic ventral canal nucleus in a transdifferentiated archegonial tube. Discharge of egg-equivalent cells as parthenospores and their dispersal into the aqueous culture medium were followed by free-nuclear conifer-type proembryogenesis. This replaced the plesiomorphic and central features of proembryogenesis in Araucariaceae. Protoplasmic fusions of embryonal initials were used to reconstruct heterokaryotic expressions of fPA in multiwell plates. In mAP, restitutional meiosis (automixis) was responsible for androsporogenesis and the discharge of monads, dyads, tetrads and polyads. In a display of progenesis, reproductive development was brought to an earlier ontogenetic stage and expressed by embryonal initials. Colchicine increased polyploidy, but androspore formation became aberrant and fragmented. Aberrant automixis led to the formation of chromosomal bouquets, which contributed to genomic silencing in embryonal initials, cytomixis and the formation of pycnotic micronucleated cells. Dispersal of female and male parthenospores displayed heteromorphic asexual heterospory in an aqueous environment.


Asunto(s)
Apomixis , Partenogénesis , Esporangios/fisiología , Tracheophyta/fisiología , Cromosomas de las Plantas/genética , Poliploidía , Reproducción , Esporangios/embriología , Esporangios/genética , Tracheophyta/embriología , Tracheophyta/genética
12.
Phytopathology ; 102(6): 588-96, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22352306

RESUMEN

The aim of this study was to understand whether competition for fatty acids in plant seed exudates by compost-derived seed-colonizing microbial communities could explain the suppression of plant infections initiated by sporangia of Pythium ultimum. The germination behavior of P. ultimum sporangia in response to cucumber seeds was measured to determine the impact of seed-colonizing microbes on pathogen suppression. Seed-colonizing microbial communities from municipal biosolids compost utilized cucumber seed exudates and linoleic acid in vitro, reducing the respective stimulatory activity of these elicitors to P. ultimum sporangial germination. However, when sporangia were observed directly in the spermosphere of seeds sown in the compost medium, levels of germination and sporangial emptying did not differ from the responses in sand. The percentage of aborted germ tubes was greater after incubating sporangia in compost medium for 12-h than the level of germ tube abortion when sporangia were incubated in sand. Abortion did not occur if previously germinated sporangia were supplemented with cucumber seed exudate. Furthermore, removal of cucumber seed exudate after various stages of germ tube emergence resulted in an increase in aborted germ tubes over time. Adding increasing levels of glucose directly to the compost medium alleviated germ tube abortion in the spermosphere and also eliminated disease suppression. These data fail to support a role for linoleic acid competition in Pythium seedling disease suppression but provide evidence for general carbon competition mediated by seed-colonizing microbial communities as a mechanism for the suppression of Pythium seed infections in municipal biosolids compost.


Asunto(s)
Carbono/metabolismo , Cucumis sativus/microbiología , Enfermedades de las Plantas/microbiología , Pythium/patogenicidad , Microbiología del Suelo , Esporangios/crecimiento & desarrollo , Agentes de Control Biológico , Cucumis sativus/metabolismo , Ácidos Grasos/metabolismo , Germinación , Glucosa/análisis , Ácido Linoleico/metabolismo , Exudados de Plantas/metabolismo , Pythium/citología , Pythium/crecimiento & desarrollo , Plantones/microbiología , Semillas/microbiología , Suelo , Esporangios/fisiología , Factores de Tiempo
13.
Sex Plant Reprod ; 24(4): 283-96, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21644002

RESUMEN

Control of female parthenogenetic apomixis and androsporogenesis of Douglas-fir embryonal initials was studied using an experimental culture system in which changes in growth condition can mediate changes in cell identity and outcomes. This culture system constitutes an artificial sporangium in which myriad culture conditions can be simulated and should be applicable for research on a variety of gymnosperms. In this study, embryonal initials from developing seeds from two Douglas-fir trees were rescued and became reprogrammed for female parthenogenetic apomixis (fPA) and parthenogenetic androsporogenesis (mPA). Female PA was initiated by endomitosis forming a binucleate cell with a diploid egg-equivalent and an apoptotic ventral canal nucleus in an archegonial tube. Egg-equivalent nuclei formed cells (parthenotes) that were discharged into an aqueous culture medium. Parthenotes developed axial tiers atypical of early embryogenesis in seeds. Earlier in the year, androsporangial tubes were parthenogenetically differentiated and released monads, dyads, triads, and tetrads into the culture medium. Spores showed chromosomal aberrations. PA demonstrated a temporal separation in gender expression (dichogamy). Embryonal initials brought forward and by-passed the long juvenile phases normally needed for cells to develop into trees and express reproductive maturity. Expressions of fPA and mPA indicated that the specialized culture flasks served as an artificial sporangium (AS). Awareness is raised for the value of an AS for research in gymnosperm life cycles and as a teaching and research laboratory.


Asunto(s)
Apomixis , Partenogénesis , Pseudotsuga/fisiología , Esporangios/fisiología , Árboles/fisiología , Pseudotsuga/embriología , Pseudotsuga/genética , Esporangios/embriología , Esporangios/genética , Esporas/genética , Esporas/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos , Árboles/embriología , Árboles/genética
14.
Phytopathology ; 101(2): 223-30, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20879844

RESUMEN

Wood-based mulches are used in avocado production and are being tested on Fraser fir for reduction of Phytophthora root rot, caused by Phytophthora cinnamomi. Research with avocado has suggested a role of microbial cellulase enzymes in pathogen suppression through effects on the cellulosic cell walls of Phytophthora. This work was conducted to determine whether cellulase activity could account for disease suppression in mulch systems. A standard curve was developed to correlate cellulase activity in mulches with concentrations of a cellulase product. Based on this curve, cellulase activity in mulch samples was equivalent to a cellulase enzyme concentration of 25 U ml(-1) or greater of product. Sustained exposure of P. cinnamomi to cellulase at 10 to 50 U ml(-1) significantly reduced sporangia production, but biomass was only reduced with concentrations over 100 U ml(-1). In a lupine bioassay, cellulase was applied to infested soil at 100 or 1,000 U ml(-1) with three timings. Cellulase activity diminished by 47% between 1 and 15 days after application. Cellulase applied at 100 U ml(-1) 2 weeks before planting yielded activity of 20.08 µmol glucose equivalents per gram of soil water (GE g(-1) aq) at planting, a level equivalent to mulch samples. Cellulase activity at planting ranged from 3.35 to 48.67 µmol GE g(-1) aq, but no treatment significantly affected disease progress. Based on in vitro assays, cellulase activity in mulch was sufficient to impair sporangia production of P. cinnamomi, but not always sufficient to impact vegetative biomass.


Asunto(s)
Celulasa/metabolismo , Phytophthora/crecimiento & desarrollo , Phytophthora/fisiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Esporangios/fisiología , Biomasa , Pared Celular/metabolismo , Celulasa/farmacología , Celulosa/metabolismo , Estabilidad de Enzimas , Persea/microbiología , Phytophthora/patogenicidad , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Factores de Tiempo , Virulencia
15.
Mycologia ; 103(4): 775-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21471293

RESUMEN

Studies were made about resting spores of Synchytrium solstitiale, a chytrid that causes false rust disease of yellow starthistle (YST). During evaluation of this fungus for biological control of YST, a protocol for resting spore germination was developed. Details of resting spore germination and study of long-term survival of the fungus were documented. Resting spores from dried leaves germinated after incubating them on water agar at least 7 d at 10-15 C. Resting spores were viable after storage in air-dried leaves more than 2 y at room temperature, suggesting they have a role in off-season and long-term survival of the fungus. Each resting spore produced a single sorus that contained a single sporangium, which on germination released zoospores through a pore. YST inoculated with germinated resting spores developed symptoms typical of false rust disease. All spore forms of S. solstitiale have been found to be functional, and the life cycle of S. solstitiale has been completed under controlled laboratory and greenhouse conditions. Resting spore galls differ from sporangial galls both morphologically and biologically, and in comparison, each sporangial gall cleaves into several sori and each sorus produces 5-25 sporangia that rupture during release of zoospores. For this reason S. solstitiale should be reclassified as diheterogallic sensu Karling (Am J Bot 42:540-545). Because resting spores function as prosori and produce an external sorus, S. solstitiale is best placed in into the subgenus Exosynchytrium.


Asunto(s)
Quitridiomicetos/clasificación , Quitridiomicetos/fisiología , Centaurea/microbiología , Viabilidad Microbiana , Enfermedades de las Plantas/microbiología , Esporangios/fisiología , Esporas Fúngicas/fisiología
16.
J Integr Plant Biol ; 53(1): 25-34, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21205171

RESUMEN

In mid-May 2008 a serious green tide caused mainly by floating Ulva prolifera (Müller) J. Agardh (Chlorophyta, Ulvales) thalli struck the coastal area of Qingdao, China. To understand the present physiological conditions of the floating alga, in this work both laboratory and field investigations were conducted on the floating U. prolifera thalli in comparison with the attached U. prolifera thalli collected from the area. The floating thalli of three distinctively different colors and attached thalli at three different stages of sporangium formation process were characterized under a microscope, while their photosynthetic parameters were determined with chlorophyll fluorescence technology. On the other hand, the sporangium formation status of the floating U. prolifera thalli was surveyed both in the laboratory and in the field. Comparisons showed that both of the paired morphological characteristics and the paired physiological parameters of the floating and attached U. prolifera thalli were consistent. Furthermore, some spores were confirmed in the field and some motile particles were found within the floating thalli. These results suggest that the floating U. prolifera thalli with different colors could be at different stages of sporangium formation. However, our results also showed that the floating alga thalli have only a limited reproductive potential. This might limit the duration and the further geographic expansion of the green algal bloom.


Asunto(s)
Clorofila/metabolismo , Eutrofización , Fotosíntesis , Esporangios/fisiología , Ulva/metabolismo , Esporas/fisiología , Ulva/citología
17.
Fungal Biol ; 125(6): 477-484, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34024595

RESUMEN

Analysis of soil samples using High Throughput Sequencing (HTS) frequently detects more Phytophthora species compared with traditional soil baiting methods. This study investigated whether differences between species in the timing and abundance of sporangial production and zoospore release could be a reason for the lower number of species isolated by baiting. Stems of Eucalyptus marginata were inoculated with ten Phytophthora species (P. nicotianae, P. multivora, P. pseudocryptogea, P. cinnamomi, P. thermophila, P. arenaria, P. heveae, P. constricta, P. gondwanensis and P. versiformis), and lesioned sections for each species were baited separately in water. There were significant differences between species in timing of sporangia production and zoospore release. P. nicotianae, P. pseudocryptogea, P. multivora and P. thermophila released zoospores within 8-12 h and could be isolated from lesioned baits within 1-2 days. In contrast, P. constricta did not produce zoospores for over 48 h and was only isolated 5-7 days after baiting. P. heveae and P. versiformis did not produce zoospores and were not recovered from the baits. When species were paired in the same baiting tub, those that produced zoospores in the shortest time were isolated most frequently, while species slow to produce zoospores, or which produced them in lower numbers, were isolated from few baits or not at all. Thus, species differences in the timing of sporangia production and zoospore release may contribute to the ease of isolation of some Phytophthora species when they are present together with other Phytophthora species in an environmental sample.


Asunto(s)
Phytophthora , Esporangios , Monitoreo del Ambiente/métodos , Phytophthora/fisiología , Esporangios/fisiología , Factores de Tiempo
18.
Sci Rep ; 10(1): 8279, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427928

RESUMEN

Macrocystis pyrifera and Lessonia spicata are economically and ecologically relevant brown seaweeds that recently have been classified as members of two separated families within Laminariales (kelps). Here we describe for the first time the Macrocystis pyrifera x Lessonia spicata hybridization in the wild (Chiloe Island, Southeastern Pacific), where populations of the two parents exist sympatrically. Externally, this hybrid exhibited typical features of its parents M. pyrifera (cylindrical and flexible distal stipes, serrate frond margins and presence of sporophylls) and L. spicata (rigid and flat main stipe and first bifurcation), as well as intermediate features between them (thick unfused haptera in the holdfast). Histological sections revealed the prevalence of mucilage ducts within stipes and fronds (absent in Lessonia) and fully developed unilocular sporangia in the sporophylls. Molecular analyses confirmed the presence of the two parental genotypes for ITS1 nrDNA and the M. pyrifera genotype for two predominantly maternally inherited cytoplasmic markers (COI and rbcLS spacer) in the tissue of the hybrid. A metabolome-wide approach revealed that this hybrid is more chemically reminiscent to M. pyrifera. Nevertheless, several hits were identified as Lessonia exclusive or more remarkably, not present in any of the parent. Meiospores developed into apparently fertile gametophytes, which gave rise to F1 sporophytes that reached several millimeters before suddenly dying. In-vitro reciprocal crossing of Mar Brava gametophytes from both species revealed that although it is rare, interfamilial hybridization between the two species is possible but mostly overcome by pseudogamy of female gametophytes.


Asunto(s)
Técnicas de Genotipaje/métodos , Laminaria/fisiología , Macrocystis/fisiología , Metabolómica/métodos , ADN de Algas/genética , Genotipo , Hibridación Genética , Fitomejoramiento , Esporangios/fisiología , Simpatría
19.
Soft Robot ; 5(6): 685-694, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30040042

RESUMEN

Continued technological progress in robotic systems has led to more applications where robots and humans operate in close proximity and even physical contact in some cases. Soft robots, which are made of highly compliant and deformable materials, provide inherent safety features unlike conventional robots that are made of stiff and rigid components. Soft robotics is a rapidly developing field exploiting biomimetic design principles, novel sensor and actuation concepts, and advanced manufacturing techniques. In this study, we propose novel 3D printable soft vacuum actuators that are inspired by the sporangium of fern trees. These actuators that are directly manufactured using commercial and affordable fused deposition modeling 3D printers offer many advantages such as high actuation speed (5.54 Hz), long lifetime (123,000 cycles), large payload to weight ratio (∼26), and significant output forces (∼16 N). The behavior of these actuators is accurately predicted, and their performance is optimized using finite element modeling. Furthermore, diverse robotic applications such as locomotion robots (a walking robot moving with an average forward speed of vf = 3.54 cm/s, and a hopping robot called Gongaroo hopping with an average speed of vf = 3.75 cm/s), grippers, and artificial muscles have been established and activated using the new soft actuation concept. Finally, to demonstrate the modularity of the proposed actuation concept, soft actuators with multiple degrees of freedom and variable length are established using a series of 3D printable vacuum hinges.


Asunto(s)
Órganos Artificiales , Materiales Biomiméticos/química , Elastómeros/química , Impresión Tridimensional/instrumentación , Robótica/métodos , Materiales Inteligentes/química , Helechos/anatomía & histología , Helechos/fisiología , Análisis de Elementos Finitos , Humanos , Movimiento/fisiología , Músculo Esquelético/fisiología , Robótica/instrumentación , Esporangios/anatomía & histología , Esporangios/fisiología , Vacio
20.
J R Soc Interface ; 13(114): 20150930, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26763327

RESUMEN

Leptosporangiate ferns have evolved an ingenious cavitation catapult to disperse their spores. The mechanism relies almost entirely on the annulus, a row of 12-25 cells, which successively: (i) stores energy by evaporation of the cells' content, (ii) triggers the catapult by internal cavitation, and (iii) controls the time scales of energy release to ensure efficient spore ejection. The confluence of these three biomechanical functions within the confines of a single structure suggests a level of sophistication that goes beyond most man-made devices where specific structures or parts rarely serve more than one function. Here, we study in detail the three phases of spore ejection in the sporangia of the fern Polypodium aureum. For each of these phases, we have written the governing equations and measured the key parameters. For the opening of the sporangium, we show that the structural design of the annulus is particularly well suited to inducing bending deformations in response to osmotic volume changes. Moreover, the measured parameters for the osmoelastic design lead to a near-optimal speed of spore ejection (approx. 10 m s(-1)). Our analysis of the trigger mechanism by cavitation points to a critical cavitation pressure of approximately -100 ± 14 bar, a value that matches the most negative pressures recorded in the xylem of plants. Finally, using high-speed imaging, we elucidated the physics leading to the sharp separation of time scales (30 versus 5000 µs) in the closing dynamics. Our results highlight the importance of the precise tuning of the parameters without which the function of the leptosporangium as a catapult would be severely compromised.


Asunto(s)
Polypodium/anatomía & histología , Polypodium/fisiología , Esporangios/anatomía & histología , Esporangios/fisiología , Esporas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA