Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.709
Filtrar
1.
Am J Physiol Endocrinol Metab ; 327(1): E55-E68, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717364

RESUMEN

Statins are used to treat hypercholesterolemia and function by inhibiting the production of the rate-limiting metabolite mevalonate. As such, statin treatment not only inhibits de novo synthesis of cholesterol but also isoprenoids that are involved in prenylation, the posttranslational lipid modification of proteins. The immunomodulatory effects of statins are broad and often conflicting. Previous work demonstrated that statins increased survival and inhibited myeloid cell trafficking in a murine model of sepsis, but the exact mechanisms underlying this phenomenon were unclear. Herein, we investigated the role of prenylation in chemoattractant responses. We found that simvastatin treatment abolished chemoattractant responses induced by stimulation by C5a and FMLP. The inhibitory effect of simvastatin treatment was unaffected by the addition of either farnesyl pyrophosphate (FPP) or squalene but was reversed by restoring geranylgeranyl pyrophosphate (GGPP). Treatment with prenyltransferase inhibitors showed that the chemoattractant response to both chemoattractants was dependent on geranylgeranylation. Proteomic analysis of C15AlkOPP-prenylated proteins identified several geranylgeranylated proteins involved in chemoattractant responses, including RHOA, RAC1, CDC42, and GNG2. Chemoattractant responses in THP-1 human macrophages were also geranylgeranylation dependent. These studies provide data that help clarify paradoxical findings on the immunomodulatory effects of statins. Furthermore, they establish the role of geranylgeranylation in mediating the morphological response to chemoattractant C5a.NEW & NOTEWORTHY The immunomodulatory effect of prenylation is ill-defined. We investigated the role of prenylation on the chemoattractant response to C5a. Simvastatin treatment inhibits the cytoskeletal remodeling associated with a chemotactic response. We showed that the chemoattractant response to C5a was dependent on geranylgeranylation, and proteomic analysis identified several geranylgeranylated proteins that are involved in C5a receptor signaling and cytoskeletal remodeling. Furthermore, they establish the role of geranylgeranylation in mediating the response to chemoattractant C5a.


Asunto(s)
Fosfatos de Poliisoprenilo , Fosfatos de Poliisoprenilo/farmacología , Fosfatos de Poliisoprenilo/metabolismo , Humanos , Simvastatina/farmacología , Factores Quimiotácticos/farmacología , Factores Quimiotácticos/metabolismo , Fagocitos/efectos de los fármacos , Fagocitos/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Complemento C5a/metabolismo , Prenilación de Proteína/efectos de los fármacos , Animales , Ratones , Sesquiterpenos
2.
J Cell Sci ; 135(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35916164

RESUMEN

The Dictyostelium atypical mitogen-activated protein kinase (MAPK) Erk2 is required for chemotactic responses to cAMP as amoeba undergo multicellular development. In this study, Erk2 was found to be essential for the cAMP-stimulated translocation of the GATA transcription factor GtaC as indicated by the distribution of a GFP-GtaC reporter. Erk2 was also found to be essential for the translocation of GtaC in response to external folate, a foraging signal that directs the chemotaxis of amoeba to bacteria. Erk1, the only other Dictyostelium MAPK, was not required for the GtaC translocation to either chemoattractant, indicating that GFP-GtaC is a kinase translocation reporter specific for atypical MAPKs. The translocation of GFP-GtaC in response to folate was absent in mutants lacking the folate receptor Far1 or the coupled G-protein subunit Gα4. Loss of GtaC function resulted in enhanced chemotactic movement to folate, suggesting that GtaC suppresses responses to folate. The alteration of four Erk2-preferred phosphorylation sites in GtaC impacted the translocation of GFP-GtaC in response to folate and the GFP-GtaC-mediated rescue of aggregation and development of gtaC- cells. The ability of different chemoattractants to stimulate Erk2-regulated GtaC translocation suggests that atypical MAPK-mediated regulation of transcription factors can contribute to different cell fates.


Asunto(s)
Dictyostelium , Factores Quimiotácticos/metabolismo , Factores Quimiotácticos/farmacología , Dictyostelium/metabolismo , Ácido Fólico/farmacología , Factores de Transcripción GATA/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo
3.
Phys Rev Lett ; 133(6): 068401, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39178438

RESUMEN

When cells of the social amoeba Dictyostelium discoideum are starved of nutrients they start to synthesize and secrete the chemical messenger and chemoattractant cyclic adenosine monophosphate (cAMP). This signal is relayed by other cells, resulting in the establishment of periodic waves. The cells aggregate through chemotaxis toward the center of these waves. We investigated the chemotactic response of individual cells to repeated exposure to waves of cAMP generated by a microfluidic device. For fast-moving waves (short period), the chemotactic ability of the cells was found to increase upon exposure to more waves, suggesting the development of a memory over several cycles. This effect was not significant for slow-moving waves (large period). We show that the experimental results are consistent with a local excitation global inhibition-based model, extended by including a component that rises and decays slowly and that is activated by the temporal gradient of cAMP concentration. The observed enhancement in chemotaxis is relevant to populations in the wild: once sustained, periodic waves of the chemoattractant are established, it is beneficial to cells to improve their chemotactic ability in order to reach the aggregation center sooner.


Asunto(s)
Quimiotaxis , AMP Cíclico , Dictyostelium , Modelos Biológicos , Quimiotaxis/fisiología , Dictyostelium/fisiología , AMP Cíclico/metabolismo , Factores Quimiotácticos/farmacología , Factores Quimiotácticos/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 43(3): 456-473, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36700427

RESUMEN

BACKGROUND: Late vein graft failure is caused by intimal thickening resulting from endothelial cell (EC) damage and inflammation which promotes vascular smooth muscle cell (VSMC) dedifferentiation, migration, and proliferation. Nonphosphorylatable PRH (proline-rich homeodomain) S163C:S177C offers enhanced stability and sustained antimitotic effect. Therefore, we investigated whether adenovirus-delivered PRH S163C:S177C protein attenuates intimal thickening via VSMC phenotype modification without detrimental effects on ECs. METHODS: PRH S163C:S177C was expressed in vitro (human saphenous vein-VSMCs and human saphenous vein-ECs) and in vivo (ligated mouse carotid arteries) by adenoviruses. Proliferation, migration, and apoptosis were quantified and phenotype was assessed using Western blotting for contractile filament proteins and collagen gel contraction. EC inflammation was quantified using VCAM (vascular cell adhesion protein)-1, ICAM (intercellular adhesion molecule)-1, interleukin-6, and monocyte chemotactic factor-1 measurement and monocyte adhesion. Next Generation Sequencing was utilized to identify novel downstream mediators of PRH action and these and intimal thickening were investigated in vivo. RESULTS: PRH S163C:S177C inhibited proliferation, migration, and apoptosis and promoted contractile phenotype (enhanced contractile filament proteins and collagen gel contraction) compared with virus control in human saphenous vein-VSMCs. PRH S163C:S177C expression in human saphenous vein-ECs significantly reduced apoptosis, without affecting cell proliferation and migration, while reducing TNF (tumor necrosis factor)-α-induced VCAM-1 and ICAM-1 and monocyte adhesion and suppressing interleukin-6 and monocyte chemotactic factor-1 protein levels. PRH S163C:S177C expression in ligated murine carotid arteries significantly impaired carotid artery ligation-induced neointimal proliferation and thickening without reducing endothelial coverage. Next Generation Sequencing revealed STAT-1 (signal transducer and activator of transcription 1) and HDAC-9 (histone deacetylase 9) as mediators of PRH action and was supported by in vitro and in vivo analyses. CONCLUSIONS: We observed PRH S163C:S177C attenuated VSMC proliferation, and migration and enhanced VSMC differentiation at least in part via STAT-1 and HDAC-9 signaling while promoting endothelial repair and anti-inflammatory properties. These findings highlight the potential for PRH S163C:S177C to preserve endothelial function whilst suppressing intimal thickening, and reducing late vein graft failure.


Asunto(s)
Interleucina-6 , Túnica Íntima , Ratones , Animales , Humanos , Interleucina-6/metabolismo , Túnica Íntima/patología , Proliferación Celular , Neointima/patología , Factores Quimiotácticos/metabolismo , Factores Quimiotácticos/farmacología , Miocitos del Músculo Liso/metabolismo , Movimiento Celular
5.
Arch Biochem Biophys ; 734: 109497, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36574914

RESUMEN

NFIC is a potent transcriptional factor involved in many physiological and pathological processes, including tumorigenesis. However, the role of NFIC1, the longest isoform of NFIC, in the progression of triple negative breast cancer (TNBC) remains elusive. Our study demonstrates that overexpression of NFIC1 inhibits the migration and invasion of TNBC MDA-MB-231 cells. NFIC1 regulates the expression of S100A2, and knockdown of S100A2 reverses the inhibitive effects of NFIC1 on the migration and invasion of MDA-MB-231 cells. Furthermore, knockdown of S100A2 activates the MEK/ERK signaling transduction pathway that is inhibited by NFIC1 overexperssion. Treatment with MEK/ERK pathway inhibitor, U0126, abolishes the effects of S100A2 knockdown. In addition, overexpression of NFIC1 in MDA-MB-231 cells increases the expression of epithelial markers and decreases the expression of mesenchymal markers, and these effects could also be reversed by knockdown of S100A2. Collectively, these results demonstrate that NFIC1 inhibits the Epithelial-mesenchymal transition (EMT) of MDA-MB-231 cells by regulating S100A2 expression, which suppress the activation of MEK/ERK pathway. Therefore, our study confirms the role of NFIC1 as a tumor repressor in TNBC, and reveals the molecular mechanism through which NFIC1 inhibits the migration and invasion of MDA-MB-231 cells.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias de la Mama Triple Negativas , Humanos , Células MDA-MB-231 , Proliferación Celular , Movimiento Celular , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Factores Quimiotácticos/metabolismo , Factores Quimiotácticos/farmacología , Proteínas S100/metabolismo , Proteínas S100/farmacología
6.
Exp Cell Res ; 418(1): 113218, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618013

RESUMEN

Interplay between models and experimental data advances discovery and understanding in biology, particularly when models generate predictions that allow well-designed experiments to distinguish between alternative mechanisms. To illustrate how this feedback between models and experiments can lead to key insights into biological mechanisms, we explore three examples from cellular slime mold chemotaxis. These examples include studies that identified chemotaxis as the primary mechanism behind slime mold aggregation, discovered that cells likely measure chemoattractant gradients by sensing concentration differences across cell length, and tested the role of cell-associated chemoattractant degradation in shaping chemotactic fields. Although each study used a different model class appropriate to their hypotheses - qualitative, mathematical, or simulation-based - these examples all highlight the utility of modeling to formalize assumptions and generate testable predictions. A central element of this framework is the iterative use of models and experiments, specifically: matching experimental designs to the models, revising models based on mismatches with experimental data, and validating critical model assumptions and predictions with experiments. We advocate for continued use of this interplay between models and experiments to advance biological discovery.


Asunto(s)
Dictyosteliida , Dictyostelium , Factores Quimiotácticos/farmacología , Quimiotaxis , Simulación por Computador , Modelos Biológicos
7.
Biophys J ; 121(13): 2557-2567, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35644945

RESUMEN

Cell migration on an adhesive substrate surface comprises actin-based protrusion at the front and retraction of the tail in combination with coordinated adhesion to, and detachment from, the substrate. To study the effect of cell-to-substrate adhesion on the chemotactic response of Dictyostelium discoideum cells, we exposed the cells to patterned substrate surfaces consisting of adhesive and inert areas, and forced them by a gradient of chemoattractant to enter the border between the two areas. Wild-type as well as myosin II-deficient cells stop at the border of an adhesive area. They do not detach with their rear part, while on the nonadhesive area they protrude pseudopods at their front toward the source of chemoattractant. Avoidance of the nonadhesive area may cause a cell to move in tangential direction relative to the attractant gradient, keeping its tail at the border of the adhesive surface.


Asunto(s)
Dictyostelium , Actinas/metabolismo , Movimiento Celular/fisiología , Factores Quimiotácticos/farmacología , Quimiotaxis , Miosina Tipo II/metabolismo , Seudópodos/metabolismo
8.
PLoS Biol ; 17(10): e3000457, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600188

RESUMEN

Migratory cells use distinct motility modes to navigate different microenvironments, but it is unclear whether these modes rely on the same core set of polarity components. To investigate this, we disrupted actin-related protein 2/3 (Arp2/3) and the WASP-family verprolin homologous protein (WAVE) complex, which assemble branched actin networks that are essential for neutrophil polarity and motility in standard adherent conditions. Surprisingly, confinement rescues polarity and movement of neutrophils lacking these components, revealing a processive bleb-based protrusion program that is mechanistically distinct from the branched actin-based protrusion program but shares some of the same core components and underlying molecular logic. We further find that the restriction of protrusion growth to one site does not always respond to membrane tension directly, as previously thought, but may rely on closely linked properties such as local membrane curvature. Our work reveals a hidden circuit for neutrophil polarity and indicates that cells have distinct molecular mechanisms for polarization that dominate in different microenvironments.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/genética , Polaridad Celular/genética , Quimiotaxis/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Fenómenos Biomecánicos , Sistemas CRISPR-Cas , Adhesión Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Polaridad Celular/efectos de los fármacos , Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Edición Génica , Regulación de la Expresión Génica , Células HEK293 , Células HL-60 , Humanos , Microscopía de Fuerza Atómica , N-Formilmetionina Leucil-Fenilalanina/farmacología , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Seudópodos/ultraestructura , Transducción de Señal , Propiedades de Superficie , Familia de Proteínas del Síndrome de Wiskott-Aldrich/deficiencia
9.
PLoS Comput Biol ; 17(7): e1008803, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34260581

RESUMEN

During the last decade, a consensus has emerged that the stochastic triggering of an excitable system drives pseudopod formation and subsequent migration of amoeboid cells. The presence of chemoattractant stimuli alters the threshold for triggering this activity and can bias the direction of migration. Though noise plays an important role in these behaviors, mathematical models have typically ignored its origin and merely introduced it as an external signal into a series of reaction-diffusion equations. Here we consider a more realistic description based on a reaction-diffusion master equation formalism to implement these networks. In this scheme, noise arises naturally from a stochastic description of the various reaction and diffusion terms. Working on a three-dimensional geometry in which separate compartments are divided into a tetrahedral mesh, we implement a modular description of the system, consisting of G-protein coupled receptor signaling (GPCR), a local excitation-global inhibition mechanism (LEGI), and signal transduction excitable network (STEN). Our models implement detailed biochemical descriptions whenever this information is available, such as in the GPCR and G-protein interactions. In contrast, where the biochemical entities are less certain, such as the LEGI mechanism, we consider various possible schemes and highlight the differences between them. Our simulations show that even when the LEGI mechanism displays perfect adaptation in terms of the mean level of proteins, the variance shows a dose-dependence. This differs between the various models considered, suggesting a possible means for determining experimentally among the various potential networks. Overall, our simulations recreate temporal and spatial patterns observed experimentally in both wild-type and perturbed cells, providing further evidence for the excitable system paradigm. Moreover, because of the overall importance and ubiquity of the modules we consider, including GPCR signaling and adaptation, our results will be of interest beyond the field of directed migration.


Asunto(s)
Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Simulación por Computador , Modelos Biológicos , Biología Computacional , Difusión , Seudópodos/efectos de los fármacos , Procesos Estocásticos
10.
Cell Mol Life Sci ; 78(9): 4095-4124, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33544156

RESUMEN

The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of 'marginated' neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung's capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.


Asunto(s)
Infiltración Neutrófila/fisiología , Neutrófilos/inmunología , Quimiocinas/metabolismo , Factores Quimiotácticos/farmacología , Citocinas/metabolismo , Endotelio/inmunología , Endotelio/metabolismo , Matriz Extracelular/metabolismo , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/citología , Neutrófilos/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(22): 10792-10797, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31097577

RESUMEN

Ephemeral aggregations of bacteria are ubiquitous in the environment, where they serve as hotbeds of metabolic activity, nutrient cycling, and horizontal gene transfer. In many cases, these regions of high bacterial concentration are thought to form when motile cells use chemotaxis to navigate to chemical hotspots. However, what governs the dynamics of bacterial aggregations is unclear. Here, we use an experimental platform to create realistic submillimeter-scale nutrient pulses with controlled nutrient concentrations. By combining experiments, mathematical theory, and agent-based simulations, we show that individual Vibrio ordalii bacteria begin chemotaxis toward hotspots of dissolved organic matter (DOM) when the magnitude of the chemical gradient rises sufficiently far above the sensory noise that is generated by stochastic encounters with chemoattractant molecules. Each DOM hotspot is surrounded by a dynamic ring of chemotaxing cells, which congregate in regions of high DOM concentration before dispersing as DOM diffuses and gradients become too noisy for cells to respond to. We demonstrate that V. ordalii operates close to the theoretical limits on chemotactic precision. Numerical simulations of chemotactic bacteria, in which molecule counting noise is explicitly taken into account, point at a tradeoff between nutrient acquisition and the cost of chemotactic precision. More generally, our results illustrate how limits on sensory precision can be used to understand the location, spatial extent, and lifespan of bacterial behavioral responses in ecologically relevant environments.


Asunto(s)
Bacterias , Quimiotaxis/fisiología , Modelos Biológicos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Factores Quimiotácticos/farmacología , Simulación por Computador , Ambiente , Relación Señal-Ruido , Vibrio/efectos de los fármacos , Vibrio/fisiología
12.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142256

RESUMEN

BACKGROUND: We conducted intratracheal instillations of different molecular weights of polyacrylic acid (PAA) into rats in order to examine what kinds of physicochemical characteristics of acrylic acid-based polymer affect responses in the lung. METHODS: F344 rats were intratracheally exposed to a high molecular weight (HMW) of 598 thousand g/mol or a low molecular weight (LMW) of 30.9 thousand g/mol PAA at low and high doses. Rats were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months post exposure. RESULTS: HMW PAA caused persistent increases in neutrophil influx, cytokine-induced neutrophil chemoattractants (CINC) in the bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in the lung tissue from 3 days to 3 months and 6 months following instillation. On the other hand, LMW PAA caused only transient increases in neutrophil influx, CINC in BALF, and HO-1 in the lung tissue from 3 days to up to 1 week or 1 month following instillation. Histopathological findings of the lungs demonstrated that the extensive inflammation and fibrotic changes caused by the HMW PAA was greater than that in exposure to the LMW PAA during the observation period. CONCLUSION: HMW PAA induced persistence of lung disorder, suggesting that molecular weight is a physicochemical characteristic of PAA-induced lung disorder.


Asunto(s)
Hemo-Oxigenasa 1 , Pulmón , Resinas Acrílicas/farmacología , Animales , Líquido del Lavado Bronquioalveolar/química , Factores Quimiotácticos/farmacología , Citocinas/farmacología , Intubación Intratraqueal , Pulmón/patología , Peso Molecular , Ratas , Ratas Endogámicas F344
13.
Cancer Immunol Immunother ; 70(2): 547-561, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32860527

RESUMEN

Anti-cancer T-cell responses are often halted due to the immune-suppressive micro-environment, in part related to tumor-associated macrophages. In the current study, we assessed indigestible ß-glucans (oatßG, curdlan, grifolan, schizophyllan, lentinan, yeast whole glucan particles (yWGP), zymosan and two additional yeast-derived ß-glucans a and b) for their physicochemical properties as well as their effects on the plasticity of human monocyte-derived macrophages that were polarized with IL-4 to immune-suppressive macrophages. Beta-glucans were LPS/LTA free, and tested for solubility, molecular masses, protein and monosaccharide contents. Curdlan, yeast-b and zymosan re-polarized M(IL-4) macrophages towards an M1-like phenotype, in particular showing enhanced gene expression of CCR7, ICAM1 and CD80, and secretion of TNF-α and IL-6. Notably, differential gene expression, pathway analysis as well as protein expressions demonstrated that M(IL-4) macrophages treated with curdlan, yeast-b or zymosan demonstrated enhanced production of chemo-attractants, such as CCL3, CCL4, and CXCL8, which contribute to recruitment of monocytes and neutrophils. The secretion of chemo-attractants was confirmed when using patient-derived melanoma-infiltrating immune cells. Taken together, the bacterial-derived curdlan as well as the yeast-derived ß-glucans yeast-b and zymosan have the unique ability to preferentially skew macrophages towards a chemo-attractant-producing phenotype that may aid in anti-cancer immune responses.


Asunto(s)
Factores Quimiotácticos/uso terapéutico , Macrófagos Asociados a Tumores/metabolismo , Zimosan/metabolismo , beta-Glucanos/metabolismo , Factores Quimiotácticos/farmacología , Humanos
14.
Nano Lett ; 20(2): 1455-1460, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31916445

RESUMEN

The use of nanomaterials to regulate cell surface receptors is considered a novel strategy to manipulate cell behaviors. However, recognition is important to drive nanoparticle-cell complex formation. Here, we report a novel approach that uses graphene oxide (GO) as a chemoattractant to lure bacteria to nanosurface, facilitating complex formation. The amount of Escherichia coli (E. coli) cells attracted into capillaries containing 20 mg/L GO was more than 8.6-fold higher than that attracted into capillaries containing 20 mg/L glucose. The inherent mechanism involved interference with transmembrane chemoreceptors and activation of the chemotactic system via GO attachment and a subsequent increase in cell aggregation and migration via self-secreted quorum sensing molecules. The key feature of this strategy is the potential to improve the efficiency of the nanoparticle-cell recognition pattern and to expedite the development of surface-contact-related nanotechnology.


Asunto(s)
Factores Quimiotácticos/farmacología , Escherichia coli/efectos de los fármacos , Grafito/química , Nanoestructuras/química , Antibacterianos/química , Antibacterianos/farmacología , Factores Quimiotácticos/química , Glucosa/farmacología , Nanopartículas/química , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/química
15.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008701

RESUMEN

Netrins belong to the family of laminin-like secreted proteins, which guide axonal migration and neuronal growth in the developing central nervous system. Over the last 20 years, it has been established that netrin-1 acts as a chemoattractive or chemorepulsive cue in diverse biological processes far beyond neuronal development. Netrin-1 has been shown to play a central role in cell adhesion, cell migration, proliferation, and cell survival in neuronal and non-neuronal tissue. In this context, netrin-1 was found to orchestrate organogenesis, angiogenesis, tumorigenesis, and inflammation. In inflammation, as in neuronal development, netrin-1 plays a dichotomous role directing the migration of leukocytes, especially monocytes in the inflamed tissue. Monocyte-derived macrophages have long been known for a similar dual role in inflammation. In response to pathogen-induced acute injury, monocytes are rapidly recruited to damaged tissue as the first line of immune defense to phagocyte pathogens, present antigens to initiate the adaptive immune response, and promote wound healing in the resolution phase. On the other hand, dysregulated macrophages with impaired phagocytosis and egress capacity accumulate in chronic inflammation sites and foster the maintenance-and even the progression-of chronic inflammation. In this review article, we will highlight the dichotomous roles of netrin-1 and its impact on acute and chronic inflammation.


Asunto(s)
Inflamación/patología , Macrófagos/metabolismo , Netrina-1/metabolismo , Animales , Factores Quimiotácticos/farmacología , Humanos , Modelos Biológicos
16.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670758

RESUMEN

The incidence of cancers in atopic dermatitis (AD) is not increased, although the Th2-dominant environment is known to downregulate tumor immunity. To gain mechanistic insights regarding tumor immunity in AD, we utilized CCL17 transgenic (TG) mice overexpressing CCL17, which is a key chemokine in AD. Tumor formation and lung metastasis were accelerated in CCL17 TG mice when melanoma cells were injected subcutaneously or intravenously. Flow cytometric analysis showed increases in regulatory T cells (Tregs) in lymph nodes in CCL17 TG mice with high mRNA levels of IL-10 and Foxp3 in tumors, suggesting that Tregs attenuated tumor immunity. The frequency of myeloid-derived suppressor cells (MDSCs), however, was significantly decreased in tumors of CCL17 TG mice, suggesting that decreased MDSCs might promote tumor immunity. Expression of CXCL17, a chemoattractant of MDSCs, was decreased in tumors of CCL17 TG mice. Depletion of Tregs by the anti-CD25 antibody markedly reduced tumor volumes in CCL17 TG mice, suggesting that tumor immunity was accelerated by the decrease in MDSCs in the absence of Tregs. Thus, CCL17 attenuates tumor immunity by increasing Tregs and Th2 cells, while it decreases MDSCs through reductions in CXCL17, which may work as a "safety-net" to reduce the risk of malignant tumors in the Th2-dominant environment.


Asunto(s)
Quimiocina CCL17/metabolismo , Dermatitis Atópica/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias/epidemiología , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Factores Quimiotácticos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Humanos , Inmunidad , Incidencia , Neoplasias Pulmonares/secundario , Ratones Transgénicos , Modelos Biológicos , Neoplasias Cutáneas/patología , Células Th2/efectos de los fármacos , Células Th2/inmunología
17.
J Cell Sci ; 131(19)2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30209138

RESUMEN

Arrestins are key adaptor proteins that control the fate of cell-surface membrane proteins and modulate downstream signaling cascades. The Dictyostelium discoideum genome encodes six arrestin-related proteins, harboring additional modules besides the arrestin domain. Here, we studied AdcB and AdcC, two homologs that contain C2 and SAM domains. We showed that AdcC - in contrast to AdcB - responds to various stimuli (such as the chemoattractants cAMP and folate) known to induce an increase in cytosolic calcium by transiently translocating to the plasma membrane, and that calcium is a direct regulator of AdcC localization. This response requires the calcium-dependent membrane-targeting C2 domain and the double SAM domain involved in AdcC oligomerization, revealing a mode of membrane targeting and regulation unique among members of the arrestin clan. AdcB shares several biochemical properties with AdcC, including in vitro binding to anionic lipids in a calcium-dependent manner and auto-assembly as large homo-oligomers. AdcB can interact with AdcC; however, its intracellular localization is insensitive to calcium. Therefore, despite their high degree of homology and common characteristics, AdcB and AdcC are likely to fulfill distinct functions in amoebae.


Asunto(s)
Arrestinas/metabolismo , Calcio/metabolismo , Factores Quimiotácticos/farmacología , Dictyostelium/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Arrestinas/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , AMP Cíclico/farmacología , Dictyostelium/efectos de los fármacos , Ácido Fólico/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Espacio Intracelular/metabolismo , Liposomas , Fosfolípidos/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Multimerización de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteínas Protozoarias/química , Proteínas Recombinantes/metabolismo
18.
Molecules ; 25(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731414

RESUMEN

Rhus potaninii Maxim, a type of sumac, is an economically important tree widely cultivated in mountainous areas of western and central China. A gall, called the bellied gallnut, induced by the aphid, Kaburagia rhusicola Takagi, is important in the food, medical, and chemical industries in China. Volatiles from R. potaninii were found to attract K. rhusicola, but little is known about them. The chemical composition of these volatiles was investigated using GC-MS analysis and Y-tube olfactometer methods. Twenty-five compounds accounting for 55.3% of the volatiles were identified, with the highest proportion of 1-(4-ethylphenyl)ethanone (11.8%), followed by 1-(4-hydroxy-3-methylphenyl)ethanone (11.2%) and p-cymen-7-ol (7.1%). These findings provide a theoretical basis for the preparation of attractants and could eventually lead to increased bellied gallnut yield.


Asunto(s)
Áfidos/fisiología , Factores Quimiotácticos/química , Rhus/química , Compuestos Orgánicos Volátiles/química , Animales , Factores Quimiotácticos/farmacología , Compuestos Orgánicos Volátiles/farmacología
19.
Angew Chem Int Ed Engl ; 59(9): 3480-3485, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31863710

RESUMEN

A multifunctional motile microtrap is developed that is capable of autonomously attracting, trapping, and destroying pathogens by controlled chemoattractant and therapeutic agent release. The onion-inspired multi-layer structure contains a magnesium engine core and inner chemoattractant and therapeutic layers. Upon chemical propulsion, the magnesium core is depleted, resulting in a hollow structure that exposes the inner layers and serves as structural trap. The sequential dissolution and autonomous release of the chemoattractant and killing agents result in long-range chemotactic attraction, trapping, and destruction of motile pathogens. The dissolved chemoattractant (l-serine) significantly increases the accumulation and capture of motile pathogens (E. coli) within the microtrap structure, while the internal release of silver ions (Ag+ ) leads to lysis of the pathogen accumulated within the microtrap cavity.


Asunto(s)
Factores Quimiotácticos/química , Serina/química , Factores Quimiotácticos/farmacología , Portadores de Fármacos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Fluoresceína-5-Isotiocianato/química , Iones/química , Magnesio/química , Imagen Óptica , Polímeros/química , Rodaminas/química , Plata/química , Xilenos/química
20.
Infect Immun ; 87(9)2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31262979

RESUMEN

Helicobacter pylori is a pathogen that chronically colonizes the stomachs of approximately half of the world's population and contributes to the development of gastric inflammation. We demonstrated previously in vivo that H. pylori uses motility to preferentially colonize injury sites in the mouse stomach. However, the chemoreceptor responsible for sensing gastric injury has not yet been identified. In this study, we utilized murine gastric organoids (gastroids) and mutant H. pylori strains to investigate the components necessary for H. pylori chemotaxis. High-intensity 730-nm light (two-photon photodamage) was used to cause single-cell damage in gastroids, and repair of the damage was monitored over time; complete repair occurred within ∼10 min in uninfected gastroids. Wild-type H. pylori accumulated at the damage site after gastric damage induction. In contrast, mutants lacking motility (ΔmotB) or chemotaxis (ΔcheY) did not accumulate at the injury site. Using mutants lacking individual chemoreceptors, we found that only TlpB was required for H. pylori accumulation, while TlpA, TlpC, and TlpD were dispensable. All strains that were able to accumulate at the damage site limited repair. When urea (an identified chemoattractant sensed by TlpB) was microinjected into the gastroid lumen, it prevented the accumulation of H. pylori at damage sites. Overall, our findings demonstrate that H. pylori colonizes and limits repair at damage sites via chemotactic motility that requires the TlpB chemoreceptor to sense signals generated by gastric epithelial cells.


Asunto(s)
Proteínas Bacterianas/fisiología , Factores Quimiotácticos/farmacología , Quimiotaxis/fisiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Gastropatías/microbiología , Animales , Modelos Animales de Enfermedad , Mucosa Gástrica/microbiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA