Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.042
Filtrar
1.
Cell ; 169(6): 1029-1041.e16, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575667

RESUMEN

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Animales , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/instrumentación , Electrodos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Transcraneal de Corriente Directa/instrumentación
2.
Stereotact Funct Neurosurg ; 102(3): 137-140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461818

RESUMEN

INTRODUCTION: Infection after deep brain stimulation (DBS) implanted pulse generator (IPG) replacement is uncommon but when it occurs can cause significant clinical morbidity, often resulting in partial or complete DBS system removal. An antibiotic absorbable envelope developed for cardiac implantable electronic devices (IEDs), which releases minocycline and rifampicin for a minimum of 7 days, was shown in the WRAP-IT study to reduce cardiac IED infections for high-risk cardiac patients. We aimed to assess whether placing an IPG in the same antibiotic envelope at the time of IPG replacement reduced the IPG infection rate. METHODS: Following institutional ethics approval (UnitingCare HREC), patients scheduled for IPG change due to impending battery depletion were prospectively randomised to receive IPG replacement with or without an antibiotic envelope. Patients with a past history of DBS system infection were excluded. Patients underwent surgery with standard aseptic neurosurgical technique [J Neurol Sci. 2017;383:135-41]. Subsequent infection requiring antibiotic therapy and/or IPG removal or revision was recorded. RESULTS: A total of 427 consecutive patients were randomised from 2018 to 2021 and followed for a minimum of 12 months. No patients were lost to follow-up. At the time of IPG replacement, 200 patients received antibiotic envelope (54 female, 146 male, mean age 72 years), and 227 did not (43 female, 184 male, mean age 71 years). The two groups were homogenous for risk factors of infection. The IPG replacement infection rate was 2.1% (9/427). There were six infections, which required antibiotic therapy and/or IPG removal, in the antibiotic envelope group (6/200) and three in the non-envelope group (3/227) (p = 0.66). CONCLUSION: This prospective randomised study did not find that an antibiotic envelope reduced the IPG infection rate in our 427 patients undergoing routine DBS IPG replacement. Further research to reduce IPG revisions and infections in a cost-effective manner is required.


Asunto(s)
Antibacterianos , Estimulación Encefálica Profunda , Infecciones Relacionadas con Prótesis , Humanos , Estimulación Encefálica Profunda/instrumentación , Masculino , Femenino , Antibacterianos/administración & dosificación , Anciano , Estudios Prospectivos , Persona de Mediana Edad , Infecciones Relacionadas con Prótesis/prevención & control , Estudios de Cohortes
3.
Stereotact Funct Neurosurg ; 102(3): 195-202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38537625

RESUMEN

INTRODUCTION: DBS efficacy depends on accuracy. CT-MRI fusion is established for both stereotactic registration and electrode placement verification. The desire to streamline DBS workflows, reduce operative time, and minimize patient transfers has increased interest in portable imaging modalities such as the Medtronic O-arm® and mobile CT. However, these remain expensive and bulky. 3D C-arm fluoroscopy (3DXT) units are a smaller and less costly alternative, albeit incompatible with traditional frame-based localization and without useful soft tissue resolution. We aimed to compare fusion of 3DXT and CT with pre-operative MRI to evaluate if 3DXT-MRI fusion alone is sufficient for accurate registration and reliable targeting verification. We further assess DBS targeting accuracy using a 3DXT workflow and compare radiation dosimetry between modalities. METHODS: Patients underwent robot-assisted DBS implantation using a workflow incorporating 3DXT which we describe. Two intra-operative 3DXT spins were performed for registration and accuracy verification followed by conventional CT post-operatively. Post-operative 3DXT and CT images were independently fused to the same pre-operative MRI sequence and co-ordinates generated for comparison. Registration accuracy was compared to 15 consecutive controls who underwent CT-based registration. Radial targeting accuracy was calculated and radiation dosimetry recorded. RESULTS: Data were obtained from 29 leads in 15 consecutive patients. 3DXT registration accuracy was significantly superior to CT with mean error 0.22 ± 0.03 mm (p < 0.0001). Mean Euclidean electrode tip position variation for CT to MRI versus 3DXT to MRI fusion was 0.62 ± 0.40 mm (range 0.0 mm-1.7 mm). In comparison, direct CT to 3DXT fusion showed electrode tip Euclidean variance of 0.23 ± 0.09 mm. Mean radial targeting accuracy assessed on 3DXT was 0.97 ± 0.54 mm versus 1.15 ± 0.55 mm on CT with differences insignificant (p = 0.30). Mean patient radiation doses were around 80% lower with 3DXT versus CT (p < 0.0001). DISCUSSION: Mobile 3D C-arm fluoroscopy can be safely incorporated into DBS workflows for both registration and lead verification. For registration, the limited field of view requires the use of frameless transient fiducials and is highly accurate. For lead position verification based on MRI co-registration, we estimate there is around a 0.4 mm discrepancy between lead position seen on 3DXT versus CT when corrected for brain shift. This is similar to that described in O-arm® or mobile CT series. For units where logistical or financial considerations preclude the acquisition of a cone beam CT or mobile CT scanner, our data support portable 3D C-arm fluoroscopy as an acceptable alternative with significantly lower radiation exposure.


Asunto(s)
Estimulación Encefálica Profunda , Imagenología Tridimensional , Imagen por Resonancia Magnética , Técnicas Estereotáxicas , Tomografía Computarizada por Rayos X , Humanos , Fluoroscopía/métodos , Estimulación Encefálica Profunda/métodos , Estimulación Encefálica Profunda/instrumentación , Tomografía Computarizada por Rayos X/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Electrodos Implantados , Persona de Mediana Edad , Anciano , Adulto
4.
Stereotact Funct Neurosurg ; 100(1): 8-13, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34488223

RESUMEN

INTRODUCTION: Deep brain stimulation (DBS) has become a well-established treatment modality for a variety of conditions over the last decades. Multiple surgeries are an essential part in the postoperative course of DBS patients if nonrechargeable implanted pulse generators (IPGs) are applied. So far, the rate of subclinical infections in this field is unknown. In this prospective cohort study, we used sonication to evaluate possible microbial colonization of IPGs from replacement surgery. METHODS: All consecutive patients undergoing IPG replacement between May 1, 2019 and November 15, 2020 were evaluated. The removed hardware was investigated using sonication to detect biofilm-associated bacteria. Demographic and clinical data were analyzed. RESULTS: A total of 71 patients with a mean (±SD) of 64.5 ± 15.3 years were evaluated. In 23 of these (i.e., 32.4%) patients, a positive sonication culture was found. In total, 25 microorganisms were detected. The most common isolated microorganisms were Cutibacterium acnes (formerly known as Propionibacterium acnes) (68%) and coagulase-negative Staphylococci (28%). Within the follow-up period (5.2 ± 4.3 months), none of the patients developed a clinical manifest infection. DISCUSSIONS/CONCLUSIONS: Bacterial colonization of IPGs without clinical signs of infection is common but does not lead to manifest infection. Further larger studies are warranted to clarify the impact of low-virulent pathogens in clinically asymptomatic patients.


Asunto(s)
Bacterias , Estimulación Encefálica Profunda , Electrodos Implantados , Contaminación de Equipos , Sonicación , Anciano , Infecciones Asintomáticas , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/microbiología , Biopelículas , Estimulación Encefálica Profunda/instrumentación , Remoción de Dispositivos , Electrodos Implantados/microbiología , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Reoperación
5.
Proc Natl Acad Sci U S A ; 116(48): 24326-24333, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712414

RESUMEN

To understand the function and dysfunction of neural circuits, it is necessary to understand the properties of the neurons participating in the behavior, the connectivity between these neurons, and the neuromodulatory status of the circuits at the time they are producing the behavior. Such knowledge of human neural circuits is difficult, at best, to obtain. Here, we study firing properties of human subthalamic neurons, using microelectrode recordings and microstimulation during awake surgery for Parkinson's disease. We demonstrate that low-amplitude, brief trains of microstimulation can lead to persistent changes in neuronal firing behavior including switching between firing rates, entering silent periods, or firing several bursts then entering a silent period. We suggest that these multistable states reflect properties of finite state machines and could have implications for the function of circuits involving the subthalamic nucleus. Furthermore, understanding these states could lead to therapeutic strategies aimed at regulating the transitions between states.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Neuronas/fisiología , Enfermedad de Parkinson/patología , Núcleo Subtalámico/patología , Adulto , Anciano , Estimulación Encefálica Profunda/instrumentación , Femenino , Humanos , Masculino , Microelectrodos , Persona de Mediana Edad , Enfermedad de Parkinson/terapia
6.
J Neurosci ; 40(30): 5833-5846, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32576623

RESUMEN

Several lines of inquiry have separately identified beta oscillations, synchrony, waveform shape, and phase-amplitude coupling as important but sometimes inconsistent factors in the pathophysiology of Parkinson's disease. What has so far been lacking is a means by which these neurophysiological parameters are interrelated and how they relate to clinical symptomatology. To clarify the relationship among oscillatory power, bursting, synchrony, and phase-amplitude coupling, we recorded local field potentials/electrocorticography from hand motor and premotor cortical area in human subjects with c (N = 10) and Parkinson's disease (N = 22) during deep brain stimulator implantation surgery (14 females, 18 males). We show that motor cortical high beta oscillations in Parkinson's disease demonstrate increased burst durations relative to essential tremor patients. Notably, increased corticocortical synchrony between primary motor and premotor cortices precedes motor high beta bursts, suggesting a possible causal relationship between corticocortical synchrony and localized increases in beta power. We further show that high beta bursts are associated with significant changes in waveform shape and that beta-encoded phase-amplitude coupling is more evident during periods of high beta bursting. These findings reveal a deeper structure to the pathologic changes identified in the neurophysiology of Parkinson's disease, suggesting mechanisms by which the treatment may be enhanced using targeted network synchrony disruption approaches.SIGNIFICANCE STATEMENT Understanding Parkinson's disease pathophysiology is crucial for optimizing symptom management. Present inconsistencies in the literature may be explained by temporal transients in neural signals driven by transient fluctuations in network synchrony. Synchrony may also act as a unifying phenomenon for the pathophysiological observations reported in Parkinson's disease. Here, simultaneous recordings from motor cortices show that increases in network beta synchrony anticipate episodes of beta bursting. We furthermore identify beta bursting as being associated with changes in waveform shape and increases in phase-amplitude coupling. Our results identify network synchrony as a driver of various pathophysiological observations reported in the literature and account for inconsistencies in the literature by virtue of the temporally variable nature of the phenomenon.


Asunto(s)
Ritmo beta/fisiología , Corteza Motora/fisiopatología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Adulto , Anciano , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Electrodos Implantados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico
7.
J Neurophysiol ; 125(1): 248-255, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296614

RESUMEN

Pathological synchronization of neurons is associated with symptoms of movement disorders, such as Parkinson's disease and essential tremor. High-frequency deep brain stimulation (DBS) suppresses symptoms, presumably through the desynchronization of neurons. Coordinated reset (CR) delivers trains of high-frequency stimuli to different regions in the brain through multiple electrodes and may have more persistent therapeutic effects than conventional DBS. As an alternative to CR, we present a closed-loop control setup that desynchronizes neurons in brain slices by inducing clusters using a single electrode. Our setup uses calcium fluorescence imaging to extract carbachol-induced neuronal oscillations in real time. To determine the appropriate stimulation waveform for inducing clusters in a population of neurons, we calculate the phase of the neuronal populations and then estimate the phase response curve (PRC) of those populations to electrical stimulation. The phase and PRC are then fed into a control algorithm called the input of maximal instantaneous efficiency (IMIE). By using IMIE, the synchrony across the slice is decreased by dividing the population of neurons into subpopulations without suppressing the oscillations locally. The desynchronization effect is persistent 10 s after stimulation is stopped. The IMIE control algorithm may be used as a novel closed-loop DBS approach to suppress the symptoms of Parkinson's disease and essential tremor by inducing clusters with a single electrode.NEW & NOTEWORTHY Here, we present a closed-loop controller to desynchronize neurons in brain slices by inducing clusters using a single electrode using calcium imaging feedback. Phase of neurons are estimated in real time, and from the phase response curve stimulation is applied to achieve target phase differences. This method is an alternative to coordinated reset and is a novel therapy that could be used to disrupt synchronous neuronal oscillations thought to be the mechanism underlying Parkinson's disease.


Asunto(s)
Encéfalo/fisiología , Estimulación Encefálica Profunda/métodos , Neuronas/fisiología , Algoritmos , Animales , Encéfalo/citología , Ondas Encefálicas , Calcio/metabolismo , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Estimulación Encefálica Profunda/instrumentación , Electrodos Implantados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Long-Evans
8.
Neurobiol Dis ; 147: 105163, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166698

RESUMEN

Deep brain stimulation (DBS) of the globus pallidus internus (GPi, entopeduncular nucleus, EPN, in rodents) has become important for the treatment of generalized dystonia, a severe and often intractable movement disorder. It is unclear if lower frequencies of GPi-DBS or stimulations of the subthalamic nucleus (STN) are of advantage. In the present study, the main objective was to examined the effects of bilateral EPN-DBS at different frequencies (130 Hz, 40 Hz, 15 Hz) on the severity of dystonia in the dtsz mutant hamster. In addition, STN stimulations were done at a frequency, proven to be effective by the present EPN-DBS in dystonic hamsters. In order to obtain precise bilateral electrical stimuli with magnitude of 50 µA, a pulse width of 60 µs and defined frequencies, it was necessary to develop a new optimized stimulator prior to the experiments. Since the individual highest severity of dystonic episodes is known to be reached within three hours after induction in dtsz hamsters, the duration of DBS was 180 min. During DBS with 130 Hz the severity of dystonia was significantly lower within the third hour than without DBS in the same animals (p < 0.05). DBS with 40 Hz tended to exert antidystonic effects after three hours, while 15 Hz stimulations of the EPN and 130 Hz stimulations of the STN failed to show any effects on the severity. DBS of the EPN at 130 Hz was most effective against generalized dystonia in the dtsz mutant. The response to EPN-DBS confirms that the dtsz mutant is suitable to further investigate the effects of long-term DBS on severity of dystonia and neuronal network activities, important to give insights into the mechanisms of DBS.


Asunto(s)
Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Distonía , Animales , Cricetinae , Modelos Animales de Enfermedad , Núcleo Entopeduncular/fisiología , Femenino , Masculino , Fenotipo , Núcleo Subtalámico/fisiología
9.
Neurobiol Dis ; 154: 105341, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33753292

RESUMEN

Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from understood. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown. We hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal function. We tested this hypothesis in the dtsz hamster, an animal model of inherited generalised, paroxysmal dystonia. Hamsters (dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes in the GPi. DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 h. Synaptic cortico-striatal field potentials, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurones were recorded in brain slice preparations obtained immediately after EPN-DBS. The main findings were as follows: a. DBS increased cortico-striatal evoked responses in healthy, but not in dystonic tissue. b. Commensurate with this, DBS increased inhibitory control of these evoked responses in dystonic, and decreased inhibitory control in healthy tissue. c. Further, DBS reduced mEPSC frequency strongly in dystonic, and less prominently in healthy tissue, showing that also a modulation of presynaptic mechanisms is likely involved. d. Cellular properties of medium-spiny neurones remained unchanged. We conclude that DBS leads to dampening of cortico-striatal communication, and restores intrastriatal inhibitory tone.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Estimulación Encefálica Profunda/métodos , Distonía/fisiopatología , Globo Pálido/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Comunicación Celular/fisiología , Cricetinae , Estimulación Encefálica Profunda/instrumentación , Modelos Animales de Enfermedad , Distonía/terapia , Electrodos Implantados , Potenciales Postsinápticos Excitadores/fisiología , Mesocricetus , Red Nerviosa/fisiología
10.
Neurobiol Dis ; 156: 105401, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34023395

RESUMEN

The extent to which functional MRI (fMRI) reflects direct neuronal changes remains unknown. Using 160 simultaneous electrical stimulation (es-fMRI) and intracranial brain stimulation recordings acquired in 26 individuals with epilepsy (with varying electrode locations), we tested whether brain networks dynamically change during intracranial brain stimulation, aiming to establish whether switching between brain networks is reduced after intracranial brain stimulation. As the brain spontaneously switches between a repertoire of intrinsic functional network configurations and the rate of switching is likely increased in epilepsy, we hypothesised that intracranial stimulation would reduce the brain's switching rate, thus potentially normalising aberrant brain network dynamics. To test this hypothesis, we quantified the rate that brain regions changed networks over time in response to brain stimulation, using network switching applied to multilayer modularity analysis of time-resolved es-fMRI connectivity. Network switching and synchrony was decreased after the first brain stimulation, followed by a more consistent pattern of network switching over time. This change was commonly observed in cortical networks and adjacent to the electrode targets. Our results suggest that neuronal perturbation is likely to modulate large-scale brain networks, and multilayer network modelling may be used to inform the clinical efficacy of brain stimulation in epilepsy.


Asunto(s)
Encéfalo/diagnóstico por imagen , Estimulación Encefálica Profunda/métodos , Epilepsia Refractaria/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Encéfalo/fisiología , Estimulación Encefálica Profunda/instrumentación , Epilepsia Refractaria/fisiopatología , Humanos , Red Nerviosa/fisiología
11.
Ann Neurol ; 88(2): 283-296, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32396256

RESUMEN

OBJECTIVE: Pharmaco-refractory focal motor epileptic seizures pose a significant challenge. Deep brain stimulation (DBS) is a recently recognized therapeutic option for the treatment of refractory epilepsy. To identify the specific target for focal motor seizures, we evaluate the modulatory effects of the subthalamic nucleus (STN) stimulation because of the critical role of STN in cortico-subcortical motor processing. METHODS: Seven patients with epilepsy with refractory seizures who underwent chronic stereoelectroencephalography (SEEG) monitoring were studied in presurgical evaluation. Seizure onset zone was hypothesized to be partially involved in the motor areas in 6 patients. For each patient, one electrode was temporally implanted into the STN that was ipsilateral to the seizure onset zone. The cortical-subcortical seizure propagation was systemically evaluated. The simultaneously electrophysiological responses over distributed cortical areas to STN stimulation at varied frequencies were quantitatively assessed. RESULTS: We observed the consistent downstream propagation of seizures from the motor cortex toward the ipsilateral STN and remarkable cortical responses on motor cortex to single-pulse STN stimulation. Furthermore, we showed frequency-dependent upstream modulatory effect of STN stimulation on motor cortex specifically. In contrast to the enhanced effects of low frequency stimulation, high-frequency stimulation of the STN can significantly reduce interictal spikes, high-frequency oscillations over motor cortex disclosing effective connections to the STN. INTERPRETATION: This result showed that the STN is not only engaged in as a propagation network of focal motor seizures but STN stimulation can profoundly modulate the epileptic activity of motor cortex in humans, suggesting a mechanism-based alternative for patients suffering from refractory focal motor seizures. ANN NEUROL 2020;88:283-296.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/terapia , Electrodos Implantados , Núcleo Subtalámico/fisiología , Adolescente , Adulto , Niño , Estimulación Encefálica Profunda/instrumentación , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Técnicas Estereotáxicas/instrumentación , Adulto Joven
12.
Stereotact Funct Neurosurg ; 99(1): 65-74, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33080600

RESUMEN

BACKGROUND: Directional leads are increasingly used in deep brain stimulation. They allow shaping the electrical field in the axial plane. These new possibilities increase the complexity of programming. Thus, optimized programming approaches are needed to assist clinical testing and to obtain full clinical benefit. OBJECTIVES: This simulation study investigates to what extent the electrical field can be shaped by directional steering to compensate for lead malposition. METHOD: Binary volumes of tissue activated (VTA) were simulated, by using a finite element method approach, for different amplitude distributions on the three directional electrodes. VTAs were shifted from 0 to 2 mm at different shift angles with respect to the lead orientation, to determine the best compensation of a target volume. RESULTS: Malpositions of 1 mm can be compensated with the highest gain of overlap with directional leads. For larger shifts, an improvement of overlap of 10-30% is possible, depending on the stimulation amplitude and shift angle of the lead. Lead orientation and shift determine the amplitude distribution of the electrodes. CONCLUSION: To get full benefit from directional leads, both the shift angle as well as the shift to target volume are required to choose the correct amplitude distribution on the electrodes. Current directional leads have limitations when compensating malpositions >1 mm; however, they still outperform conventional leads in reducing overstimulation. Further, their main advantage probably lies in the reduction of side effects. Databases like the one from this simulation could serve for optimized lead programming algorithms in the future.


Asunto(s)
Algoritmos , Simulación por Computador , Estimulación Encefálica Profunda/métodos , Electrodos Implantados , Análisis de Elementos Finitos , Estimulación Encefálica Profunda/instrumentación , Humanos
13.
Stereotact Funct Neurosurg ; 99(1): 38-39, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33070142

RESUMEN

There exist only two case reports to date of open cardiac defibrillation with deep brain stimulator system (DBS) implantation. We report a 64-year-old male with DBS system in place for essential tremor who underwent cardiac defibrillation after cardiac arrest. Afterwards, his device impedances were all high and his tremor symptoms returned. Both problems resolved with implantation of a new generator and required no changes to the intracranial leads or extension cables. This is significantly different from the two previous reports. One included a significantly different DBS system relying on transcutaneous RF transmission and reported a lesioning effect after cardioversion. The other utilized a modern DBS system but reported damage to the generator and intracranial leads. We report that only the generator sustained damage, and that there were no intracranial changes that occurred.


Asunto(s)
Estimulación Encefálica Profunda/efectos adversos , Desfibriladores/efectos adversos , Cardioversión Eléctrica/efectos adversos , Falla de Equipo , Temblor Esencial/terapia , Estimulación Encefálica Profunda/instrumentación , Cardioversión Eléctrica/instrumentación , Temblor Esencial/diagnóstico , Humanos , Masculino , Persona de Mediana Edad
14.
Acta Neurochir (Wien) ; 163(1): 205-209, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32710183

RESUMEN

Subthalamic local field potentials in the beta band are considered as potential biomarkers for closed-loop deep brain stimulation. To investigate the subthalamic beta band peak amplitudes in a Parkinson's disease patient over an extended period of time by using a novel and commercially available neurostimulator with permanent sensing capability. We recorded local field potentials of the subthalamic nucleus using the Medtronic Percept™ implantable neurostimulator at rest and during physical activity (gait) with and in response to deep brain stimulation. We found a double-peaked beta activity on both sides. Increasing stimulation and physical activity resulted in a decreased beta band amplitude, but was accompanied by the appearance of a second, and previously unrecognized peak at 13 Hz in the right hemisphere. Our results will support the investigation of distinct different peaks in the beta band and their relevance and usefulness as closed-loop biomarkers.


Asunto(s)
Ritmo beta , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Marcha , Humanos , Neuroestimuladores Implantables , Masculino
15.
Acta Neurochir (Wien) ; 163(1): 197-203, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32915306

RESUMEN

BACKGROUND: The two middle contacts of directional leads (d-leads) for deep brain stimulation are split into three segments, allowing current steering toward desired axial directions. To facilitate programming, their final orientation needs to be reliably determined. However, it is currently unclear whether d-leads rotate after implantation. Our objective was to assess the degree of d-lead rotation after implantation. METHODS: We retrospectively analyzed d-lead orientation on intraoperative X-rays, postoperative CT scans (latencies to surgery: 108-189 min postoperatively), and rotational fluoroscopies (4-9 days postoperatively) for a consecutive series of 32 implanted d-leads. For five d-leads, a CT scan with a mean follow-up of 57 days (range 28-182) was available. All d-leads were implanted with the marker facing anterior and the intention to hit an "iron sight" (ISi) on the X-ray, indicating anterior orientation (i.e., 0° ± 6°). RESULTS: In nine d-leads, an ISi was visible on the final X-ray; median orientation was 1.5° (range 0.5-6.0°) at the first follow-up CT, confirming anterior orientation. In d-leads without ISi or where ISi was not evaluable, the median rotation was 15.5° (9.5-35.0°) and 26.5° (5.5-62.0°), respectively. The orientation of the initial CT was comparable with the orientation determined by the postoperative rotational fluoroscopy and second CT in all d-lead groups. CONCLUSION: D-lead orientation does not change within the first week after implantation. We provide first indications that d-lead orientation remains stable for several weeks after surgery. Determination of lead orientation using marker-based X-ray alone seems too imprecise; adding the ISi method can increase determination of intraoperative orientation.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estimulación Encefálica Profunda/instrumentación , Electrodos Implantados/normas , Fluoroscopía/métodos , Humanos , Radiografía/métodos , Rotación , Tomografía Computarizada por Rayos X/métodos
16.
Acta Neurochir (Wien) ; 163(1): 211-217, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33052494

RESUMEN

Limited data are available regarding the electrophysiology of status dystonicus (SD). We report simultaneous microelectrode recordings (MERs) from the globus pallidus internus (GPi) of a patient with SD who was treated with bilateral deep brain stimulation (DBS). Mean neuronal discharge rate was of 30.1 ± 10.9 Hz and 38.5 Hz ± 11.1 Hz for the right and left GPi, respectively. On the right side, neuronal electrical activity was completely abolished at the target point, whereas the mean burst index values showed a predominance of bursting and irregular activity along trajectories on both sides. Our data are in line with previous findings of pallidal irregular hypoactivity as a potential electrophysiological marker of dystonia and thus SD, but further electrophysiological studies are needed to confirm our results.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastornos Distónicos/fisiopatología , Globo Pálido/fisiopatología , Estimulación Encefálica Profunda/instrumentación , Trastornos Distónicos/terapia , Femenino , Humanos , Masculino , Microelectrodos
17.
Neuroimage ; 223: 117330, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32890746

RESUMEN

Deep brain stimulation (DBS) is a surgical therapy to alleviate symptoms of certain brain disorders by electrically modulating neural tissues. Computational models predicting electric fields and volumes of tissue activated are key for efficient parameter tuning and network analysis. Currently, we lack efficient and flexible software implementations supporting complex electrode geometries and stimulation settings. Available tools are either too slow (e.g. finite element method-FEM), or too simple, with limited applicability to basic use-cases. This paper introduces FastField, an efficient open-source toolbox for DBS electric field and VTA approximations. It computes scalable electric field approximations based on the principle of superposition, and VTA activation models from pulse width and axon diameter. In benchmarks and case studies, FastField is solved in about 0.2 s,  ~ 1000 times faster than using FEM. Moreover, it is almost as accurate as using FEM: average Dice overlap of 92%, which is around typical noise levels found in clinical data. Hence, FastField has the potential to foster efficient optimization studies and to support clinical applications.


Asunto(s)
Encéfalo/fisiología , Estimulación Encefálica Profunda , Fenómenos Electromagnéticos , Axones/fisiología , Estimulación Encefálica Profunda/instrumentación , Electrodos Implantados , Fenómenos Electrofisiológicos , Humanos , Modelos Neurológicos , Programas Informáticos
18.
Neuroimage ; 223: 117314, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32882382

RESUMEN

Targeted interrogation of brain networks through invasive brain stimulation has become an increasingly important research tool as well as therapeutic modality. The majority of work with this emerging capability has been focused on open-loop approaches. Closed-loop techniques, however, could improve neuromodulatory therapies and research investigations by optimizing stimulation approaches using neurally informed, personalized targets. Implementing closed-loop systems is challenging particularly with regard to applying consistent strategies considering inter-individual variability. In particular, during intracranial epilepsy monitoring, where much of this research is currently progressing, electrodes are implanted exclusively for clinical reasons. Thus, detection and stimulation sites must be participant- and task-specific. The system must run in parallel with clinical systems, integrate seamlessly with existing setups, and ensure safety features are in place. In other words, a robust, yet flexible platform is required to perform different tests with a single participant and to comply with clinical requirements. In order to investigate closed-loop stimulation for research and therapeutic use, we developed a Closed-Loop System for Electrical Stimulation (CLoSES) that computes neural features which are then used in a decision algorithm to trigger stimulation in near real-time. To summarize CLoSES, intracranial electroencephalography (iEEG) signals are acquired, band-pass filtered, and local and network features are continuously computed. If target features are detected (e.g. above a preset threshold for a certain duration), stimulation is triggered. Not only could the system trigger stimulation while detecting real-time neural features, but we incorporated a pipeline wherein we used an encoder/decoder model to estimate a hidden cognitive state from the neural features. CLoSES provides a flexible platform to implement a variety of closed-loop experimental paradigms in humans. CLoSES has been successfully used with twelve patients implanted with depth electrodes in the epilepsy monitoring unit. During cognitive tasks (N=5), stimulation in closed loop modified a cognitive hidden state on a trial by trial basis. Sleep spindle oscillations (N=6) and sharp transient epileptic activity (N=9) were detected in near real-time, and stimulation was applied during the event or at specified delays (N=3). In addition, we measured the capabilities of the CLoSES system. Total latency was related to the characteristics of the event being detected, with tens of milliseconds for epileptic activity and hundreds of milliseconds for spindle detection. Stepwise latency, the actual duration of each continuous step, was within the specified fixed-step duration and increased linearly with the number of channels and features. We anticipate that probing neural dynamics and interaction between brain states and stimulation responses with CLoSES will lead to novel insights into the mechanism of normal and pathological brain activity, the discovery and evaluation of potential electrographic biomarkers of neurological and psychiatric disorders, and the development and testing of patient-specific stimulation targets and control signals before implanting a therapeutic device.


Asunto(s)
Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Procesamiento de Señales Asistido por Computador , Encéfalo/fisiología , Electroencefalografía , Humanos , Neuroestimuladores Implantables , Neuronas/fisiología , Programas Informáticos
19.
Neurobiol Dis ; 136: 104716, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31846735

RESUMEN

The subthalamic nucleus (STN), a preferred target for treating movement disorders, has a crucial role in inhibition and execution of movement. To better understand the mechanism of movement regulation in the STN of Parkinson's disease patients, we compared the same movement with different context, facilitation vs. inhibition context. We recorded subthalamic multiunit activity intra-operatively while parkinsonian patients (off medications, n = 43 patients, 173 recording sites) performed increasingly complex oddball paradigms with frequent and deviant tones: first, passive listening to tone series with no movement ('None-Go' task, n = 7, 28 recording sites); second, pressing a button after every tone ('All-Go' task, n = 7, 26 recording sites); and third, pressing a button only for frequent tones, thus adding inhibition of movement following deviant tones ('Go-NoGo' task, n = 29, 119 recording sites). The STN responded mainly to movement-involving tasks. In the limbic-associative STN, evoked response to the deviant tone (inhibitory cue) was not significantly different between the Go-NoGo and the All-Go task. However, the evoked response to the frequent tone (go cue) in the Go-NoGo task was significantly reduced. The reduction was mainly prominent in the negative component of the evoked response amplitude aligned to the press. Successful movement inhibition was correlated with higher baseline activity. We suggest that the STN in Parkinson's disease patients adapts to movement inhibition context by selectively decreasing the amplitude of neuronal activity. Thus, the STN enables movement inhibition not by increasing responses to the inhibitory cue but by reducing responses to the release cue. The negative component of the evoked response probably facilitates movement and a higher baseline activity enables successful inhibition of movement. These discharge modulations were found in the ventromedial, non-motor domain of the STN and therefore suggest a significant role of the limbic- associative STN domains in movement planning and in global movement regulation.


Asunto(s)
Lóbulo Límbico/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Enfermedad de Parkinson/fisiopatología , Desempeño Psicomotor/fisiología , Núcleo Subtalámico/fisiología , Estimulación Acústica/métodos , Anciano , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Electrodos Implantados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/fisiología , Enfermedad de Parkinson/terapia
20.
Radiology ; 296(2): 250-262, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32573388

RESUMEN

MRI is a valuable clinical and research tool for patients undergoing deep brain stimulation (DBS). However, risks associated with imaging DBS devices have led to stringent regulations, limiting the clinical and research utility of MRI in these patients. The main risks in patients with DBS devices undergoing MRI are heating at the electrode tips, induced currents, implantable pulse generator dysfunction, and mechanical forces. Phantom model studies indicate that electrode tip heating remains the most serious risk for modern DBS devices. The absence of adverse events in patients imaged under DBS vendor guidelines for MRI demonstrates the general safety of MRI for patients with DBS devices. Moreover, recent work indicates that-given adequate safety data-patients may be imaged outside these guidelines. At present, investigators are primarily focused on improving DBS device and MRI safety through the development of tools, including safety simulation models. Existing guidelines provide a standardized framework for performing safe MRI in patients with DBS devices. It also highlights the possibility of expanding MRI as a tool for research and clinical care in these patients going forward.


Asunto(s)
Encéfalo/diagnóstico por imagen , Estimulación Encefálica Profunda/instrumentación , Imagen por Resonancia Magnética , Seguridad del Paciente/normas , Simulación por Computador , Calor/efectos adversos , Humanos , Imagen por Resonancia Magnética/efectos adversos , Imagen por Resonancia Magnética/normas , Prótesis Neurales/efectos adversos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA