Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.727
Filtrar
1.
Nature ; 605(7909): 332-339, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508659

RESUMEN

Stomata exert considerable effects on global carbon and water cycles by mediating gas exchange and water vapour1,2. Stomatal closure prevents water loss in response to dehydration and limits pathogen entry3,4. However, prolonged stomatal closure reduces photosynthesis and transpiration and creates aqueous apoplasts that promote colonization by pathogens. How plants dynamically regulate stomatal reopening in a changing climate is unclear. Here we show that the secreted peptides SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and the cognate receptor kinase PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) counter-regulate phytohormone abscisic acid (ABA)- and microbe-associated molecular pattern (MAMP)-induced stomatal closure. SCREWs sensed by NUT function as immunomodulatory phytocytokines and recruit SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors to relay immune signalling. SCREWs trigger the NUT-dependent phosphorylation of ABA INSENSITIVE 1 (ABI1) and ABI2, which leads to an increase in the activity of ABI phosphatases towards OPEN STOMATA 1 (OST1)-a key kinase that mediates ABA- and MAMP-induced stomatal closure5,6-and a reduction in the activity of S-type anion channels. After induction by dehydration and pathogen infection, SCREW-NUT signalling promotes apoplastic water loss and disrupts microorganism-rich aqueous habitats to limit pathogen colonization. The SCREW-NUT system is widely distributed across land plants, which suggests that it has an important role in preventing uncontrolled stomatal closure caused by abiotic and biotic stresses to optimize plant fitness.


Asunto(s)
Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Estomas de Plantas , Plantas , Agua , Proteínas de Arabidopsis , Deshidratación , Desecación
2.
Plant Cell ; 36(6): 2328-2358, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38442317

RESUMEN

Multiple cyclic nucleotide-gated channels (CNGCs) are abscisic acid (ABA)-activated Ca2+ channels in Arabidopsis (Arabidopsis thaliana) guard cells. In particular, CNGC5, CNGC6, CNGC9, and CNGC12 are essential for ABA-specific cytosolic Ca2+ signaling and stomatal movements. However, the mechanisms underlying ABA-mediated regulation of CNGCs and Ca2+ signaling are still unknown. In this study, we identified the Ca2+-independent protein kinase OPEN STOMATA 1 (OST1) as a CNGC activator in Arabidopsis. OST1-targeted phosphorylation sites were identified in CNGC5, CNGC6, CNGC9, and CNGC12. These CNGCs were strongly inhibited by Ser-to-Ala mutations and fully activated by Ser-to-Asp mutations at the OST1-targeted sites. The overexpression of individual inactive CNGCs (iCNGCs) under the UBIQUITIN10 promoter in wild-type Arabidopsis conferred a strong dominant-negative-like ABA-insensitive stomatal closure phenotype. In contrast, expressing active CNGCs (aCNGCs) under their respective native promoters in the cngc5-1 cngc6-2 cngc9-1 cngc12-1 quadruple mutant fully restored ABA-activated cytosolic Ca2+ oscillations and Ca2+ currents in guard cells, and rescued the ABA-insensitive stomatal movement mutant phenotypes. Thus, we uncovered that ABA elicits cytosolic Ca2+ signaling via an OST1-CNGC module, in which OST1 functions as a convergence point of the Ca2+-dependent and -independent pathways in Arabidopsis guard cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Señalización del Calcio , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Estomas de Plantas , Proteínas Quinasas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Mutación , Fosforilación , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética
3.
PLoS Biol ; 22(5): e3002592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691548

RESUMEN

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Asunto(s)
Arabidopsis , Dióxido de Carbono , Modelos Biológicos , Estomas de Plantas , Transducción de Señal , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Simulación por Computador , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
4.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37997741

RESUMEN

Adaptation to dehydration stress requires plants to coordinate environmental and endogenous signals to inhibit stomatal proliferation and modulate their patterning. The stress hormone abscisic acid (ABA) induces stomatal closure and restricts stomatal lineage to promote stress tolerance. Here, we report that mutants with reduced ABA levels, xer-1, xer-2 and aba2-2, developed stomatal clusters. Similarly, the ABA signaling mutant snrk2.2/2.3/2.6, which lacks core ABA signaling kinases, also displayed stomatal clusters. Exposure to ABA or inhibition of ABA catabolism rescued the increased stomatal density and spacing defects observed in xer and aba2-2, suggesting that basal ABA is required for correct stomatal density and spacing. xer-1 and aba2-2 displayed reduced expression of EPF1 and EPF2, and enhanced expression of SPCH and MUTE. Furthermore, ABA suppressed elevated SPCH and MUTE expression in epf2-1 and epf1-1, and partially rescued epf2-1 stomatal index and epf1-1 clustering defects. Genetic analysis demonstrated that XER acts upstream of the EPF2-SPCH pathway to suppress stomatal proliferation, and in parallel with EPF1 to ensure correct stomatal spacing. These results show that basal ABA and functional ABA signaling are required to fine-tune stomatal density and patterning.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estomas de Plantas/metabolismo , Transducción de Señal/genética , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas
5.
Plant Cell ; 35(10): 3757-3781, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37437118

RESUMEN

The mechanical properties of guard cells have major effects on stomatal functioning. Reinforced stiffness in the stomatal polar regions was recently proposed to play an important role in stomatal function, but the underlying molecular mechanisms remain elusive. Here, we used genetic and biochemical approaches in poplar (Populus spp.) to show that the transcription factor MYB156 controls pectic homogalacturonan-based polar stiffening through the downregulation of the gene encoding pectin methylesterase 6 (PME6). Loss of MYB156 increased the polar stiffness of stomata, thereby enhancing stomatal dynamics and response speed to various stimuli. In contrast, overexpression of MYB156 resulted in decreased polar stiffness and impaired stomatal dynamics, accompanied by smaller leaves. Polar stiffening functions in guard cell dynamics in response to changing environmental conditions by maintaining normal stomatal morphology during stomatal movement. Our study revealed the structure-function relationship of the cell wall of guard cells in stomatal dynamics, providing an important means for improving the stomatal performance and drought tolerance of plants.


Asunto(s)
Estomas de Plantas , Populus , Estomas de Plantas/fisiología , Factores de Transcripción/genética , Populus/genética , Regulación de la Expresión Génica de las Plantas/genética , Pared Celular/fisiología
6.
Plant Cell ; 35(9): 3444-3469, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37260348

RESUMEN

In leaves of C3 and C4 plants, stomata open during the day to favor CO2 entry for photosynthesis and close at night to prevent inefficient transpiration of water vapor. The circadian clock paces rhythmic stomatal movements throughout the diel (24-h) cycle. Leaf transitory starch is also thought to regulate the diel stomatal movements, yet the underlying mechanisms across time (key moments) and space (relevant leaf tissues) remain elusive. Here, we developed PhenoLeaks, a pipeline to analyze the diel dynamics of transpiration, and used it to screen a series of Arabidopsis (Arabidopsis thaliana) mutants impaired in starch metabolism. We detected a sinusoidal, endogenous rhythm of transpiration that overarches days and nights. We determined that a number of severe mutations in starch metabolism affect the endogenous rhythm through a phase shift, resulting in delayed stomatal movements throughout the daytime and diminished stomatal preopening during the night. Nevertheless, analysis of tissue-specific mutations revealed that neither guard-cell nor mesophyll-cell starch metabolisms are strictly required for normal diel patterns of transpiration. We propose that leaf starch influences the timing of transpiration rhythm through an interplay between the circadian clock and sugars across tissues, while the energetic effect of starch-derived sugars is usually nonlimiting for endogenous stomatal movements.


Asunto(s)
Arabidopsis , Estomas de Plantas , Estomas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Metabolismo de los Hidratos de Carbono , Fotosíntesis , Arabidopsis/metabolismo , Almidón/metabolismo
7.
Plant Cell ; 35(1): 469-487, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36227066

RESUMEN

Polarization of cells prior to asymmetric cell division is crucial for correct cell divisions, cell fate, and tissue patterning. In maize (Zea mays) stomatal development, the polarization of subsidiary mother cells (SMCs) prior to asymmetric division is controlled by the BRICK (BRK)-PANGLOSS (PAN)-RHO FAMILY GTPASE (ROP) pathway. Two catalytically inactive receptor-like kinases, PAN2 and PAN1, are required for correct division plane positioning. Proteins in the BRK-PAN-ROP pathway are polarized in SMCs, with the polarization of each protein dependent on the previous one. As most of the known proteins in this pathway do not physically interact, possible interactors that might participate in the pathway are yet to be described. We identified WEAK CHLOROPLAST MOVEMENT UNDER BLUE LIGHT 1 (WEB1)/PLASTID MOVEMENT IMPAIRED 2 (PMI2)-RELATED (WPR) proteins as players during SMC polarization in maize. WPRs physically interact with PAN receptors and polarly accumulate in SMCs. The polarized localization of WPR proteins depends on PAN2 but not PAN1. CRISPR-Cas9-induced mutations result in division plane defects in SMCs, and ectopic expression of WPR-RFP results in stomatal defects and alterations to the actin cytoskeleton. We show that certain WPR proteins directly interact with F-actin through their N-terminus. Our data implicate WPR proteins as potentially regulating actin filaments, providing insight into their molecular function. These results demonstrate that WPR proteins are important for cell polarization.


Asunto(s)
Proteínas de Plantas , Estomas de Plantas , Zea mays , Citoesqueleto de Actina/metabolismo , División Celular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/metabolismo , Polaridad Celular/genética , Polaridad Celular/fisiología
8.
Plant Cell ; 35(2): 756-775, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36440974

RESUMEN

Stomata, cellular valves found on the surfaces of aerial plant tissues, present a paradigm for studying cell fate and patterning in plants. A highly conserved core set of related basic helix-loop-helix (bHLH) transcription factors regulates stomatal development across diverse species. We characterized BdFAMA in the temperate grass Brachypodium distachyon and found this late-acting transcription factor was necessary and sufficient for specifying stomatal guard cell fate, and unexpectedly, could also induce the recruitment of subsidiary cells in the absence of its paralogue, BdMUTE. The overlap in function is paralleled by an overlap in expression pattern and by unique regulatory relationships between BdMUTE and BdFAMA. To better appreciate the relationships among the Brachypodium stomatal bHLHs, we used in vivo proteomics in developing leaves and found evidence for multiple shared interaction partners. We reexamined the roles of these genes in Arabidopsis thaliana by testing genetic sufficiency within and across species, and found that while BdFAMA and AtFAMA can rescue stomatal production in Arabidopsis fama and mute mutants, only AtFAMA can specify Brassica-specific myrosin idioblasts. Taken together, our findings refine the current models of stomatal bHLH function and regulatory feedback among paralogues within grasses as well as across the monocot/dicot divide.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Arabidopsis/metabolismo , Brachypodium/genética , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
9.
Plant Cell ; 35(1): 260-278, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36255272

RESUMEN

Drought stress triggers abscisic acid (ABA) signaling in guard cells and induces stomatal closure to prevent water loss in land plants. Stomatal movement is accompanied by reorganization of the cytoskeleton. Cortical microtubules disassemble in response to ABA, which is required for stomatal closure. However, how ABA signaling regulates microtubule disassembly is unclear, and the microtubule-associated proteins (MAPs) involved in this process remain to be identified. In this study, we show that OPEN STOMATA 1 (OST1), a central component in ABA signaling, mediates microtubule disassembly during ABA-induced stomatal closure in Arabidopsis thaliana. We identified the MAP SPIRAL1 (SPR1) as the substrate of OST1. OST1 interacts with and phosphorylates SPR1 at Ser6, which promotes the disassociation of SPR1 from microtubules and facilitates microtubule disassembly. Compared with the wild type, the spr1 mutant exhibited significantly greater water loss and reduced ABA responses, including stomatal closure and microtubule disassembly in guard cells. These phenotypes were restored by introducing the phosphorylated active form of SPR1. Our findings demonstrate that SPR1 positively regulates microtubule disassembly during ABA-induced stomatal closure, which depends on OST1-mediated phosphorylation. These findings reveal a specific connection between a core component of ABA signaling and MAPs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microtúbulos , Proteínas Quinasas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Estomas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Agua/metabolismo
10.
Plant Cell ; 35(1): 239-259, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36069643

RESUMEN

Abscisic acid (ABA)-activated inward Ca2+-permeable channels in the plasma membrane (PM) of guard cells are required for the initiation and regulation of ABA-specific cytosolic Ca2+ signaling and stomatal closure in plants. But the identities of the PM Ca2+ channels are still unknown. We hypothesized that the ABA-activated Ca2+ channels consist of multiple CYCLIC NUCLEOTIDE-GATED CHANNEL (CNGC) proteins from the CNGC family, which is known as a Ca2+-permeable channel family in Arabidopsis (Arabidopsis thaliana). In this research, we observed high expression of multiple CNGC genes in Arabidopsis guard cells, namely CNGC5, CNGC6, CNGC9, and CNGC12. The T-DNA insertional loss-of-function quadruple mutant cngc5-1 cngc6-2 cngc9-1 cngc12-1 (hereafter c5/6/9/12) showed a strong ABA-insensitive phenotype of stomatal closure. Further analysis revealed that ABA-activated Ca2+ channel currents were impaired, and ABA-specific cytosolic Ca2+ oscillation patterns were disrupted in c5/6/9/12 guard cells compared with in wild-type guard cells. All ABA-related phenotypes of the c5/6/9/12 mutant were successfully rescued by the expression of a single gene out of the four CNGCs under the respective native promoter. Thus, our findings reveal a type of ABA-activated PM Ca2+ channel comprising multiple CNGCs, which is essential for ABA-specific Ca2+ signaling of guard cells and ABA-induced stomatal closure in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Mutación/genética , Nucleótidos Cíclicos/metabolismo , Estomas de Plantas/metabolismo , Transducción de Señal
11.
Nature ; 585(7826): 569-573, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32846426

RESUMEN

Perception of biotic and abiotic stresses often leads to stomatal closure in plants1,2. Rapid influx of calcium ions (Ca2+) across the plasma membrane has an important role in this response, but the identity of the Ca2+ channels involved has remained elusive3,4. Here we report that the Arabidopsis thaliana Ca2+-permeable channel OSCA1.3 controls stomatal closure during immune signalling. OSCA1.3 is rapidly phosphorylated upon perception of pathogen-associated molecular patterns (PAMPs). Biochemical and quantitative phosphoproteomics analyses reveal that the immune receptor-associated cytosolic kinase BIK1 interacts with and phosphorylates the N-terminal cytosolic loop of OSCA1.3 within minutes of treatment with the peptidic PAMP flg22, which is derived from bacterial flagellin. Genetic and electrophysiological data reveal that OSCA1.3 is permeable to Ca2+, and that BIK1-mediated phosphorylation on its N terminus increases this channel activity. Notably, OSCA1.3 and its phosphorylation by BIK1 are critical for stomatal closure during immune signalling, and OSCA1.3 does not regulate stomatal closure upon perception of abscisic acid-a plant hormone associated with abiotic stresses. This study thus identifies a plant Ca2+ channel and its activation mechanisms underlying stomatal closure during immune signalling, and suggests specificity in Ca2+ influx mechanisms in response to different stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Inmunidad de la Planta , Estomas de Plantas/inmunología , Estomas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
12.
Proc Natl Acad Sci U S A ; 120(14): e2220270120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972429

RESUMEN

Control of carbon dioxide and water vapor exchange between a leaf's interior and the surrounding air is accomplished by variations in the turgor pressures in the small epidermal and guard cells that cover the leaf's surface. These pressures respond to changes in light intensity and wavelength, temperature, CO2 concentration, and air humidity. The dynamical equations that describe such processes are formally identical to those that define computation in a two-layer, adaptive, cellular nonlinear network. This exact identification suggests that leaf gas-exchange processes can be understood as analog computation and that exploiting the output of two-layer, adaptive, cellular nonlinear networks might provide new tools in applied plant research.


Asunto(s)
Hojas de la Planta , Estomas de Plantas , Luz , Presión , Dióxido de Carbono
13.
Proc Natl Acad Sci U S A ; 120(52): e2310670120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113262

RESUMEN

In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures, thereby regulating gas exchange. Chromatin structure controls transcription factor (TF) access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remains unknown. Here, we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2 (carbon dioxide), regulate guard cell chromatin during stomatal movements. Our cell type-specific analyses uncover patterns of chromatin accessibility specific to guard cells and define cis-regulatory sequences supporting guard cell-specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell type specificity. DNA motif analyses uncover binding sites for distinct TFs enriched in ABA-induced and ABA-repressed chromatin. We identify the Abscisic Acid Response Element (ABRE) Binding Factor (ABF) bZIP-type TFs that are required for ABA-triggered chromatin opening in guard cells and roots and implicate the inhibition of a clade of bHLH-type TFs in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling, whereby elevated atmospheric CO2 had only minimal impact on chromatin dynamics. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Cromatina/genética , Cromatina/metabolismo , Estomas de Plantas/metabolismo , Arabidopsis/metabolismo
14.
Plant J ; 118(6): 1719-1731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569066

RESUMEN

Stomata are pores at the leaf surface that enable gas exchange and transpiration. The signaling pathways that regulate the differentiation of stomatal guard cells and the mechanisms of stomatal pore formation have been characterized in Arabidopsis thaliana. However, the process by which stomatal complexes develop after pore formation into fully mature complexes is poorly understood. We tracked the morphogenesis of young stomatal complexes over time to establish characteristic geometric milestones along the path of stomatal maturation. Using 3D-nanoindentation coupled with finite element modeling of young and mature stomata, we found that despite having thicker cell walls than young guard cells, mature guard cells are more energy efficient with respect to stomatal opening, potentially attributable to the increased mechanical anisotropy of their cell walls and smaller changes in turgor pressure between the closed and open states. Comparing geometric changes in young and mature guard cells of wild-type and cellulose-deficient plants revealed that although cellulose is required for normal stomatal maturation, mechanical anisotropy appears to be achieved by the collective influence of cellulose and additional wall components. Together, these data elucidate the dynamic geometric and biomechanical mechanisms underlying the development process of stomatal maturation.


Asunto(s)
Arabidopsis , Pared Celular , Estomas de Plantas , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Estomas de Plantas/fisiología , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/citología , Anisotropía , Pared Celular/metabolismo , Pared Celular/fisiología , Celulosa/metabolismo , Análisis de Elementos Finitos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
15.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35894230

RESUMEN

Coordination of growth, patterning and differentiation is required for shaping organs in multicellular organisms. In plants, cell growth is controlled by positional information, yet the behavior of individual cells is often highly heterogeneous. The origin of this variability is still unclear. Using time-lapse imaging, we determined the source and relevance of cellular growth variability in developing organs of Arabidopsis thaliana. We show that growth is more heterogeneous in the leaf blade than in the midrib and petiole, correlating with higher local differences in growth rates between neighboring cells in the blade. This local growth variability coincides with developing stomata. Stomatal lineages follow a specific, time-dependent growth program that is different from that of their surroundings. Quantification of cellular dynamics in the leaves of a mutant lacking stomata, as well as analysis of floral organs, supports the idea that growth variability is mainly driven by stomata differentiation. Thus, the cell-autonomous behavior of specialized cells is the main source of local growth variability in otherwise homogeneously growing tissue. Those growth differences are buffered by the immediate neighbors of stomata and trichomes to achieve robust organ shapes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Proliferación Celular , Hojas de la Planta , Estomas de Plantas
16.
Plant Physiol ; 195(1): 79-110, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38163639

RESUMEN

If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.


Asunto(s)
Transporte Iónico , Estomas de Plantas , Plantas , Plantas/metabolismo , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Membrana Celular/metabolismo
17.
Plant Physiol ; 194(2): 732-740, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37850913

RESUMEN

Vapor pressure difference between the leaf and atmosphere (VPD) is the most important regulator of daytime transpiration, yet the mechanism driving stomatal responses to an increase in VPD in angiosperms remains unresolved. Here, we sought to characterize the mechanism driving stomatal closure at high VPD in an angiosperm species, particularly testing whether abscisic acid (ABA) biosynthesis could explain the observation of a trigger point for stomatal sensitivity to an increase in VPD. We tracked leaf gas exchange and modeled leaf water potential (Ψl) in leaves exposed to a range of step-increases in VPD in the herbaceous species Senecio minimus Poir. (Asteraceae). We found that mild increases in VPD in this species did not induce stomatal closure because modeled Ψl did not decline below a threshold close to turgor loss point (Ψtlp), but when leaves were exposed to a large increase in VPD, stomata closed as modeled Ψl declined below Ψtlp. Leaf ABA levels were higher in leaves exposed to a step-increase in VPD that caused Ψl to transiently decline below Ψtlp and in which stomata closed compared with leaves in which stomata did not close. We conclude that the stomata of S. minimus are insensitive to VPD until Ψl declines to a threshold that triggers the biosynthesis of ABA and that this mechanism might be common to angiosperms.


Asunto(s)
Magnoliopsida , Estomas de Plantas , Estomas de Plantas/fisiología , Presión de Vapor , Magnoliopsida/fisiología , Ácido Abscísico/farmacología , Hojas de la Planta/fisiología , Agua , Transpiración de Plantas/fisiología
18.
Plant Physiol ; 195(1): 370-377, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38217870

RESUMEN

Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage.


Asunto(s)
Luz , Estomas de Plantas , Presión de Vapor , Estomas de Plantas/fisiología , Magnoliopsida/fisiología , Transpiración de Plantas/fisiología , Helechos/fisiología , Fenómenos Biomecánicos , Epidermis de la Planta/fisiología , Epidermis de la Planta/citología , Marsileaceae/fisiología
19.
Plant Physiol ; 194(4): 2288-2300, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38128552

RESUMEN

The water status of the living tissue in leaves between the xylem and stomata (outside xylem zone (OXZ) plays a critical role in plant function and global mass and energy balance but has remained largely inaccessible. We resolve the local water relations of OXZ tissue using a nanogel reporter of water potential (ψ), AquaDust, that enables an in situ, nondestructive measurement of both ψ of xylem and highly localized ψ at the terminus of transpiration in the OXZ. Working in maize (Zea mays L.), these localized measurements reveal gradients in the OXZ that are several folds larger than those based on conventional methods and values of ψ in the mesophyll apoplast well below the macroscopic turgor loss potential. We find a strong loss of hydraulic conductance in both the bundle sheath and the mesophyll with decreasing xylem potential but not with evaporative demand. Our measurements suggest the OXZ plays an active role in regulating the transpiration path, and our methods provide the means to study this phenomenon.


Asunto(s)
Agua , Zea mays , Agua/fisiología , Zea mays/fisiología , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Xilema/fisiología , Estomas de Plantas/fisiología
20.
Plant Physiol ; 195(1): 378-394, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298139

RESUMEN

Automated guard cell detection and measurement are vital for understanding plant physiological performance and ecological functioning in global water and carbon cycles. Most current methods for measuring guard cells and stomata are laborious, time-consuming, prone to bias, and limited in scale. We developed StoManager1, a high-throughput tool utilizing geometrical, mathematical algorithms, and convolutional neural networks to automatically detect, count, and measure over 30 guard cell and stomatal metrics, including guard cell and stomatal area, length, width, stomatal aperture area/guard cell area, orientation, stomatal evenness, divergence, and aggregation index. Combined with leaf functional traits, some of these StoManager1-measured guard cell and stomatal metrics explained 90% and 82% of tree biomass and intrinsic water use efficiency (iWUE) variances in hardwoods, making them substantial factors in leaf physiology and tree growth. StoManager1 demonstrated exceptional precision and recall (mAP@0.5 over 0.96), effectively capturing diverse stomatal properties across over 100 species. StoManager1 facilitates the automation of measuring leaf stomatal and guard cells, enabling broader exploration of stomatal control in plant growth and adaptation to environmental stress and climate change. This has implications for global gross primary productivity (GPP) modeling and estimation, as integrating stomatal metrics can enhance predictions of plant growth and resource usage worldwide. Easily accessible open-source code and standalone Windows executable applications are available on a GitHub repository (https://github.com/JiaxinWang123/StoManager1) and Zenodo (https://doi.org/10.5281/zenodo.7686022).


Asunto(s)
Botánica , Biología Celular , Células Vegetales , Estomas de Plantas , Programas Informáticos , Estomas de Plantas/citología , Estomas de Plantas/crecimiento & desarrollo , Células Vegetales/fisiología , Botánica/instrumentación , Botánica/métodos , Biología Celular/instrumentación , Procesamiento de Imagen Asistido por Computador/normas , Algoritmos , Hojas de la Planta/citología , Redes Neurales de la Computación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Programas Informáticos/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA