Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Annu Rev Immunol ; 31: 675-704, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23330955

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) control many important aspects of immune cell development, differentiation, and function. Mammals have eight PI3K catalytic subunits that are divided into three classes based on similarities in structure and function. Specific roles for the class I PI3Ks have been broadly investigated and are relatively well understood, as is the function of their corresponding phosphatases. More recently, specific roles for the class II and class III PI3Ks have emerged. Through vertebrate evolution and in parallel with the evolution of adaptive immunity, there has been a dramatic increase not only in the genes for PI3K subunits but also in genes for phosphatases that act on 3-phosphoinositides and in 3-phosphoinositide-binding proteins. Our understanding of the PI3Ks in immunity is guided by fundamental discoveries made in simpler model organisms as well as by appreciating new adaptations of this signaling module in mammals in general and in immune cells in particular.


Asunto(s)
Familia de Multigenes/inmunología , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/inmunología , Animales , Dominio Catalítico/inmunología , Endocitosis/inmunología , Humanos , Complejos Multiproteicos/inmunología , Fagocitosis/inmunología , Fosfatidilinositol 3-Quinasas/clasificación , Transporte de Proteínas/inmunología
2.
Immunity ; 50(4): 851-870, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995503

RESUMEN

The discovery of interleukin (IL)-6 and its receptor subunits provided a foundation to understand the biology of a group of related cytokines: IL-12, IL-23, and IL-27. These family members utilize shared receptors and cytokine subunits and influence the outcome of cancer, infection, and inflammatory diseases. Consequently, many facets of their biology are being therapeutically targeted. Here, we review the landmark discoveries in this field, the combinatorial biology inherent to this family, and how patient datasets have underscored the critical role of these pathways in human disease. We present significant knowledge gaps, including how similar signals from these cytokines can mediate distinct outcomes, and discuss how a better understanding of the biology of the IL-12 family provides new therapeutic opportunities.


Asunto(s)
Citocinas/inmunología , Interleucina-12/inmunología , Familia de Multigenes/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Citocinas/antagonistas & inhibidores , Citocinas/genética , Humanos , Inmunidad Celular , Inflamación/inmunología , Interleucina-12/antagonistas & inhibidores , Interleucina-12/genética , Interleucina-27/uso terapéutico , Subgrupos Linfocitarios/inmunología , Linfopoyesis , Ratones , Ratones Noqueados , Familia de Multigenes/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Subunidades de Proteína , Relación Estructura-Actividad
3.
Immunity ; 50(4): 832-850, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995502

RESUMEN

The common cytokine receptor γ chain, γc, is a component of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21. Mutation of the gene encoding γc results in X-linked severe combined immunodeficiency in humans, and γc family cytokines collectively regulate development, proliferation, survival, and differentiation of immune cells. Here, we review the basic biology of these cytokines, highlighting mechanisms of signaling and gene regulation that have provided insights for immunodeficiency, autoimmunity, allergic diseases, and cancer. Moreover, we discuss how studies of this family stimulated the development of JAK3 inhibitors and present an overview of current strategies targeting these pathways in the clinic, including novel antibodies, antagonists, and partial agonists. The diverse roles of these cytokines on a range of immune cells have important therapeutic implications.


Asunto(s)
Citocinas/clasificación , Subunidad gamma Común de Receptores de Interleucina/genética , Familia de Multigenes/inmunología , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Citocinas/genética , Citocinas/inmunología , Evolución Molecular , Regulación de la Expresión Génica , Terapia Genética , Humanos , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/terapia , Janus Quinasa 3/antagonistas & inhibidores , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/fisiología , Subgrupos Linfocitarios/inmunología , Ratones , Terapia Molecular Dirigida , Familia de Multigenes/genética , Neoplasias/genética , Neoplasias/inmunología , Subunidades de Proteína , Factores de Transcripción STAT/fisiología , Transducción de Señal , Investigación Biomédica Traslacional , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/inmunología , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/terapia
4.
Proc Natl Acad Sci U S A ; 117(50): 32098-32104, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257570

RESUMEN

The deadly symptoms of malaria occur as Plasmodium parasites replicate within blood cells. Members of several variant surface protein families are expressed on infected blood cell surfaces. Of these, the largest and most ubiquitous are the Plasmodium-interspersed repeat (PIR) proteins, with more than 1,000 variants in some genomes. Their functions are mysterious, but differential pir gene expression associates with acute or chronic infection in a mouse malaria model. The membership of the PIR superfamily, and whether the family includes Plasmodium falciparum variant surface proteins, such as RIFINs and STEVORs, is controversial. Here we reveal the structure of the extracellular domain of a PIR from Plasmodium chabaudi We use structure-guided sequence analysis and molecular modeling to show that this fold is found across PIR proteins from mouse- and human-infective malaria parasites. Moreover, we show that RIFINs and STEVORs are not PIRs. This study provides a structure-guided definition of the PIRs and a molecular framework to understand their evolution.


Asunto(s)
Plasmodium chabaudi/ultraestructura , Dominios Proteicos/inmunología , Proteínas Protozoarias/ultraestructura , Secuencias Repetitivas de Aminoácido/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/ultraestructura , Dicroismo Circular , Genoma de Protozoos/genética , Humanos , Malaria/inmunología , Malaria/virología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/ultraestructura , Familia de Multigenes/genética , Familia de Multigenes/inmunología , Filogenia , Plasmodium chabaudi/genética , Plasmodium chabaudi/inmunología , Dominios Proteicos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Secuencias Repetitivas de Aminoácido/genética
5.
Mol Microbiol ; 113(1): 4-21, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31661176

RESUMEN

The PE and PPE proteins of Mycobacterium tuberculosis have been studied with great interest since their discovery. Named after the conserved proline (P) and glutamic acid (E) residues in their N-terminal domains, these proteins are postulated to perform wide-ranging roles in virulence and immune modulation. However, technical challenges in studying these proteins and their encoding genes have hampered the elucidation of molecular mechanisms and leave many open questions regarding the biological functions mediated by these proteins. Here, I review the shared and unique characteristics of PE and PPE proteins from a molecular perspective linking this information to their functions in mycobacterial virulence. I discuss how the different subgroups (PE_PGRS, PPE-PPW, PPE-SVP and PPE-MPTR) are defined and why this classification of paramount importance to understand the PE and PPE proteins as individuals and or groups. The goal of this MicroReview is to summarize and structure the existing information on this gene family into a simplified framework of thinking about PE and PPE proteins and genes. Thereby, I hope to provide helpful starting points in studying these genes and proteins for researchers with different backgrounds. This has particular implications for the design and monitoring of novel vaccine candidates and in understanding the evolution of the M. tuberculosis complex.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Mycobacterium tuberculosis/patogenicidad , Dominios Proteicos Ricos en Prolina , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Evolución Molecular , Humanos , Familia de Multigenes/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología , Virulencia
6.
FASEB J ; 34(2): 2896-2911, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908027

RESUMEN

Chorioamnionitis (CA, fetal membrane inflammation) predisposes to preterm birth and is associated with increased neonatal infection risk, but the separate effects of prematurity, CA, and postnatal adaptations on this risk are unclear. Using pigs as models for infants, we examined the systemic immune-metabolic status in cesarean-delivered preterm pigs, with and without CA induced by intra-amniotic (IA) LPS exposure. At birth, cord blood of preterm pigs showed neutropenia and low expressions of innate and adaptive immune genes, relative to term pigs. IA LPS induced CA and fetal systemic innate immune activation via complement and neutrophil-related pathways. These were mainly modulated via cellular regulations rather than granulopoiesis, as validated by the in vitro LPS stimulation of cord blood. After birth, IA LPS-exposed preterm pigs did not follow normal immune-metabolic ontogenies found in fetuses or newborns without prenatal insults, but showed consistently high levels of Treg, impaired Th1 polarization, and reduced expressions of multiple genes related to cellular oxidative phosphorylation and ribosomal activities. In conclusion, our results provide cellular and molecular evidence for CA-induced distinct neonatal immune-metabolic status with increased disease tolerance strategy, suggesting mechanisms for the clinical observation of elevated sepsis risks in immune-compromised preterm infants born with CA.


Asunto(s)
Corioamnionitis/inmunología , Feto/inmunología , Familia de Multigenes/inmunología , Fosforilación Oxidativa , Células TH1/inmunología , Animales , Animales Recién Nacidos , Corioamnionitis/inducido químicamente , Corioamnionitis/patología , Modelos Animales de Enfermedad , Femenino , Feto/patología , Humanos , Recién Nacido , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Lipopolisacáridos/toxicidad , Embarazo , Porcinos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Células TH1/patología
7.
Fish Shellfish Immunol ; 111: 94-101, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33513439

RESUMEN

Pentraxins (PTXs) are a superfamily of conserved proteins which are components of the humoral arm of innate immunity. They are considered to be functional ancestors of antibodies and are classified into short and long types. In this study, we show that a pentraxin-like component (Ptx-like) with a C-terminal PTX domain, highly homologous to the short PTX of H. sapiens CRP, and a long N-terminal domain typical of long PTXs, is involved in the inflammatory response of Ciona robusta under LPS exposure in vivo. Analyses of protein domains as well as 3D modelling and phylogenetic tree supported the close relationship of Ptx-like with mammalian CRP, suggesting that C. robusta Ptx-like shares a common ancestor in the chordate lineages. qRT-PCR analysis showed that Ptx-like was transcriptionally upregulated during the inflammatory process induced by LPS inoculation and that it is involved in the initial phase as well as the secondary phase of the inflammatory response in which matrix remodelling and the achievement of homeostasis occur. In situ hybridisation assays revealed that gene transcription was upregulated in the pharynx post-LPS challenge in vivo, and that Ptx-like was expressed by clusters of haemocytes, mainly granulocytes, inside the pharynx vessels. We also found transcript-expressing granulocytes flowing in the musculature and in the lacunae of the circulatory system. These data supported that Ptx-like is a potential molecule of the acute-phase response in C. robusta immune defence systems against bacterial infection.


Asunto(s)
Ciona intestinalis/genética , Ciona intestinalis/inmunología , Evolución Molecular , Inmunidad Innata/genética , Transcripción Genética , Animales , Proteína C-Reactiva/genética , Proteína C-Reactiva/inmunología , Lipopolisacáridos/farmacología , Familia de Multigenes/inmunología
8.
Fish Shellfish Immunol ; 109: 71-81, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33316369

RESUMEN

Galectins, a family of evolutionary conserved ß-galactoside-binding proteins, have been characterized in a wide range of species. Many reports have indicated vital roles of galectins in innate immunity, especially in the mucosal tissues against infection. However, the systematic identification of galectin gene family is still lacking in teleost. Here, we characterized the galectin gene family and investigated their expression profiles post bacterial challenge in turbot (Scophthalmus maximus L.). In this study, a total of 13 galectin genes were characterized in turbot, phylogenetic analyses revealed their strong relationships to half smooth tongue sole and puffer fish, and syntenic analyses confirmed the orthology suggested by the phylogenetic analysis. In addition, the copy number of galectin genes is similar across a broad spectrum of species from fish to amphibians, birds, and mammals, ranging from 8 to 16 genes. Furthermore, the galectin genes were widely expressed in all the examined turbot tissues, and most of the galectin genes were strongly expressed in mucosal tissues (skin, gill and intestine). Moreover, majority of the galectin genes were significantly regulated after Vibrio anguillarum infection in the intestine, gill and skin, suggesting that galectins were involved in the mucosal immune response to V. anguillarum infection in turbot. In addition, subcellular localization analysis showed lgals3a was distributed in the cytoplasm and nucleus. However, the knowledge of galectins are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces Planos/genética , Galectinas/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Membrana Mucosa/inmunología , Familia de Multigenes/inmunología , Animales , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces Planos/metabolismo , Galectinas/química , Galectinas/metabolismo , Perfilación de la Expresión Génica/veterinaria , Filogenia , Sintenía , Vibrio/fisiología , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/veterinaria
9.
J Immunol ; 202(7): 1992-2004, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30770416

RESUMEN

In this study, we identified a pair of nonrearranging VJ-joined Ig superfamily genes, termed putative remnants of an Ag receptor precursor (PRARP) genes, in chicken. Both genes encode a single V-set Ig domain consisting of a canonical J-like segment and a potential immunoreceptor tyrosine-based inhibitory or switch motif in the cytoplasmic region. In vitro experiments showed that both genes were expressed at the cell surface as membrane proteins, and their recombinant products formed a monomer and a disulfide-linked homodimer or a heterodimer. These two genes were mainly expressed in B and T cells and were upregulated in response to stimulation with poly(I:C) in vitro and vaccination in vivo. Orthologs of PRARP have been identified in bony fish, amphibians, reptiles, and other birds, and a V-C1 structure similar to that of Ig or TCR chains was found in all these genes, with the exception of those in avian species, which appear to contain degenerated C1 domains or divergent Ig domains. Phylogenetic analyses suggested that the newly discovered genes do not belong to any known immune receptor family and appear to be a novel gene family. Further elucidation of the functions of PRARP and their origin might provide significant insights into the evolution of the immune system of jawed vertebrates.


Asunto(s)
Pollos/genética , Pollos/inmunología , Genes de Inmunoglobulinas/genética , Receptores de Antígenos/genética , Animales , Genes de Inmunoglobulinas/inmunología , Familia de Multigenes/genética , Familia de Multigenes/inmunología , Filogenia
10.
Proteins ; 88(1): 135-142, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31298437

RESUMEN

Cell-surface-anchored immunoglobulin superfamily (IgSF) proteins are widespread throughout the human proteome, forming crucial components of diverse biological processes including immunity, cell-cell adhesion, and carcinogenesis. IgSF proteins generally function through protein-protein interactions carried out between extracellular, membrane-bound proteins on adjacent cells, known as trans-binding interfaces. These protein-protein interactions constitute a class of pharmaceutical targets important in the treatment of autoimmune diseases, chronic infections, and cancer. A molecular-level understanding of IgSF protein-protein interactions would greatly benefit further drug development. A critical step toward this goal is the reliable identification of IgSF trans-binding interfaces. We propose a novel combination of structure and sequence information to identify trans-binding interfaces in IgSF proteins. We developed a structure-based binding interface prediction approach that can identify broad regions of the protein surface that encompass the binding interfaces and suggests that IgSF proteins possess binding supersites. These interfaces could theoretically be pinpointed using sequence-based conservation analysis, with performance approaching the theoretical upper limit of binding interface prediction accuracy, but achieving this in practice is limited by the current ability to identify an appropriate multiple sequence alignment for conservation analysis. However, an important contribution of combining the two orthogonal methods is that agreement between these approaches can estimate the reliability of the predictions. This approach was benchmarked on the set of 22 IgSF proteins with experimentally solved structures in complex with their ligands. Additionally, we provide structure-based predictions and reliability scores for the 62 IgSF proteins with known structure but yet uncharacterized binding interfaces.


Asunto(s)
Inmunoglobulinas/ultraestructura , Proteínas de la Membrana/ultraestructura , Familia de Multigenes/inmunología , Proteoma/genética , Anticuerpos/química , Anticuerpos/clasificación , Anticuerpos/genética , Anticuerpos/inmunología , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Ligandos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Familia de Multigenes/genética , Unión Proteica/genética , Mapas de Interacción de Proteínas , Proteoma/inmunología , Alineación de Secuencia , Propiedades de Superficie
11.
Eur J Immunol ; 49(12): 2127-2133, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31580478

RESUMEN

C-type lectin receptors (CLRs) are essential for multicellular existence, having diverse functions ranging from embryonic development to immune function. One subgroup of CLRs is the Dectin-1 cluster, comprising of seven receptors including MICL, CLEC-2, CLEC-12B, CLEC-9A, MelLec, Dectin-1, and LOX-1. Reflecting the larger CLR family, the Dectin-1 cluster of receptors has a broad range of ligands and functions, but importantly, is involved in numerous pathophysiological processes that regulate health and disease. Indeed, these receptors have been implicated in development, infection, regulation of inflammation, allergy, transplantation tolerance, cancer, cardiovascular disease, arthritis, and other autoimmune diseases. In this mini-review, we discuss the latest advancements in elucidating the function(s) of each of the Dectin-1 cluster CLRs, focussing on their physiological roles and involvement in disease.


Asunto(s)
Artritis/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Cardiovasculares/inmunología , Hipersensibilidad/inmunología , Lectinas Tipo C/inmunología , Familia de Multigenes/inmunología , Neoplasias/inmunología , Inmunología del Trasplante , Animales , Artritis/genética , Enfermedades Autoinmunes/genética , Enfermedades Cardiovasculares/genética , Humanos , Hipersensibilidad/genética , Inflamación/genética , Inflamación/inmunología , Lectinas Tipo C/genética , Neoplasias/genética
12.
Fish Shellfish Immunol ; 96: 13-25, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31760167

RESUMEN

Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) play crucial roles as signaling mediators for the TNF receptor (TNFR) superfamily and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. TRAFs collectively play important roles in multiple biological processes and organismal immunity. However, systematic identification of the TRAF gene family in teleost fish has not yet been reported, and there is little available information about its roles in innate immunity in Chinese tongue sole (Cynoglossus semilaevis), an aquaculture fish of high economic value. In the present study, we identified and characterized seven TRAF genes, namely, CsTRAF2a, CsTRAF2b, CsTRAF3, CsTRAF4, CsTRAF5, CsTRAF6 and CsTRAF7, in Chinese tongue sole, and the complete ORFs of the CsTRAFs were cloned. Sequence analysis revealed various genomic structures of the CsTRAFs and showed that they contain typical conserved domains compared with mammalian TRAFs. Phylogenetic analysis indicated the evolutionary relationships of TRAF family members in teleost fish and revealed an absence of TRAF1 in most species and TRAF5 in some species of teleosts. Analysis of the gene structures and motifs showed the diversity and distribution of exon-intron structures and conserved motifs in Chinese tongue sole and several other teleost species. Real-time quantitative PCR was used to investigate the expression patterns of CsTRAF genes in tissues of healthy fish and in the gills, livers and spleens of fish after bacterial infection with Vibrio harveyi. The results indicate that only CsTRAF2a is relatively highly expressed in the brain and that the other CsTRAFs are highly expressed in immune-related tissues and may participate in the immune response after infection with pathogenic bacteria. Functional analysis of CsTRAF3, CsTRAF4 and CsTRAF6 revealed that only CsTRAF6 could strongly activate the NF-кB pathway after overexpression of CsTRAF3, CsTRAF4 and CsTRAF6 in HEK-293T cells. This systematic analysis provided valuable information about the diverse roles of TRAFs in the innate immune response to pathogenic bacterial infection in teleost fish and will contribute to the functional characterization of CsTRAF genes in further research.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces Planos/genética , Peces Planos/inmunología , Regulación de la Expresión Génica/inmunología , Expresión Génica/inmunología , Inmunidad Innata/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica/veterinaria , Genoma , Familia de Multigenes/inmunología , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Vibrio/fisiología , Vibriosis/inmunología , Vibriosis/veterinaria
13.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717840

RESUMEN

The muscle excess 3 (MEX-3) protein was first identified in Caenorhabditis elegans (C. elegans), and its respective homologues were also observed in vertebrates, including humans. It is a RNA-binding protein (RBP) with an additional ubiquitin E3 ligase function, which further acts as a post-transcriptional repressor through unknown mechanisms. In humans, MEX-3 proteins post-transcriptionally regulate a number of biological processes, including tumor immunological relevant ones. These have been shown to be involved in various diseases, including tumor diseases of distinct origins. This review provides information on the expression and function of the human MEX-3 family in healthy tissues, as well after malignant transformation. Indeed, the MEX-3 expression was shown to be deregulated in several cancers and to affect tumor biological functions, including apoptosis regulation, antigen processing, and presentation, thereby, contributing to the immune evasion of tumor cells. Furthermore, current research suggests MEX-3 proteins as putative markers for prognosis and as novel targets for the anti-cancer treatment.


Asunto(s)
Carcinogénesis , Familia de Multigenes/inmunología , Proteínas de Neoplasias , Neoplasias , Animales , Presentación de Antígeno/genética , Apoptosis/genética , Apoptosis/inmunología , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Escape del Tumor/genética
14.
J Biol Chem ; 293(51): 19600-19612, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30333226

RESUMEN

Several clinical immunotherapy trials with cytokine-induced killer (CIK) cells have been reported. However, molecular evidence of cell expansion, acquisition of tumor cytotoxicity, and safety of CIK cells is required before putting them to clinical use. Here, we performed dynamic transcriptomic analyses of CIKs generated from primary peripheral blood mononuclear cells exposed to interferon-γ, OKT3, and interleukin-2. CIK mRNAs were extracted and sequenced at days 0, 1, 7, and 14 and subjected to bioinformatics analyses. Using weighted correlation network analysis (WGCNA), we identified two major gene modules that mediate immune cell activation and mitosis. We found that activation and cytotoxicity of CIK cells likely rely on cluster of differentiation 8 (CD8) and its protein partner LCK proto-oncogene, Src family tyrosine kinase (LCK). A time-course series analysis revealed that CIK cells have relatively low immunogenicity because of decreased expression of some self-antigens. Importantly, we identified several crucial activating receptors and auxiliary adhesion receptors expressed on CIK cells that may function as tumor sensors. Interestingly, cytotoxicity-associated genes, including those encoding PRF1, GZMB, FASL, and several cytokines, were up-regulated in mature CIK cells. Most immune-checkpoint molecules and inflammatory tumor-promoting factors were down-regulated in the CIK cells, suggesting efficacy and safety in future clinical trials. Notably, insulin-like growth factor 1 (IGF-1) was highly expressed in CIK cells and may promote cytotoxicity, although it also could facilitate tumorigenesis. The transcriptomic atlas of CIK cells presented here may inform efforts to improve CIK-associated tumor cytotoxicity and safety in clinical trials.


Asunto(s)
Células Asesinas Inducidas por Citocinas/metabolismo , Perfilación de la Expresión Génica , Ciclo Celular/genética , Ciclo Celular/inmunología , Línea Celular , Células Asesinas Inducidas por Citocinas/citología , Células Asesinas Inducidas por Citocinas/inmunología , Humanos , Inmunoterapia/efectos adversos , Familia de Multigenes/genética , Familia de Multigenes/inmunología , Proto-Oncogenes Mas , Seguridad , Análisis de Secuencia de ARN
15.
J Cell Physiol ; 234(6): 7742-7751, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30478834

RESUMEN

PE/PPE family antigens are distributed mainly in pathogenic mycobacteria and serve as potential antituberculosis (TB) vaccine components. Some PE/PPE family antigens can regulate the host innate immune response, interfere with macrophage activation and phagolysosome fusion, and serve as major sources of antigenic variation. PE/PPE antigens have been associated with mycobacteria pathogenesis; pe/ppe genes are mainly found in pathogenic mycobacteria and are differentially expressed between Mtb and Mycobacterium bovis. PE/PPE proteins were essential for the growth of Mtb, and PE/PPE proteins were differentially expressed under a variety of conditions. Multiple mycobacterial-virulence-related transcription factors, sigma factors, the global transcriptional regulation factor Lsr2, MprAB, and PhoPR two-component regulatory systems, and cyclic adenine monophosphate-dependent regulators, regulate the expression of PE/PPE family antigens. Multiple-scale integrative analysis revealed the expression and regulatory networks of PE/PPE family antigens underlying the virulence and pathogenesis of Mtb, providing important clues for the discovery of new anti-TB measures.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/inmunología , Mycobacterium tuberculosis/metabolismo , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/metabolismo , Humanos , Familia de Multigenes/inmunología , Mycobacterium tuberculosis/inmunología , Sistemas de Mensajero Secundario/fisiología , Virulencia
16.
PLoS Pathog ; 13(9): e1006656, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28957426

RESUMEN

Despite very small genomes, mycoplasmas retain large multigene families encoding variable antigens whose exact role in pathogenesis needs to be proven. To understand their in vivo significance, we used Mycoplasma agalactiae as a model exhibiting high-frequency variations of a family of immunodominant Vpma lipoproteins via Xer1-mediated site-specific recombinations. Phase-Locked Mutants (PLMs) expressing single stable Vpma products served as first breakthrough tools in mycoplasmology to study the role of such sophisticated antigenic variation systems. Comparing the general clinical features of sheep infected with a mixture of phase-invariable PLMs (PLMU and PLMY) and the wild type strain, it was earlier concluded that Vpma phase variation is not necessary for infection. Conversely, the current study demonstrates the in vivo indispensability of Vpma switching as inferred from the Vpma phenotypic and genotypic analyses of reisolates obtained during sheep infection and necropsy. PLMY and PLMU stably expressing VpmaY and VpmaU, respectively, for numerous in vitro generations, switched to new Vpma phenotypes inside the sheep. Molecular genetic analysis of selected 'switchover' clones confirmed xer1 disruption and revealed complex new rearrangements like chimeras, deletions and duplications in the vpma loci that were previously unknown in type strain PG2. Another novel finding is the differential infection potential of Vpma variants, as local infection sites demonstrated an almost complete dominance of PLMY over PLMU especially during early stages of both conjunctival and intramammary co-challenge infections, indicating a comparatively better in vivo fitness of VpmaY expressors. The data suggest that Vpma antigenic variation is imperative for survival and persistence inside the immunocompetent host, and although Xer1 is necessary for causing Vpma variation in vitro, it is not a virulence factor because alternative Xer1-independent mechanisms operate in vivo, likely under the selection pressure of the host-induced immune response. This singular study highlights exciting new aspects of mycoplasma antigenic variation systems, including the regulation of expression by host factors.


Asunto(s)
Lipoproteínas/metabolismo , Infecciones por Mycoplasma/inmunología , Mycoplasma agalactiae/inmunología , Animales , Variación Antigénica/inmunología , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Familia de Multigenes/inmunología , Recombinación Genética , Ovinos
17.
Br J Dermatol ; 180(6): 1481-1488, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30474111

RESUMEN

BACKGROUND: Insufficient early immune stimulation may predispose to atopic disease. Staphylococcus aureus, a skin and gut colonizer, produces the B-cell mitogen protein A and T-cell-activating superantigens. Early gut colonization by S. aureus strains that possess the superantigens encoded by the enterotoxin gene (egc) cluster and elastin-binding protein is negatively associated with development of atopic eczema. OBJECTIVES: To investigate (i) whether these findings could be replicated in a second birth cohort, FARMFLORA, and (ii) whether nasal colonization by S. aureus also relates to subsequent atopic eczema development. METHODS: Faecal samples and nasal swabs from infants in the FARMFLORA birth cohort (n = 65) were cultured for S. aureus. Individual strains were distinguished by random amplified polymorphic DNA and assessed for adhesin and superantigen gene carriage by polymerase chain reaction. Atopic eczema at 18 months of age was related to nasal and gut S. aureus colonization patterns during the first 2 months of life (well before onset of eczema). RESULTS: Staphylococcus aureus colonization per se was unrelated to subsequent eczema development. However, gut S. aureus strains from the infants who subsequently developed atopic eczema less frequently carried the ebp gene, encoding elastin-binding protein, and superantigen genes encoded by egc, compared with strains from children who remained healthy. Nasal colonization by S. aureus was less clearly related to subsequent eczema development. CONCLUSIONS: The results precisely replicate our previous observations and may suggest that mucosal colonization by certain S. aureus strains provides immune stimulation that strengthens the epithelial barrier and counteracts the development of atopic eczema.


Asunto(s)
Adhesinas Bacterianas/inmunología , Dermatitis Atópica/epidemiología , Microbioma Gastrointestinal/inmunología , Staphylococcus aureus/inmunología , Superantígenos/inmunología , Adhesinas Bacterianas/genética , Estudios de Cohortes , ADN Bacteriano/aislamiento & purificación , Dermatitis Atópica/inmunología , Heces/microbiología , Femenino , Interacciones Microbiota-Huesped/inmunología , Humanos , Lactante , Recién Nacido , Mucosa Intestinal/microbiología , Masculino , Familia de Multigenes/inmunología , Mucosa Nasal/microbiología , Piel/inmunología , Staphylococcus aureus/genética , Superantígenos/genética
18.
Fish Shellfish Immunol ; 89: 71-75, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30917926

RESUMEN

Streptococcus iniae is an important aquaculture pathogen that is associated with disease outbreaks in wild and cultured fish species. Streptolysin S has been identified as an important virulence factor of S. iniae. With an aim to develop effective vaccines against S. iniae for Japanese flounder (Paralichthys olivaceus), in this study, we constructed a DNA vaccine based on the sagH gene, which belongs to the streptolysin S-associated gene cluster. In fish vaccinated with pSagH, the transcription of sagH was detected in tissues and SagH protein was also detected in the muscles of pSagH-vaccinated fish by immunohistochemistry. The immunoprotective effect of SagH showed that fish vaccinated with pSagH at one and two months exhibited a high relative percent survival (RPS) of 92.62% and 90.58% against S. iniae serotype I, respectively. In addition, SagH conferred strong cross protection against S. iniae serotype II and resulted in an RPS of 83.01% and 80.65% at one and two months, respectively. Compared to the control group, fish vaccinated with pSagH were able to induce much stronger respiratory burst activity, and higher titer of specific antibodies. The results of quantitative real-time PCR demonstrated that pSagH upregulated the expression of several immune genes that are possibly involved in both innate and adaptive immune responses. These results indicate that pSagH is a candidate DNA vaccine candidate against S. iniae serotype I and II infection in Japanese flounder in aquaculture.


Asunto(s)
Proteínas Bacterianas/inmunología , Peces Planos/inmunología , Vacunas Estreptocócicas/inmunología , Streptococcus iniae/inmunología , Estreptolisinas/inmunología , Animales , Protección Cruzada , Familia de Multigenes/inmunología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/veterinaria , Vacunas de ADN/inmunología
19.
Fish Shellfish Immunol ; 92: 821-832, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31299462

RESUMEN

Interferon regulatory factors (IRFs) were originally identified as transcriptional regulators of type I interferon (IFN) expression. Recent studies have widely identified the roles of IRFs as central mediators in immune defence against pathogen infection. However, the functional roles and expression profiles of IRFs are still unclear in Chinese soft-shelled turtle (Pelodiscus sinensis). In this study, eight members of the PsIRF family were identified in P. sinensis through a genome-wide search. These PsIRF genes contained the conserved domains of this group of proteins, including the N-terminal DNA-binding domain and C-terminal IRF-associated domain. Phylogenetic analyses among IRF homologs showed that the PsIRFs shared the closest phylogenetic relationships with IRFs of other turtle species. Further molecular evolutionary analyses revealed evolutionary conservation of the PsIRF genes. Moreover, expression profiling demonstrated that eight PsIRF genes exhibited constitutive expression in different tissues of P. sinensis. Several genes, such as PsIRF1, PsIRF2 and PsIRF4, showed predominant expression in the spleen and were significantly upregulated upon Aeromonas hydrophila infection. Remarkably, PsIRF1, PsIRF2 and PsIRF4 exhibited rapid increases in their protein expression levels post-infection and were mainly expressed in the splenic red pulp according to immunohistochemistry analysis. These results provide rich resources for further exploration of the roles of PsIRFs in immune regulation in P. sinensis and other turtles.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/inmunología , Tortugas/genética , Tortugas/inmunología , Aeromonas hydrophila/fisiología , Animales , Perfilación de la Expresión Génica/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Familia de Multigenes/inmunología , ARN Mensajero/genética , Proteínas de Reptiles/genética , Proteínas de Reptiles/inmunología
20.
Fish Shellfish Immunol ; 92: 111-118, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31176005

RESUMEN

Apolipoproteins (Apos), which are the protein components of plasma lipoproteins, play important roles in lipid transport in vertebrates. It has been demonstrated that in teleosts, several Apos display antimicrobial activity and play crucial roles in innate immunity. Despite their importance, apo genes have not been systematically characterized in many aquaculture fish species. In our study, a complete set of 23 apo genes was identified and annotated from spotted sea bass (Lateolabrax maculatus). Phylogenetic and homology analyses provided evidence for their annotation and evolutionary relationships. To investigate their potential roles in the immune response, the expression patterns of 23 apo genes were determined in the liver and intestine by qRT-PCR after Vibrio harveyi infection. After infection, a total of 20 differentially expressed apo genes were observed, and their expression profiles varied among the genes and tissues. 5 apo genes (apoA1, apoA4a.1, apoC2, apoF and apoO) were dramatically induced or suppressed (log2 fold change >4, P < 0.05), suggesting their involvement in the immune response of spotted sea bass. Our study provides a valuable foundation for future studies aimed at uncovering the specific roles of each apo gene during bacterial infection in spotted sea bass and other teleost species.


Asunto(s)
Apolipoproteínas/genética , Apolipoproteínas/inmunología , Lubina/genética , Lubina/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Animales , Apolipoproteínas/química , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Familia de Multigenes/inmunología , Filogenia , Transcriptoma , Vibrio/fisiología , Vibriosis/inmunología , Vibriosis/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA