Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.586
Filtrar
1.
Cell ; 182(4): 1066-1066.e1, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32822569

RESUMEN

Fatty acid binding proteins (FABPs) serve as intracellular chaperones for fatty acids and other hydrophobic ligands inside cells. Recent studies have demonstrated new functions of individual members of the FABP family. This Snapshot describes the overall functions of FABPs in health and disease and highlights emerging roles of adipose FABP (A-FABP) and epidermal FABP (E-FABP) in the fields of obesity, chronic inflammation, and cancer development. To view this SnapShot, open or download the PDF.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Modelos Biológicos , Adipocitos/citología , Adipocitos/metabolismo , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Obesidad/metabolismo , Obesidad/patología , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Transducción de Señal , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patología , Esterol Esterasa/metabolismo
2.
Hum Mol Genet ; 32(13): 2219-2228, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37017334

RESUMEN

Cachexia occurrence and development are associated with loss of white adipose tissues, which may be involved with cancer-derived exosomes. This study attempted to characterize the functional mechanisms of breast cancer (BC) cell-derived exosome-loaded microRNA (miR)-155 in cancer cachexia-related fat loss. Exosomes were incubated with preadipocytes and cellular lipid droplet accumulation was observed using Oil Red O staining. Western blotting evaluated the cellular levels of lipogenesis marker peroxisome proliferator activated receptor gamma (PPARγ) and adiponectin, C1Q and collagen domain containing (AdipoQ). Differentiated adipocytes were incubated with exosomes, and phosphate hormone sensitive lipase (P-HSL), adipose triglyceride lipase (ATGL) and glycerol were detected in adipocytes, in addition to uncoupling protein 1 (UCP1) and leptin levels. A mouse model of cancer cachexia was established where cancer exosomes were injected intravenously. The changes in body weight and tumor-free body weights were recorded and serum glycerol levels and lipid accumulation in adipose tissues were determined. Also, the relationship between miR-155 and UBQLN1 was predicted and verified. BC exosome treatment reduced PPARγ and AdipoQ protein levels, promoted the levels of P-HSL and ATGL proteins, facilitated glycerol release, increased UCP1 expression and lowered leptin expression in adipocytes. Exosomal miR-155 inhibited lipogenesis in preadipocytes and boosted the browning of white adipose tissues. miR-155 downregulation alleviated cancer exosome-induced browning of white adipose tissues and fat loss. Mechanistically, miR-155 targeted UBQLN1, and UBQLN1 upregulation reversed the impacts of cancer exosomes. miR-155 loaded by BC cell-derived exosomes significantly affects white adipose browning and inhibition of cancer-derived exosomes.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , Ratones , Animales , Leptina/metabolismo , Caquexia/genética , Caquexia/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Exosomas/genética , Exosomas/metabolismo , Glicerol/metabolismo , Adipocitos/metabolismo , Esterol Esterasa/metabolismo , Neoplasias/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
J Proteome Res ; 23(4): 1506-1518, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422518

RESUMEN

The metabolic contribution of the small intestine (SI) is still unclear despite recent studies investigating the involvement of single cells in regional differences. Using untargeted proteomics, we identified regional characteristics of the three intestinal tracts of C57BL/6J mice and found that proteins abundant in the mouse ileum correlated with the high ileal expression of the corresponding genes in humans. In the SI of C57BL/6J mice, we also detected an increasing abundance of lysosomal acid lipase (LAL), which is responsible for degrading triacylglycerols and cholesteryl esters within the lysosome. LAL deficiency in patients and mice leads to lipid accumulation, gastrointestinal disturbances, and malabsorption. We previously demonstrated that macrophages massively infiltrated the SI of Lal-deficient (KO) mice, especially in the duodenum. Using untargeted proteomics (ProteomeXchange repository, data identifier PXD048378), we revealed a general inflammatory response and a common lipid-associated macrophage phenotype in all three intestinal segments of Lal KO mice, accompanied by a higher expression of GPNMB and concentrations of circulating sTREM2. However, only duodenal macrophages activated a metabolic switch from lipids to other pathways, which were downregulated in the jejunum and ileum of Lal KO mice. Our results provide new insights into the process of absorption in control mice and possible novel markers of LAL-D and/or systemic inflammation in LAL-D.


Asunto(s)
Proteoma , Esterol Esterasa , Animales , Ratones , Ésteres del Colesterol/metabolismo , Yeyuno , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Proteoma/genética , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Humanos
4.
J Neurochem ; 168(5): 781-800, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38317494

RESUMEN

Hormone-sensitive lipase (HSL) is active throughout the brain and its genetic ablation impacts brain function. Its activity in the brain was proposed to regulate bioactive lipid availability, namely eicosanoids that are inflammatory mediators and regulate cerebral blood flow (CBF). We aimed at testing whether HSL deletion increases susceptibility to neuroinflammation and impaired brain perfusion upon diet-induced obesity. HSL-/-, HSL+/-, and HSL+/+ mice of either sex were fed high-fat diet (HFD) or control diet for 8 weeks, and then assessed in behavior tests (object recognition, open field, and elevated plus maze), metabolic tests (insulin and glucose tolerance tests and indirect calorimetry in metabolic cages), and CBF determination by arterial spin labeling (ASL) magnetic resonance imaging (MRI). Immunofluorescence microscopy was used to determine coverage of blood vessels, and morphology of astrocytes and microglia in brain slices. HSL deletion reduced CBF, most prominently in cortex and hippocampus, while HFD feeding only lowered CBF in the hippocampus of wild-type mice. CBF was positively correlated with lectin-stained vessel density. HSL deletion did not exacerbate HFD-induced microgliosis in the hippocampus and hypothalamus. HSL-/- mice showed preserved memory performance when compared to wild-type mice, and HSL deletion did not significantly aggravate HFD-induced memory impairment in object recognition tests. In contrast, HSL deletion conferred protection against HFD-induced obesity, glucose intolerance, and insulin resistance. Altogether, this study points to distinct roles of HSL in periphery and brain during diet-induced obesity. While HSL-/- mice were protected against metabolic syndrome development, HSL deletion reduced brain perfusion without leading to aggravated HFD-induced neuroinflammation and memory dysfunction.


Asunto(s)
Circulación Cerebrovascular , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad , Animales , Obesidad/genética , Ratones , Dieta Alta en Grasa/efectos adversos , Circulación Cerebrovascular/fisiología , Masculino , Femenino , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Memoria/fisiología , Eliminación de Gen , Trastornos de la Memoria/etiología , Trastornos de la Memoria/genética , Encéfalo/patología , Encéfalo/metabolismo
5.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664801

RESUMEN

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Asunto(s)
Caveolina 1 , Dieta Alta en Grasa , Células Endoteliales , Endotelio Vascular , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III , Vasodilatación , Animales , Masculino , Ratones , Aorta/enzimología , Aorta/fisiopatología , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Caveolina 1/metabolismo , Caveolina 1/deficiencia , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/fisiopatología , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/efectos de los fármacos , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/enzimología , Obesidad/fisiopatología , Obesidad/metabolismo , Transducción de Señal , Esterol Esterasa/metabolismo , Esterol Esterasa/genética , Ubiquitinación , Vasodilatación/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372146

RESUMEN

Branched esters of palmitic acid and hydroxy stearic acid are antiinflammatory and antidiabetic lipokines that belong to a family of fatty acid (FA) esters of hydroxy fatty acids (HFAs) called FAHFAs. FAHFAs themselves belong to oligomeric FA esters, known as estolides. Glycerol-bound FAHFAs in triacylglycerols (TAGs), named TAG estolides, serve as metabolite reservoir of FAHFAs mobilized by lipases upon demand. Here, we characterized the involvement of two major metabolic lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in TAG estolide and FAHFA degradation. We synthesized a library of 20 TAG estolide isomers with FAHFAs varying in branching position, chain length, saturation grade, and position on the glycerol backbone and developed an in silico mass spectra library of all predicted catabolic intermediates. We found that ATGL alone or coactivated by comparative gene identification-58 efficiently liberated FAHFAs from TAG estolides with a preference for more compact substrates where the estolide branching point is located near the glycerol ester bond. ATGL was further involved in transesterification and remodeling reactions leading to the formation of TAG estolides with alternative acyl compositions. HSL represented a much more potent estolide bond hydrolase for both TAG estolides and free FAHFAs. FAHFA and TAG estolide accumulation in white adipose tissue of mice lacking HSL argued for a functional role of HSL in estolide catabolism in vivo. Our data show that ATGL and HSL participate in the metabolism of estolides and TAG estolides in distinct manners and are likely to affect the lipokine function of FAHFAs.


Asunto(s)
Lipasa/metabolismo , Esterol Esterasa/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ésteres/química , Ácidos Grasos/metabolismo , Femenino , Células HEK293 , Humanos , Lipólisis/fisiología , Metabolismo/fisiología , Ratones , Ratones Noqueados , Ácido Palmítico/metabolismo , Ácidos Esteáricos/metabolismo , Triglicéridos/metabolismo
7.
J Lipid Res ; 64(1): 100305, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273647

RESUMEN

Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice. Furthermore, we were interested in how impaired PPARγ signaling affects the development of inflammation in epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT) of Hsl knockout mice and if DAG and ceramide accumulation contribute to adipose tissue inflammation and ER stress. Ultrastructural analysis showed a markedly dilated ER in both eWAT and iWAT upon loss of HSL. In addition, Hsl knockout mice exhibited macrophage infiltration and increased F4/80 mRNA expression, a marker of macrophage activation, in eWAT, but not in iWAT. We show that treatment with rosiglitazone, a PPARγ agonist, attenuated macrophage infiltration and ameliorated inflammation of eWAT, but expression of ER stress markers remained unchanged, as did DAG and ceramide levels in eWAT. Taken together, we show that HSL loss promoted ER stress in both eWAT and iWAT of Hsl knockout mice, but inflammation and macrophage infiltration occurred mainly in eWAT. Also, PPARγ activation reversed inflammation but not ER stress and DAG accumulation. These data indicate that neither reduction of DAG levels nor ER stress contribute to the reversal of eWAT inflammation in Hsl knockout mice.


Asunto(s)
PPAR gamma , Esterol Esterasa , Ratones , Animales , Rosiglitazona/farmacología , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Lipólisis/fisiología , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo
8.
J Lipid Res ; 64(9): 100427, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595802

RESUMEN

Lysosomal acid lipase (LAL) is the sole lysosomal enzyme responsible for the degradation of cholesteryl esters and triacylglycerols at acidic pH. Impaired LAL activity leads to LAL deficiency (LAL-D), a severe and fatal disease characterized by ectopic lysosomal lipid accumulation. Reduced LAL activity also contributes to the development and progression of non-alcoholic fatty liver disease (NAFLD). To advance our understanding of LAL-related liver pathologies, we performed comprehensive proteomic profiling of livers from mice with systemic genetic loss of LAL (Lal-/-) and from mice with hepatocyte-specific LAL-D (hepLal-/-). Lal-/- mice exhibited drastic proteome alterations, including dysregulation of multiple proteins related to metabolism, inflammation, liver fibrosis, and cancer. Global loss of LAL activity impaired both acidic and neutral lipase activities and resulted in hepatic lipid accumulation, indicating a complete metabolic shift in Lal-/- livers. Hepatic inflammation and immune cell infiltration were evident, with numerous upregulated inflammation-related gene ontology biological process terms. In contrast, both young and mature hepLal-/- mice displayed only minor changes in the liver proteome, suggesting that loss of LAL solely in hepatocytes does not phenocopy metabolic alterations observed in mice globally lacking LAL. These findings provide valuable insights into the mechanisms underlying liver dysfunction in LAL-D and may help in understanding why decreased LAL activity contributes to NAFLD. Our study highlights the importance of LAL in maintaining liver homeostasis and demonstrates the drastic consequences of its global deficiency on the liver proteome and liver function.


Asunto(s)
Neoplasias , Enfermedad del Hígado Graso no Alcohólico , Enfermedad de Wolman , Ratones , Animales , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica , Hígado/metabolismo , Enfermedad de Wolman/genética , Enfermedad de Wolman/metabolismo , Enfermedad de Wolman/patología , Cirrosis Hepática/genética , Triglicéridos/metabolismo , Inflamación/metabolismo , Neoplasias/metabolismo
9.
Immunity ; 41(1): 1-3, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25035944

RESUMEN

Memory T cells display a distinct metabolic profile compared to effector T cells. In this issue of Immunity, O'Sullivan et al. (2014) report that memory T cells activate a "futile cycle" of de novo fatty-acid synthesis and concurrent fatty-acid oxidation to generate ATP for cell survival.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Ácidos Grasos/metabolismo , Memoria Inmunológica/inmunología , Lipólisis/inmunología , Esterol Esterasa/metabolismo , Animales
10.
Immunity ; 41(1): 75-88, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25001241

RESUMEN

Generation of CD8(+) memory T cells requires metabolic reprogramming that is characterized by enhanced mitochondrial fatty-acid oxidation (FAO). However, where the fatty acids (FA) that fuel this process come from remains unclear. While CD8(+) memory T cells engage FAO to a greater extent, we found that they acquired substantially fewer long-chain FA from their external environment than CD8(+) effector T (Teff) cells. Rather than using extracellular FA directly, memory T cells used extracellular glucose to support FAO and oxidative phosphorylation (OXPHOS), suggesting that lipids must be synthesized to generate the substrates needed for FAO. We have demonstrated that memory T cells rely on cell intrinsic expression of the lysosomal hydrolase LAL (lysosomal acid lipase) to mobilize FA for FAO and memory T cell development. Our observations link LAL to metabolic reprogramming in lymphocytes and show that cell intrinsic lipolysis is deterministic for memory T cell fate.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Ácidos Grasos/metabolismo , Memoria Inmunológica/inmunología , Lipólisis/inmunología , Esterol Esterasa/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/genética , Ácidos Grasos/biosíntesis , Glucosa/metabolismo , Interleucina-15/inmunología , Interleucina-2/inmunología , Lipólisis/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Oxígeno/metabolismo , Proteínas Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Esterol Esterasa/biosíntesis
11.
Br J Nutr ; 130(4): 588-603, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-36408747

RESUMEN

Hormone-sensitive lipase (HSL) is one of the rate-determining enzymes in the hydrolysis of TAG, playing a crucial role in lipid metabolism. However, the role of HSL-mediated lipolysis in systemic nutrient homoeostasis has not been intensively understood. Therefore, we used CRISPR/Cas9 technique and Hsl inhibitor (HSL-IN-1) to establish hsla-deficient (hsla-/-) and Hsl-inhibited zebrafish models, respectively. As a result, the hsla-/- zebrafish showed retarded growth and reduced oxygen consumption rate, accompanied with higher mRNA expression of the genes related to inflammation and apoptosis in liver and muscle. Furthermore, hsla-/- and HSL-IN-1-treated zebrafish both exhibited severe fat deposition, whereas their expressions of the genes related to lipolysis and fatty acid oxidation were markedly reduced. The TLC results also showed that the dysfunction of Hsl changed the whole-body lipid profile, including increasing the content of TG and decreasing the proportion of phospholipids. In addition, the systemic metabolic pattern was remodelled in hsla-/- and HSL-IN-1-treated zebrafish. The dysfunction of Hsl lowered the glycogen content in liver and muscle and enhanced the utilisation of glucose plus the expressions of glucose transporter and glycolysis genes. Besides, the whole-body protein content had significantly decreased in the hsla-/- and HSL-IN-1-treated zebrafish, accompanied with the lower activation of the mTOR pathway and enhanced protein and amino acid catabolism. Taken together, Hsl plays an essential role in energy homoeostasis, and its dysfunction would cause the disturbance of lipid catabolism but enhanced breakdown of glycogen and protein for energy compensation.


Asunto(s)
Esterol Esterasa , Pez Cebra , Animales , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Pez Cebra/metabolismo , Lipasa/metabolismo , Lipólisis/genética , Metabolismo de los Lípidos/genética , Lípidos , Nutrientes
12.
J Periodontal Res ; 58(1): 175-183, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494917

RESUMEN

BACKGROUND AND OBJECTIVE: Aggressive periodontitis (AgP) is characterized by general health and rapid destruction of periodontal tissue. The familial aggregation of this disease highlights the involvement of genetic factors in its pathogeny. We conducted a genome-wide association study (GWAS) to identify AgP-related genes in a Japanese population, and the lipid metabolism-related gene, lipase-a, lysosomal acid type (LIPA), was suggested as an AgP candidate gene. However, there is no report about the expression and function(s) of LIPA in periodontal tissue. Hence, we studied the involvement of how LIPA and its single-nucleotide polymorphism (SNP) rs143793106 in AgP by functional analyses of LIPA and its SNP in human periodontal ligament (HPDL) cells. MATERIALS AND METHODS: GWAS was performed using the genome database of Japanese AgP patients, and the GWAS result was confirmed using Sanger sequencing. We examined the mRNA expression level of LIPA and the protein expression level of the encoded protein lysosomal acid lipase (LAL) in periodontium-composing cells using conventional and real-time polymerase chain reaction (PCR) and western blotting, respectively. Lentiviral vectors expressing LIPA wild-type (LIPA WT) and LIPA SNP rs143793106 (LIPA mut) were transfected into HPDL cells. Western blotting was performed to confirm the transfection. LAL activity of transfected HPDL cells was determined using the lysosomal acid lipase activity assay. Transfected HPDL cells were cultured in mineralization medium. During the cytodifferentiation of transfected HPDL cells, mRNA expression of calcification-related genes, alkaline phosphatase (ALPase) activity and calcified nodule formation were assessed using real-time PCR, ALPase assay, and alizarin red staining, respectively. RESULTS: The GWAS study identified 11 AgP-related candidate genes, including LIPA SNP rs143793106. The minor allele frequency of LIPA SNP rs143793106 in AgP patients was higher than that in healthy subjects. LIPA mRNA and LAL protein were expressed in HPDL cells; furthermore, they upregulated the cytodifferentiation of HPDL cells. LAL activity was lower in LIPA SNP-transfected HPDL cells during cytodifferentiation than that in LIPA WT-transfected HPDL cells. In addition, ALPase activity, calcified nodule formation, and calcification-related gene expression levels were lower during cytodifferentiation in LIPA SNP-transfected HPDL cells than those in LIPA WT-transfected HPDL cells. CONCLUSION: LIPA, identified as an AgP-related gene in a Japanese population, is expressed in HPDL cells and is involved in regulating cytodifferentiation of HPDL cells. LIPA SNP rs143793106 suppressed cytodifferentiation of HPDL cells by decreasing LAL activity, thereby contributing to the development of AgP.


Asunto(s)
Periodontitis Agresiva , Humanos , Periodontitis Agresiva/genética , Periodontitis Agresiva/metabolismo , Ligamento Periodontal , Lipasa/genética , Lipasa/metabolismo , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Diferenciación Celular/genética , ARN Mensajero/metabolismo , Células Cultivadas
13.
Nature ; 550(7674): 119-123, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28953873

RESUMEN

Catecholamine-induced lipolysis, the first step in the generation of energy substrates by the hydrolysis of triglycerides, declines with age. The defect in the mobilization of free fatty acids in the elderly is accompanied by increased visceral adiposity, lower exercise capacity, failure to maintain core body temperature during cold stress, and reduced ability to survive starvation. Although catecholamine signalling in adipocytes is normal in the elderly, how lipolysis is impaired in ageing remains unknown. Here we show that adipose tissue macrophages regulate the age-related reduction in adipocyte lipolysis in mice by lowering the bioavailability of noradrenaline. Unexpectedly, unbiased whole-transcriptome analyses of adipose macrophages revealed that ageing upregulates genes that control catecholamine degradation in an NLRP3 inflammasome-dependent manner. Deletion of NLRP3 in ageing restored catecholamine-induced lipolysis by downregulating growth differentiation factor-3 (GDF3) and monoamine oxidase A (MAOA) that is known to degrade noradrenaline. Consistent with this, deletion of GDF3 in inflammasome-activated macrophages improved lipolysis by decreasing levels of MAOA and caspase-1. Furthermore, inhibition of MAOA reversed the age-related reduction in noradrenaline concentration in adipose tissue, and restored lipolysis with increased levels of the key lipolytic enzymes adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL). Our study reveals that targeting neuro-immunometabolic signalling between the sympathetic nervous system and macrophages may offer new approaches to mitigate chronic inflammation-induced metabolic impairment and functional decline.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Envejecimiento/metabolismo , Catecolaminas/metabolismo , Inflamasomas/metabolismo , Lipólisis , Macrófagos/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Caspasa 1/metabolismo , Catecolaminas/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Factor 3 de Diferenciación de Crecimiento/deficiencia , Factor 3 de Diferenciación de Crecimiento/genética , Factor 3 de Diferenciación de Crecimiento/metabolismo , Lipasa/metabolismo , Lipólisis/efectos de los fármacos , Lipólisis/genética , Ratones , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Norepinefrina/metabolismo , Esterol Esterasa/metabolismo
14.
J Dairy Sci ; 106(5): 3098-3108, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36935238

RESUMEN

Milk protein hydrolysates derived from 4 camel breeds (Pakistani, Saheli, Hozami, and Omani) were evaluated for in vitro inhibition of antidiabetic enzymatic markers (dipeptidyl peptidase IV and α-amylase) and antihypercholesterolemic enzymatic markers (pancreatic lipase and cholesterol esterase). Milk samples were subjected to in vitro simulated gastric (SGD) and gastrointestinal digestion (SGID) conditions. In comparison with intact milk proteins, the SGD-derived milk protein hydrolysates showed enhanced inhibition of α-amylase, dipeptidyl peptidase IV, pancreatic lipase, and cholesterol esterase as reflected by lower half-maximal inhibitory concentration values. Overall, milk protein hydrolysates derived from the milk of Hozami and Omani camel breeds displayed higher inhibition of different enzymatic markers compared with milk protein hydrolysates from Pakistani and Saheli breeds. In vitro SGD and SGID processes significantly increased the bioactive properties of milk from all camel breeds. Milk protein hydrolysates from different camel breeds showed significant variations for inhibition of antidiabetic and antihypercholesterolemic enzymatic markers, suggesting the importance of breed selection for production of bioactive peptides. However, further studies on identifying the peptides generated upon SGD and SGID of milk from different camel breeds are needed.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Hipoglucemiantes , Animales , Hipoglucemiantes/farmacología , Hidrolisados de Proteína/química , Camelus/metabolismo , Dipeptidil Peptidasa 4/química , Esterol Esterasa/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Proteínas de la Leche/metabolismo , Péptidos/farmacología , alfa-Amilasas/metabolismo , Lipasa/metabolismo , Digestión
15.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513282

RESUMEN

Pseudomonas sp. D01, capable of growing in tributyrin medium, was isolated from the gut microbiota of yellow mealworm. By using in silico analyses, we discovered a hypothesized esterase encoding gene in the D01 bacterium, and its encoded protein, EstD04, was classified as a bacterial hormone-sensitive lipase (bHSL) of the type IV lipase family. The study revealed that the recombinant EstD04-His(6x) protein exhibited esterase activity and broad substrate specificity, as it was capable of hydrolyzing p-nitrophenyl derivatives with different acyl chain lengths. By using the most favorable substrate p-nitrophenyl butyrate (C4), we defined the optimal temperature and pH value for EstD04 esterase activity as 40 °C and pH 8, respectively, with a catalytic efficiency (kcat/Km) of 6.17 × 103 mM-1 s-1 at 40 °C. EstD04 demonstrated high stability between pH 8 and 10, and thus, it might be capably used as an alkaline esterase in industrial applications. The addition of Mg2+ and NH4+, as well as DMSO, could stimulate EstD04 enzyme activity. Based on bioinformatic motif analyses and tertiary structural simulation, we determined EstD04 to be a typical bHSL protein with highly conserved motifs, including a triad catalytic center (Ser160, Glu253, and His283), two cap regions, hinge sites, and an oxyanion hole, which are important for the type IV enzyme activity. Moreover, the sequence analysis suggested that the two unique discrete cap regions of EstD04 may contribute to its alkali mesophilic nature, allowing EstD04 to exhibit extremely distinct physiological properties from its evolutionarily closest esterase.


Asunto(s)
Microbioma Gastrointestinal , Tenebrio , Animales , Esterasas/metabolismo , Tenebrio/metabolismo , Secuencia de Aminoácidos , Pseudomonas/metabolismo , Esterol Esterasa/metabolismo , Bacterias/metabolismo , Especificidad por Sustrato , Concentración de Iones de Hidrógeno , Clonación Molecular , Estabilidad de Enzimas
16.
J Lipid Res ; 63(5): 100195, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35300984

RESUMEN

Hormone-sensitive lipase (HSL) is mainly present in adipose tissue where it hydrolyzes diacylglycerol. Although expression of HSL has also been reported in the brain, its presence in different cellular compartments is uncertain, and its role in regulating brain lipid metabolism remains hitherto unexplored. We hypothesized that HSL might play a role in regulating the availability of bioactive lipids necessary for neuronal function and therefore investigated whether dampening HSL activity could lead to brain dysfunction. In mice, we found HSL protein and enzymatic activity throughout the brain, localized within neurons and enriched in synapses. HSL-null mice were then analyzed using a battery of behavioral tests. Relative to wild-type littermates, HSL-null mice showed impaired short-term and long-term memory, yet preserved exploratory behaviors. Molecular analysis of the cortex and hippocampus showed increased expression of genes involved in glucose utilization in the hippocampus, but not cortex, of HSL-null mice compared with controls. Furthermore, lipidomics analyses indicated an impact of HSL deletion on the profile of bioactive lipids, including a decrease in endocannabinoids and eicosanoids that are known to modulate neuronal activity, cerebral blood flow, and inflammation processes. Accordingly, mild increases in the expression of proinflammatory cytokines in HSL mice compared with littermates were suggestive of low-grade inflammation. We conclude that HSL has a homeostatic role in maintaining pools of lipids required for normal brain function. It remains to be tested, however, whether the recruitment of HSL for the synthesis of these lipids occurs during increased neuronal activity or whether HSL participates in neuroinflammatory responses.


Asunto(s)
Lípidos , Esterol Esterasa , Animales , Inflamación , Ratones , Ratones Noqueados , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Sinapsis/metabolismo
17.
J Lipid Res ; 63(5): 100194, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35283217

RESUMEN

Lipid droplets (LDs) are multifunctional organelles that regulate energy storage and cellular homeostasis. The first step of triacylglycerol hydrolysis in LDs is catalyzed by adipose triglyceride lipase (ATGL), deficiency of which results in lethal cardiac steatosis. Although hormone-sensitive lipase (HSL) functions as a diacylglycerol lipase in the heart, we hypothesized that activation of HSL might compensate for ATGL deficiency. To test this hypothesis, we crossed ATGL-KO (AKO) mice and cardiac-specific HSL-overexpressing mice (cHSL) to establish homozygous AKO mice and AKO mice with cardiac-specific HSL overexpression (AKO+cHSL). We found that cardiac triacylglycerol content was 160-fold higher in AKO relative to Wt mice, whereas that of AKO+cHSL mice was comparable to the latter. In addition, AKO cardiac tissues exhibited reduced mRNA expression of PPARα-regulated genes and upregulation of genes involved in inflammation, fibrosis, and cardiac stress. In contrast, AKO+cHSL cardiac tissues exhibited expression levels similar to those observed in Wt mice. AKO cardiac tissues also exhibited macrophage infiltration, apoptosis, interstitial fibrosis, impaired systolic function, and marked increases in ceramide and diacylglycerol contents, whereas no such pathological alterations were observed in AKO+cHSL tissues. Furthermore, electron microscopy revealed considerable LDs, damaged mitochondria, and disrupted intercalated discs in AKO cardiomyocytes, none of which were noted in AKO+cHSL cardiomyocytes. Importantly, the life span of AKO+cHSL mice was comparable to that of Wt mice. HSL overexpression normalizes lipotoxic cardiomyopathy in AKO mice and the findings highlight the applicability of cardiac HSL activation as a therapeutic strategy for ATGL deficiency-associated lipotoxic cardiomyopathies.


Asunto(s)
Cardiomiopatías , Esterol Esterasa , Animales , Cardiomiopatías/metabolismo , Fibrosis , Lipasa/genética , Lipasa/metabolismo , Lipólisis , Ratones , Miocitos Cardíacos/metabolismo , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Triglicéridos/metabolismo
18.
J Hepatol ; 76(3): 577-587, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774639

RESUMEN

BACKGROUND & AIMS: Children and adults with lysosomal acid lipase deficiency (LAL-D) experience cirrhosis and dyslipidemia from lysosomal accumulation of cholesteryl esters and triglycerides. Sebelipase alfa enzyme replacement therapy is indicated for individuals with LAL-D. We report final results from the phase III randomized ARISE study of sebelipase alfa in children aged ≥4 years and adults with LAL-D. METHODS: The study included a 20-week, double-blind, placebo-controlled period; a 130-week, open-label, extension period; and a 104-week, open-label, expanded treatment period. In the open-label periods, all patients received intravenous sebelipase alfa every other week. The primary outcome was alanine aminotransferase (ALT) level normalization; aspartate aminotransferase (AST) levels, lipid parameters, liver histology, liver and spleen volume and fat content, and safety were also assessed. RESULTS: Of 66 patients enrolled, 59 completed the study. Median (range) age at randomization was 13 (4.7-59) years. At the last open-label visit, ALT and AST levels had normalized in 47% and 66% of patients, respectively. Patients who switched from placebo to sebelipase alfa experienced sustained improvements in ALT and AST during the open-label periods that mirrored those observed in the sebelipase alfa group during the double-blind period. Median (IQR) percent changes in lipid levels included a 25% (39%, 6.5%) reduction in low-density lipoprotein cholesterol and a 27% (19%, 44%) increase in high-density lipoprotein cholesterol. Most adverse events during the open-label periods were mild to moderate in severity; 13 patients had infusion-associated reactions (serious in 1 patient). Six patients (9%) developed anti-drug antibodies. CONCLUSIONS: Early and rapid improvements in markers of liver injury and lipid abnormalities with sebelipase alfa were sustained, with no progression of liver disease, for up to 5 years. CLINICAL TRIAL NUMBER: NCT01757184; EudraCT Number: 2011-002750-31 LAY SUMMARY: Sebelipase alfa is used to treat lysosomal acid lipase deficiency (LAL-D), a rare, inherited disease of lipid metabolism. We report the final results of the phase III ARISE clinical study, which show that replacement of the defective LAL enzyme with sebelipase alfa for up to 5 years allows adults and children 4 years of age and older to maintain their initial improvements in liver and cholesterol parameters over the long term, without worsening of liver disease.


Asunto(s)
Esterol Esterasa/análisis , Enfermedad de Wolman/sangre , Adolescente , Adulto , Biomarcadores/análisis , Biomarcadores/sangre , Biomarcadores/metabolismo , Niño , Preescolar , LDL-Colesterol/efectos de los fármacos , LDL-Colesterol/metabolismo , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esterol Esterasa/sangre , Esterol Esterasa/metabolismo , Enfermedad de Wolman/complicaciones , Enfermedad de Wolman
19.
Diabetes Metab Res Rev ; 38(3): e3504, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34655148

RESUMEN

AIMS: Hormone sensitive lipase (HSL), encoded by the LIPE gene, is involved in lipolysis. Based on prior animal and human studies, LIPE was analysed as a candidate gene for the development of type 2 diabetes (T2D) in a community-based sample of American Indians. MATERIALS AND METHODS: Whole-exome sequence data from 6782 participants with longitudinal clinical measures were used to identify variation in LIPE. RESULTS: Amongst the 16 missense variants identified, an Arg611Cys variant (rs34052647; Cys-allele frequency = 0.087) significantly associated with T2D (OR [95% CI] = 1.38 [1.17-1.64], p = 0.0002, adjusted for age, sex, birth year, and the first five genetic principal components) and an earlier onset age of T2D (HR = 1.22 [1.09-1.36], p = 0.0005). This variant was further analysed for quantitative traits related to T2D. Amongst non-diabetic American Indians, those with the T2D risk Cys-allele had increased insulin levels during an oral glucose tolerance test (0.07 SD per Cys-allele, p = 0.04) and a mixed meal test (0.08 log10 µU/ml per Cys-allele, p = 0.003), and had increased lipid oxidation rates post-absorptively and during insulin infusion (0.07 mg [kg estimated metabolic body size {EMBS}]-1  min-1 per Cys-allele for both, p = 0.01 and 0.009, respectively), compared to individuals with the non-risk Arg-allele. In vitro functional studies showed that cells expressing the Cys-allele had a 17.2% decrease in lipolysis under isoproterenol stimulation (p = 0.03) and a 21.3% decrease in lipase enzyme activity measured by using p-nitrophenyl butyrate as a substrate (p = 0.04) compared to the Arg-allele. CONCLUSION: The Arg611Cys variant causes a modest impairment in lipolysis, thereby affecting glucose homoeostasis and risk of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Esterol Esterasa , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Lipólisis/genética , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Indio Americano o Nativo de Alaska
20.
Circ Res ; 127(4): 534-549, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32316875

RESUMEN

RATIONALE: SNX10 (sorting nexin 10) has been reported to play a critical role in regulating macrophage function and lipid metabolism. OBJECTIVE: To investigate the precise role of SNX10 in atherosclerotic diseases and the underlying mechanisms. METHODS AND RESULTS: SNX10 expression was compared between human healthy vessels and carotid atherosclerotic plaques. Myeloid cell-specific SNX10 knockdown mice were crossed onto the APOE-/- (apolipoprotein E) background and atherogenesis (high-cholesterol diet-induced) was monitored for 16 weeks. We found that SNX10 expression was increased in atherosclerotic lesions of aortic specimens from humans and APOE-/- mice. Myeloid cell-specific SNX10 deficiency (Δ knockout [KO]) attenuated atherosclerosis progression in APOE-/- mice. The population of anti-inflammatory monocytes/macrophages was increased in the peripheral blood and atherosclerotic lesions of ΔKO mice. In vitro experiments showed that SNX10 deficiency-inhibited foam cell formation through interrupting the internalization of CD36, which requires the interaction of SNX10 and Lyn-AKT (protein kinase B). The reduced Lyn-AKT activation by SNX10 deficiency promoted the nuclear translocation of TFEB (transcription factor EB), thereby enhanced lysosomal biogenesis and LAL (lysosomal acid lipase) activity, resulting in an increase of free fatty acids to fuel mitochondrial fatty acid oxidation. This further promoted the reprogramming of macrophages and shifted toward the anti-inflammatory phenotype. CONCLUSIONS: Our data demonstrate for the first time that SNX10 plays a crucial role in diet-induced atherogenesis via the previously unknown link between the Lyn-Akt-TFEB signaling pathway and macrophage reprogramming, suggest that SNX10 may be a potentially promising therapeutic target for atherosclerosis treatment.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Reprogramación Celular/fisiología , Macrófagos/fisiología , Nexinas de Clasificación/fisiología , Animales , Apolipoproteínas E/genética , Aterosclerosis/sangre , Aterosclerosis/patología , Antígenos CD36/metabolismo , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Ácidos Grasos no Esterificados/metabolismo , Células Espumosas/citología , Humanos , Lisosomas/fisiología , Macrófagos/citología , Ratones , Mitocondrias/metabolismo , Monocitos/citología , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-akt/metabolismo , Nexinas de Clasificación/deficiencia , Nexinas de Clasificación/genética , Esterol Esterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA