Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
PLoS Biol ; 22(5): e3002620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743647

RESUMEN

Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.


Asunto(s)
Reproducción , Estaciones del Año , Estrellas de Mar , Animales , Estrellas de Mar/genética , Estrellas de Mar/metabolismo , Estrellas de Mar/fisiología , Reproducción/genética , Femenino , Masculino , Estrés Fisiológico/genética , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Especificidad de Órganos/genética , Arrecifes de Coral
2.
Evol Dev ; 26(1): e12468, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108150

RESUMEN

Larvae represent a distinct life history stage in which animal morphology and behavior contrast strongly to adult organisms. This life history stage is a ubiquitous aspect of animal life cycles, particularly in the marine environment. In many species, the structure and function of the nervous system differ significantly between metamorphosed juveniles and larvae. However, the distribution and diversity of neural cell types in larval nervous systems remains incompletely known. Here, the expression of neurotransmitter and neuropeptide synthesis and transport genes in the bat star Patiria miniata is examined throughout larval development. This characterization of nervous system structure reveals three main neural regions with distinct but overlapping territories. These regions include a densely innervated anterior region, an enteric neural plexus, and neurons associated with the ciliary band. In the ciliary band, cholinergic cells are pervasive while dopaminergic, noradrenergic, and GABAergic cells show regional differences in their localization patterns. Furthermore, the distribution of some neural subtypes changes throughout larval development, suggesting that changes in nervous system structure align with shifting ecological priorities during different larval stages, before the development of the adult nervous system. While past work has described aspects of P. miniata larval nervous system structure, largely focusing on early developmental timepoints, this work provides a comprehensive description of neural cell type localization throughout the extensive larval period.


Asunto(s)
Quirópteros , Animales , Larva , Sistema Nervioso/anatomía & histología , Estrellas de Mar/fisiología , Neuronas
3.
Proc Biol Sci ; 291(2023): 20240623, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38807518

RESUMEN

Intraspecific and habitat-mediated responses to chemical cues play key roles in structuring populations of marine species. We investigated the behaviour of herbivorous-stage juvenile crown-of-thorns sea stars (COTS; Acanthaster sp.) in flow-through choice chambers to determine if chemical cues from their habitat influence movement and their transition to become coral predators. Juveniles at the diet transition stage were exposed to cues from their nursery habitat (coral rubble-crustose coralline algae (CCA)), live coral and adult COTS to determine if waterborne cues influence movement. In response to CCA and coral as sole cues, juveniles moved towards the cue source and when these cues were presented in combination, they exhibited a preference for coral. Juveniles moved away from adult COTS cues. Exposure to food cues (coral, CCA) in the presence of adult cues resulted in variable responses. Our results suggest a feedback mechanism whereby juvenile behaviour is mediated by adult chemical cues. Cues from the adult population may deter juveniles from the switch to corallivory. As outbreaks wane, juveniles released from competition may serve as a proximate source of outbreaks, supporting the juveniles-in-waiting hypothesis. The accumulation of juveniles within the reef infrastructure is an underappreciated potential source of COTS outbreaks that devastate coral reefs.


Asunto(s)
Antozoos , Señales (Psicología) , Estrellas de Mar , Animales , Antozoos/fisiología , Estrellas de Mar/fisiología , Arrecifes de Coral , Herbivoria , Ecosistema , Conducta Alimentaria , Rhodophyta/fisiología
4.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417290

RESUMEN

Braiding of topological structures in complex matter fields provides a robust framework for encoding and processing information, and it has been extensively studied in the context of topological quantum computation. In living systems, topological defects are crucial for the localization and organization of biochemical signaling waves, but their braiding dynamics remain unexplored. Here, we show that the spiral wave cores, which organize the Rho-GTP protein signaling dynamics and force generation on the membrane of starfish egg cells, undergo spontaneous braiding dynamics. Experimentally measured world line braiding exponents and topological entropy correlate with cellular activity and agree with predictions from a generic field theory. Our analysis further reveals the creation and annihilation of virtual quasi-particle excitations during defect scattering events, suggesting phenomenological parallels between quantum and living matter.


Asunto(s)
Algoritmos , Membrana Celular/metabolismo , Oocitos/metabolismo , Teoría Cuántica , Estrellas de Mar/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Oocitos/citología
5.
Proc Biol Sci ; 290(2002): 20230347, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37403510

RESUMEN

Epidemics are becoming more common and severe, however, pinpointing the causes can be challenging, particularly in marine environments. The cause of sea star wasting (SSW) disease, the ongoing, largest known panzootic of marine wildlife, is unresolved. Here, we measured gene expression longitudinally of 24 adult Pisaster ochraceus sea stars, collected from a recovered site, as they remained asymptomatic (8 individuals) or naturally progressed through SSW (16 individuals) in individual aquaria. Immune, tissue integrity and pro-collagen genes were more highly expressed in asymptomatic relative to wasting individuals, while hypoxia-inducible factor 1-α and RNA processing genes were more highly expressed in wasting relative to asymptomatic individuals. Integrating microbiome data from the same tissue samples, we identified genes and microbes whose abundance/growth was associated with disease status. Importantly, sea stars that remained visibly healthy showed that laboratory conditions had little effect on microbiome composition. Lastly, considering genotypes at 98 145 single-nucleotide polymorphism, we found no variants associated with final health status. These findings suggest that animals exposed to the cause(s) of SSW remain asymptomatic with an active immune response and sustained control of their collagen system while animals that succumb to wasting show evidence of responding to hypoxia and dysregulation of RNA processing systems.


Asunto(s)
Microbiota , Estrellas de Mar , Animales , Estrellas de Mar/fisiología , Animales Salvajes , Colágeno/genética
6.
Cell Tissue Res ; 394(2): 293-308, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37606764

RESUMEN

The potential to regenerate a damaged body part is expressed to a different extent in animals. Echinoderms, in particular starfish, are known for their outstanding regenerating potential. Differently, humans have restricted abilities to restore organ systems being dependent on limited sources of stem cells. In particular, the potential to regenerate the central nervous system is extremely limited, explaining the lack of natural mechanisms that could overcome the development of neurodegenerative diseases and the occurrence of trauma. Therefore, understanding the molecular and cellular mechanisms of regeneration in starfish could help the development of new therapeutic approaches in humans. In this study, we tackle the problem of starfish central nervous system regeneration by examining the external and internal anatomical and behavioral traits, the dynamics of coelomocyte populations, and neuronal tissue architecture after radial nerve cord (RNC) partial ablation. We noticed that the removal of part of RNC generated several anatomic anomalies and induced behavioral modifications (injured arm could not be used anymore to lead the starfish movement). Those alterations seem to be related to defense mechanisms and protection of the wound. In particular, histology showed that tissue patterns during regeneration resemble those described in holothurians and in starfish arm tip regeneration. Flow cytometry coupled with imaging flow cytometry unveiled a new coelomocyte population during the late phase of the regeneration process. Morphotypes of these and previously characterized coelomocyte populations were described based on IFC data. Further studies of this new coelomocyte population might provide insights on their involvement in radial nerve cord regeneration.


Asunto(s)
Nervio Radial , Pepinos de Mar , Animales , Humanos , Nervio Radial/fisiología , Estrellas de Mar/fisiología , Regeneración Nerviosa/fisiología
7.
Ecol Appl ; 33(8): e2913, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37615222

RESUMEN

Integrated pest management (IPM) leverages our understanding of ecological interactions to mitigate the impact of pest species on economically and/or ecologically important assets. It has primarily been applied in terrestrial settings (e.g., agriculture), but has rarely been attempted for marine ecosystems. The crown-of-thorns starfish (CoTS), Acanthaster spp., is a voracious coral predator throughout the Indo-Pacific where it undergoes large population increases (irruptions), termed outbreaks. During outbreaks CoTS act as a pest species and can result in substantial coral loss. Contemporary management of CoTS on the Great Barrier Reef (GBR) adopts facets of the IPM paradigm to manage these outbreaks through strategic use of direct manual control (culling) of individuals in response to ecologically based target thresholds. There has, however, been limited quantitative analysis of how to optimize the implementation of such thresholds. Here we use a multispecies modeling approach to assess the performance of alternative CoTS management scenarios for improving coral cover trajectories. The scenarios examined varied in terms of their ecological threshold target, the sensitivity of the threshold, and the level of management resourcing. Our approach illustrates how to quantify multidimensional trade-offs in resourcing constraints, concurrent CoTS and coral population dynamics, the stringency of target thresholds, and the geographical scale of management outcomes (number of sites). We found strategies with low target density thresholds for CoTS (≤0.03 CoTS min-1 ) could act as "Effort Sinks" and limit the number of sites that could be effectively controlled, particularly under CoTS population outbreaks. This was because a handful of sites took longer to control, which meant other sites were not controlled. Higher density thresholds (e.g., 0.04-0.08 CoTS min-1 ), tuned to levels of coral cover, diluted resources among sites but were more robust to resourcing constraints and pest population dynamics. Our study highlights trade-off decisions when using an IPM framework and informs the implementation of threshold-based strategies on the GBR.


Asunto(s)
Antozoos , Humanos , Animales , Arrecifes de Coral , Ecosistema , Estrellas de Mar/fisiología , Control de Plagas
8.
Gen Comp Endocrinol ; 334: 114226, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731602

RESUMEN

A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin, consisting of A- and B-chain. Recently, an RGP ortholog (Asc-RGP) from Astropecten scoparius in the order Paxillosida was found to harbor an amidation signal (Gly-Arg) at the C-terminus of the B-chain (Mita et al., 2020a). Two cleavage sites were also predicted within the signal peptide of the Asc-RGP precursor. Thus, four kinds of analogs (Asc-RGP-NH2(S), Asc-RGP-GR(S), Asc-RGP- NH2(L), Asc-RGP-GR(L) were hypothesized as natural Asc-RGPs. To identify the natural Asc-RGP, an extract of radial nerve cords from A. scoparius was analyzed using reverse-phase high-performance liquid chromatography and MALDI-TOF-mass spectrometry. The molecular weight of Asc-RGP was 4585.3, and those of A- and B-chains were 2511.8 and 2079.8, respectively. This strongly suggests that natural RGP in A. scoparius is Asc-RGP-NH2(S). Asc-RGP-NH2(S) stimulated 1-methyladenine and cyclic AMP production in isolated ovarian follicle cells of A. scoparius. On the other hand, the concentrations of four synthetic Asc-RGP analogs required for the induction of spawning in 50% of ovarian fragments were almost the same. The size and C-terminal amidation of the B-chain might not be important for spawning-inducing activity. C-terminally amidated RGPs in the B-chain were also observed in other species of starfish belonging to the order Paxillosida, particularly the family Astropectinidae, but not the family Luidiidae.


Asunto(s)
Hormonas de Invertebrados , Relaxina , Animales , Femenino , Gónadas , Relaxina/química , Estrellas de Mar/fisiología
9.
Bioessays ; 42(3): e1900219, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32078178

RESUMEN

Achieving regeneration of the central nervous system (CNS) is a major challenge for regenerative medicine. The inability of mammals to regrow a severed CNS contrasts with the amazing regenerative powers of their deuterostome kin, the echinoderms. Rapid CNS regeneration from a specialized autotomy plane in echinoderms presents a highly tractable and suitable non-model system for regenerative biology and evolution. Starfish arm autotomy triggers mass cell migration and local proliferation, facilitating rapid CNS regeneration. Many regeneration events in nature are preceded by autotomy and there are striking parallels between autotomy and regeneration in starfish and lizards. Comparison of these systems holds promise to provide insight into regeneration deficiency in higher vertebrates and to uncover evolutionarily conserved deuterostome-chordate regenerative processes. This will help identify mechanisms that may be present but inactive in higher vertebrates to address the problem of their poor regenerative capacities and the challenge to achieve CNS repair and regrowth.


Asunto(s)
Conducta Animal/fisiología , Sistema Nervioso Central/fisiología , Regeneración Nerviosa/genética , Estrellas de Mar/fisiología , Animales , Movimiento Celular/fisiología , Redes Reguladoras de Genes , Lagartos/fisiología , Neuronas/fisiología , Filogenia , Cola (estructura animal)/fisiología , Regulación hacia Arriba/genética
10.
Proc Biol Sci ; 287(1938): 20201341, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33143585

RESUMEN

Corallivorous crown-of-thorns starfishes (Acanthaster spp.) can decimate coral assemblages on Indo-Pacific coral reefs during population outbreaks. While initial drivers of population irruptions leading to outbreaks remain largely unknown, subsequent dispersal of outbreaks appears coincident with depletion of coral prey. Here, we used in situ time-lapse photography to characterize movement of the Pacific crown-of-thorns starfish (Acanthaster cf. solaris) in the northern and southern Great Barrier Reef in 2015, during the fourth recorded population outbreak of the starfish, but prior to widespread coral bleaching. Daily tracking of 58 individuals over a total of 1117 h revealed all starfish to move a minimum of 0.52 m, with around half of all tracked starfish showing negligible daily displacement (less than 1 m day-1), ranging up to a maximum of 19 m day-1. Movement was primarily nocturnal and daily displacement varied spatially with variation in local availability of Acropora spp., which is the preferred coral prey. Two distinct behavioural modes emerged: (i) homing movement, whereby tracked paths (as tested against a random-walk-model) involved short displacement distances following distinct 'outward' movement to Acropora prey (typically displaying 'feeding scars') and 'homebound' movement to nearby shelter; versus (ii) roaming movement, whereby individuals showed directional movement beyond initial tracking positions without return. Logistic modelling revealed more than half of all tracked starfish demonstrated homing when local abundance (percentage cover) of preferred Acropora coral prey was greater than 33%. Our results reveal facultative homing by Acanthaster with the prey-dependent behavioural switch to roaming forays providing a mechanism explaining localized aggregations and diffusion of these population irruptions as prey is locally depleted.


Asunto(s)
Fenómenos de Retorno al Lugar Habitual , Estrellas de Mar/fisiología , Animales , Antozoos , Arrecifes de Coral , Movimiento
11.
Proc Biol Sci ; 287(1931): 20201052, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32693724

RESUMEN

Population dynamics of organisms are shaped by the variation in phenotypic traits, often expressed even among individuals from the same cohort. For example, individual variation in the timing of ontogenetic shifts in diet and/or habitat greatly influences subsequent growth and survival of some organisms, with critical effects on population dynamics. Few studies of natural systems have, however, demonstrated that marked phenotypic variation in growth rates or body size among individuals within a modelled cohort is linked to dietary shifts and food availability. Population irruptions of the crown-of-thorns starfish are one of the foremost contributors to the global degradation of coral reefs, but causes of irruptions have been debated for decades. Here we demonstrate, based on extensive field sampling of juvenile starfish (n = 3532), that marked variation in body size among juvenile starfish is linked to an ontogenetic diet shift from coralline algae to coral. This transition in diet leads to exponential growth in juveniles and is essential for individuals to reach maturity. Because smaller individuals experience higher mortality and growth is stunted on an algal diet, the ontogenetic shift to corallivory enhances individual fitness and replenishment success. Our findings suggest that the availability of coral prey facilitates early ontogenetic diet shifts and may be fundamental in initiating population irruptions.


Asunto(s)
Dieta , Estrellas de Mar/fisiología , Animales , Antozoos , Tamaño Corporal , Arrecifes de Coral , Dinámica Poblacional
12.
Proc Biol Sci ; 287(1931): 20200970, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32673558

RESUMEN

Ocean warming impacts the fitness of marine ectothermic species, leading to poleward range shifts, re-shuffling of communities, and changes in ecosystem services. While the detrimental effects of summer heat waves have been widely studied, little is known about the impacts of winter warming on marine species in temperate regions. Many species benefit from low winter temperature-induced reductions in metabolism, as these permit conservation of energy reserves that are needed to support reproduction in spring. Here, we used a unique outdoor mesocosm system to expose a coastal predator-prey system, the sea star Asterias and the blue mussel Mytilus, to different winter warming scenarios under near-natural conditions. We found that the body condition of mussels decreased in a linear fashion with increasing temperature. Sea star growth also decreased with increasing temperature, which was a function of unaltered predation rates and decreased mussel body condition. Asterias relative digestive gland mass strongly declined over the studied temperature interval (ca twofold). This could have severe implications for reproductive capacity in the following spring, as digestive glands provide reserve compounds to maturing gonads. Thus, both predator and prey suffered from a mismatch of energy acquisition versus consumption in warmer winter scenarios, with pronounced consequences for food web energy transfer in future oceans.


Asunto(s)
Bivalvos/fisiología , Cambio Climático , Conducta Predatoria/fisiología , Agua de Mar/química , Estrellas de Mar/fisiología , Animales , Ecosistema , Cadena Alimentaria , Océanos y Mares , Estaciones del Año , Inanición , Temperatura
13.
Gen Comp Endocrinol ; 287: 113351, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805285

RESUMEN

A relaxin-like gonad-stimulating peptide (RGP), comprising two peptide chains (A- and B-chains) linked by two interchain bonds and one intrachain disulfide bond, acts as a gonadotropin in starfish. RGP orthologs have been identified in several starfish species, including Patiria pectinifera (PpeRGP), Asterias rubens (AruRGP) and Aphelasterias japonica (AjaRGP). To analyze species-specificity, this study examined the effects on oocyte maturation and ovulation in ovaries of A. rubens and A. japonica of nine RGP derivatives comprising different combinations of A- and B-chains from the three species. All nine RGP derivatives induced spawning in A. rubens and A. japonica ovaries. However, AruRGP, AjaRGP and their chimeric derivatives were more potent than peptides containing the A- or B-chain of PpeRGP. Three-dimensional models of the structures of the RGP derivatives revealed that residues in the B-chains, such as AspB6, MetB10 and PheB13 in PpeRGP and GluB7, MetB11, and TyrB14 in AruRGP and AjaRGP, respectively, are likely to be involved in receptor binding. Conversely, it is likely that ArgA18 in the A-chain of AruRGP and AjaRGP impairs binding of these peptides to the PpeRGP receptor in P. pectinifera. In conclusion, this study provides new insights into the structural basis of RGP bioactivity and RGP receptor activation in starfish.


Asunto(s)
Asterias/fisiología , Hormonas de Invertebrados/farmacología , Neuropéptidos/farmacología , Oogénesis/efectos de los fármacos , Ovulación/efectos de los fármacos , Hormonas Peptídicas/farmacología , Animales , Asterias/efectos de los fármacos , Femenino , Hormonas de Invertebrados/química , Neuropéptidos/química , Oocitos/efectos de los fármacos , Oocitos/fisiología , Ovario/efectos de los fármacos , Ovario/metabolismo , Hormonas Peptídicas/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Relaxina/química , Estrellas de Mar/efectos de los fármacos , Estrellas de Mar/fisiología
14.
Biosci Biotechnol Biochem ; 84(1): 95-102, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31478781

RESUMEN

D-Aspartate, aspartate racemase activity, and D-aspartate oxidase activity were detected in tissues from several types of starfish. Aspartate racemase activity in male testes of Patiria pectinifera was significantly elevated in the summer months of the breeding season compared with spring months. We also compared aspartate racemase activity with the gonad index and found that activity in individuals with a gonad index ≥6% was four-fold higher than that of individuals with a gonad index <6%. The ratio of the D-form of aspartate to total aspartate was approximately 25% in testes with a gonad index <6% and this increased to approximately 40% in testes with a gonad index ≥6%. However, such changes were not observed in female ovaries. Administration of D-aspartate into male starfish caused testicular growth. These results indicate the possible involvement of aspartate racemase and D-aspartate in testicular maturation in echinoderm starfish.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacología , Estrellas de Mar/fisiología , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Animales , Ácido Aspártico/administración & dosificación , Ácido Aspártico/farmacología , Cromatografía Líquida de Alta Presión , Ácido D-Aspártico/administración & dosificación , Estrona/administración & dosificación , Estrona/farmacología , Femenino , Masculino , Ovario/crecimiento & desarrollo , Estaciones del Año , Espermatogénesis/fisiología , Testosterona/administración & dosificación , Testosterona/farmacología
15.
BMC Biol ; 17(1): 16, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30795750

RESUMEN

BACKGROUND: Metazoan lineages exhibit a wide range of regenerative capabilities that vary among developmental stage and tissue type. The most robust regenerative abilities are apparent in the phyla Cnidaria, Platyhelminthes, and Echinodermata, whose members are capable of whole-body regeneration (WBR). This phenomenon has been well characterized in planarian and hydra models, but the molecular mechanisms of WBR are less established within echinoderms, or any other deuterostome system. Thus, it is not clear to what degree aspects of this regenerative ability are shared among metazoa. RESULTS: We characterize regeneration in the larval stage of the Bat Star (Patiria miniata). Following bisection along the anterior-posterior axis, larvae progress through phases of wound healing and re-proportioning of larval tissues. The overall number of proliferating cells is reduced following bisection, and we find evidence for a re-deployment of genes with known roles in embryonic axial patterning. Following axial respecification, we observe a significant localization of proliferating cells to the wound region. Analyses of transcriptome data highlight the molecular signatures of functions that are common to regeneration, including specific signaling pathways and cell cycle controls. Notably, we find evidence for temporal similarities among orthologous genes involved in regeneration from published Platyhelminth and Cnidarian regeneration datasets. CONCLUSIONS: These analyses show that sea star larval regeneration includes phases of wound response, axis respecification, and wound-proximal proliferation. Commonalities of the overall process of regeneration, as well as gene usage between this deuterostome and other species with divergent evolutionary origins reveal a deep similarity of whole-body regeneration among the metazoa.


Asunto(s)
Evolución Biológica , Larva/fisiología , Regeneración/fisiología , Estrellas de Mar/fisiología , Animales , Transcriptoma
16.
Dev Biol ; 433(2): 297-309, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29291979

RESUMEN

Regeneration is a post-embryonic developmental process that ensures complete morphological and functional restoration of lost body parts. The repair phase is a key step for the effectiveness of the subsequent regenerative process: in vertebrates, efficient re-epithelialisation, rapid inflammatory/immune response and post-injury tissue remodelling are fundamental aspects for the success of this phase, their impairment leading to an inhibition or total prevention of regeneration. Among deuterostomes, echinoderms display a unique combination of striking regenerative abilities and diversity of useful experimental models, although still largely unexplored. Therefore, the brittle star Amphiura filiformis and the starfish Echinaster sepositus were here used to comparatively investigate the main repair phase events after injury as well as the presence and expression of immune system and extracellular matrix (i.e. collagen) molecules using both microscopy and molecular tools. Our results showed that emergency reaction and re-epithelialisation are similar in both echinoderm models, being faster and more effective than in mammals. Moreover, in comparison to the latter, both echinoderms showed delayed and less abundant collagen deposition at the wound site (absence of fibrosis). The gene expression patterns of molecules related to the immune response, such as Ese-fib-like (starfishes) and Afi-ficolin (brittle stars), were described for the first time during echinoderm regeneration providing promising starting points to investigate the immune system role in these regeneration models. Overall, the similarities in repair events and timing within the echinoderms and the differences with what has been reported in mammals suggest that effective repair processes in echinoderms play an important role for their subsequent ability to regenerate. Targeted molecular and functional analyses will shed light on the evolution of these abilities in the deuterostomian lineage.


Asunto(s)
Extremidades/fisiología , Regeneración/fisiología , Estrellas de Mar/fisiología , Animales , Colágeno/metabolismo , Epidermis/ultraestructura , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Estudios de Asociación Genética , Microscopía Electrónica , Regeneración/genética , Regeneración/inmunología , Especificidad de la Especie , Estrellas de Mar/genética , Estrellas de Mar/inmunología , Factores de Transcripción/fisiología , Cicatrización de Heridas/fisiología
17.
Proc Biol Sci ; 286(1901): 20182701, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014214

RESUMEN

Arm loss through a separation at a specialized autotomy plane in echinoderms is inextricably linked to regeneration, but the link between these phenomena is poorly explored. We investigated nervous system regeneration post-autotomy in the asteriid seastar Coscinasterias muricata, focusing on the reorganization of the radial nerve cord (RNC) into the ectoneural neuroepithelium and neuropile, and the hyponeural region, using antibodies to the seastar-specific neuropeptide SALMFamide-1 (S1). Parallel changes in the associated haemal and coelomic vessels were also examined. A new arm bud appeared in 3-5 days with regeneration over three weeks. At the nerve stump and in the RNC immediately behind, the haemal sinus/hyponeural coelomic compartments enlarged into a hypertrophied space filled with migratory cells that appear to be involved in wound healing and regeneration. The haemal and coelomic compartments provided a conduit for these cells to gain rapid access to the regeneration site. An increase in the number of glia-like cells indicates the importance of these cells in regeneration. Proximal to the autotomy plane, the original RNC exhibited Wallerian-type degeneration, as seen in disorganized axons and enlarged S1-positive varicosities. The imperative to regrow lost arms quickly is reflected in the efficiency of regeneration from the autotomy plane facilitated by the rapid appearance of progenitor-like migratory cells. In parallel to its specialization for defensive arm detachment, the autotomy plane appears to be adapted to promote regeneration. This highlights the importance of examining autotomy-induced regeneration in seastars as a model system to study nervous system regeneration in deuterostomes and the mechanisms involved with the massive migration of stem-like cells to facilitate rapid recovery.


Asunto(s)
Expresión Génica/fisiología , Neuropéptidos/genética , Regeneración/genética , Estrellas de Mar/fisiología , Animales , Neuropéptidos/metabolismo , Estrellas de Mar/genética
18.
Proc Biol Sci ; 286(1901): 20182766, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014216

RESUMEN

Disease emergence occurs within the context of ecological communities, and disease driven declines in host populations can lead to complex direct and indirect ecological effects. Varying effects of a single disease among multiple susceptible hosts could benefit relatively resistant species. Beginning in 2013, an outbreak of sea star wasting disease (SSWD) led to population declines of many sea star species along the west coast of North America. Through field surveys and laboratory experiments, we investigated how and why the relative abundances of two co-occurring sea star species, Evasterias troschelii and Pisaster ochraceus, shifted during the ongoing wasting epidemic in Burrard Inlet, British Columbia, Canada. We hypothesized that Evasterias is competitively inferior to Pisaster but more resistant to SSWD. Thus, we predicted that SSWD-induced declines of Pisaster could mitigate the negative effects of SSWD on Evasterias, as the latter would experience competitive release. We document shifts in sea star abundance from 2008-2017: Pisaster abundance and mean size declined during the outbreak, while Evasterias abundance increased from relatively rare to numerically dominant within the intertidal. When exposed to symptomatic sea stars, Pisaster and Evasterias both showed signs of SSWD, but transmission and susceptibility was lower in Evasterias. Despite diet overlap documented in our field surveys, Evasterias was not outcompeted by Pisaster in laboratory trails conducted with the relatively small Pisaster available after the outbreak. Interference competition with larger Pisaster, or prey exploitation by Pisaster during the summer when Evasterias is primarily subtidal, may explain the rarity of Evasterias prior to Pisaster declines. Our results suggest that indirect effects mediated by competition can mask some of the direct effects of disease outbreaks, and the combination of direct and indirect effects will determine the restructuring of a community after disturbance.


Asunto(s)
Densovirus/fisiología , Microbiota , Estrellas de Mar/fisiología , Animales , Colombia Británica , Dinámica Poblacional , Especificidad de la Especie , Estrellas de Mar/microbiología , Estrellas de Mar/virología
19.
Cell Tissue Res ; 377(3): 445-458, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31446445

RESUMEN

The emergence of a specialized system for food digestion and nutrient absorption was a crucial innovation for multicellular organisms. Digestive systems with different levels of complexity evolved in different animals, with the endoderm-derived one-way gut of most bilaterians to be the prevailing and more specialized form. While the molecular events regulating the early phases of embryonic tissue specification have been deeply investigated in animals occupying different phylogenetic positions, the mechanisms underlying gut patterning and gut-associated structures differentiation are still mostly obscure. In this review, we describe the main discoveries in gut and gut-associated structures development in echinoderm larvae (mainly for sea urchin and, when available, for sea star) and compare them with existing information in vertebrates. An impressive degree of conservation emerges when comparing the transcription factor toolkits recruited for gut cells and tissue differentiation in animals as diverse as echinoderms and vertebrates, thus suggesting that their function emerged in the deuterostome ancestor.


Asunto(s)
Tracto Gastrointestinal , Erizos de Mar/fisiología , Estrellas de Mar/fisiología , Vertebrados/fisiología , Animales , Evolución Biológica , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/fisiología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Larva/fisiología , Erizos de Mar/genética , Estrellas de Mar/genética , Vertebrados/genética
20.
PLoS Comput Biol ; 14(11): e1006588, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30439934

RESUMEN

Cytoplasmic flows are an ubiquitous feature of biological systems, in particular in large cells, such as oocytes and eggs in early animal development. Here we show that cytoplasmic flows in starfish oocytes, which can be imaged well with transmission light microscopy, are fully determined by the cortical dynamics during surface contraction waves. We first show that the dynamics of the oocyte surface is highly symmetric around the animal-vegetal axis. We then mathematically solve the Stokes equation for flows inside a deforming sphere using the measured surface displacements as boundary conditions. Our theoretical predictions agree very well with the intracellular flows quantified by particle image velocimetry, proving that during this stage the starfish cytoplasm behaves as a simple Newtonian fluid on the micrometer scale. We calculate the pressure field inside the oocyte and find that its gradient is too small as to explain polar body extrusion, in contrast to earlier suggestions. Myosin II inhibition by blebbistatin confirms this conclusion, because it diminishes cell shape changes and hydrodynamic flow, but does not abolish polar body formation.


Asunto(s)
Citoplasma/fisiología , Oocitos/citología , Estrellas de Mar/fisiología , Actinas/química , Algoritmos , Animales , Citoplasma/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Imagenología Tridimensional , Modelos Teóricos , Miosina Tipo II/metabolismo , Distribución Normal , Cuerpos Polares , Rotación , Agua de Mar , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA