Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.076
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Lancet ; 404(10460): 1333-1345, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39368841

RESUMEN

BACKGROUND: Phenylketonuria is an inherited condition characterised by neurotoxic accumulation of phenylalanine (Phe). APHENITY assessed the efficacy and safety of orally administered synthetic sepiapterin in children and adults with phenylketonuria. METHODS: APHENITY was a phase 3, randomised, double-blind, placebo-controlled study performed at 34 clinics, hospitals, and university sites in 13 countries. Individuals of all ages with a clinical diagnosis of phenylketonuria were eligible for inclusion if they had a blood Phe concentration of 360 µmol/L or higher at study entry, whereas individuals with hyperphenylalaninaemia due to pathogenic variants in GCH1, PTS, QDPR, SPR, and PCBD1, consistent with a diagnosis of primary BH4 deficiency, were excluded. Part 1 was a 14-day open-label assessment of blood Phe concentration response to sepiapterin. In part 2, sepiapterin-responsive participants were randomly assigned (1:1) by a web-response system based on a block randomisation schedule (permuted block size of 2 and 4) to 6 weeks of sepiapterin (forced-dose escalation: 20, 40, and 60 mg/kg per day per consecutive 2-week period) or placebo. The investigational drug and placebo were identical in their appearance and delivery. Dried blood samples were collected for analysis of Phe concentration on days -1, 1 (before dose was administered), 5, 10, 14, 19, 24, 28, 33, 38, and 42 in part 2, either in-clinic or at home. The primary endpoint for part 2, mean change from baseline in blood Phe after 6 weeks, was assessed in the primary analysis set of participants with at least a 30% reduction in blood Phe concentration in part 1, who took at least one dose in part 2. Safety was evaluated in all participants receiving at least one dose of treatment. The completed study is registered at EudraCT (2021-000474-29) and ClinicalTrials.gov (NCT05099640). FINDINGS: APHENITY was conducted between Sept 30, 2021, and April 3, 2023. 187 people were assessed for eligibility, of whom 157 were enrolled. In part 1, 156 participants were assessed or evaluated, of whom 114 (73%) were sepiapterin-responsive (ie, ≥15% reduction in blood Phe from baseline). In part 2, 98 participants (49 in the placebo group and 49 in the sepiapterin group) were in the primary analysis set. There was a significant reduction of blood Phe concentration after 6 weeks of sepiapterin (-63%, SD 20) compared with placebo (1%, 29; least squares mean change -395·9 µmol/L, SE 33·8; p<0·0001). Treatment-emergent adverse events were reported in 33 (59%) of 56 participants who received sepiapterin and 18 (33%) of 54 participants who received placebo. Most treatment-emergent adverse events were mild gastrointestinal events (11 [20%] of 56 participants who received sepiapterin and ten [19%] of 54 participants who received placebo) that resolved quickly. There were no deaths and no serious or severe adverse events. INTERPRETATION: Sepiapterin is a promising oral therapy for individuals with phenylketonuria, was well tolerated, and resulted in significant and clinically meaningful reductions in blood Phe concentration in participants with varying disease severity. FUNDING: PTC Therapeutics.


Asunto(s)
Fenilalanina , Fenilcetonurias , Pterinas , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Administración Oral , Método Doble Ciego , Fenilalanina/sangre , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/sangre , Pterinas/uso terapéutico , Resultado del Tratamiento
2.
Mol Genet Metab ; 142(1): 108361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442492

RESUMEN

INTRODUCTION: Phenylketonuria (PKU) requires regular phenylalanine monitoring to ensure optimal outcome. However, home sampling methods used for monitoring suffer high pre-analytical variability, inter-laboratory variability and turn-around-times, highlighting the need for alternative methods of home sampling or monitoring. METHODS: A survey was distributed through email and social media to (parents of) PKU patients and professionals working in inherited metabolic diseases in Denmark, The Netherlands, and United Kingdom regarding satisfaction with current home sampling methods and expectations for future point-of-care testing (POCT). RESULTS: 210 parents, 156 patients and 95 professionals completed the survey. Countries, and parents and patients were analysed together, in absence of significant group differences for most questions. Important results are: 1) Many patients take less home samples than advised. 2) The majority of (parents of) PKU patients are (somewhat) dissatisfied with their home sampling method, especially with turn-around-times (3-5 days). 3) 37% of professionals are dissatisfied with their home sampling method and 45% with the turn-around-times. 4) All responders are positive towards developments for POCT: 97% (n = 332) of (parents of) patients is willing to use a POC-device and 76% (n = 61) of professionals would recommend their patients to use a POC-device. 5) Concerns from all participants for future POC-devices are costs/reimbursements and accuracy, and to professionals specifically, accessibility to results, over-testing, patient anxiety, and patients adjusting their diet without consultation. CONCLUSION: The PKU community is (somewhat) dissatisfied with current home sampling methods, highlighting the need for alternatives of Phe monitoring. POCT might be such an alternative and the community is eager for its arrival.


Asunto(s)
Padres , Fenilcetonurias , Pruebas en el Punto de Atención , Humanos , Fenilcetonurias/diagnóstico , Fenilcetonurias/sangre , Masculino , Femenino , Encuestas y Cuestionarios , Padres/psicología , Recolección de Muestras de Sangre , Reino Unido , Países Bajos , Adulto , Satisfacción del Paciente , Fenilalanina/sangre , Dinamarca , Niño , Adolescente
3.
J Inherit Metab Dis ; 47(4): 624-635, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38556470

RESUMEN

Recent studies in PKU patients identified alternative biomarkers in blood using untargeted metabolomics. To test the added clinical value of these novel biomarkers, targeted metabolomics of 11 PKU biomarkers (phenylalanine, glutamyl-phenylalanine, glutamyl-glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, the dipeptides phenylalanyl-phenylalanine and phenylalanyl-leucine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate) was performed in stored serum samples of the well-defined PKU patient-COBESO cohort and a healthy control group. Serum samples of 35 PKU adults and 20 healthy age- and sex-matched controls were analyzed using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Group differences were tested using the Mann-Whitney U test. Multiple linear regression analyses were performed with these biomarkers as predictors of (neuro-)cognitive functions working memory, sustained attention, inhibitory control, and mental health. Compared to healthy controls, phenylalanine, glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate were significant elevated in PKU adults (p < 0.001). The remaining three were below limit of detection in PKU and controls. Both phenylalanine and N-lactoyl-phenylalanine were associated with DSM-VI Attention deficit/hyperactivity (R2 = 0.195, p = 0.039 and R2 = 0.335, p = 0.002, respectively) of the ASR questionnaire. In addition, N-lactoyl-phenylalanine showed significant associations with ASR DSM-VI avoidant personality (R2 = 0.265, p = 0.010), internalizing (R2 = 0.192, p = 0.046) and externalizing problems (R2 = 0.217, p = 0.029) of the ASR questionnaire and multiple aspects of the MS2D and FI tests, reflecting working memory with R2 between 0.178 (p = 0.048) and 0.204 (p = 0.033). Even though the strength of the models was not considered strong, N-lactoyl-phenylalanine outperformed phenylalanine in its association with working memory and mental health outcomes.


Asunto(s)
Biomarcadores , Fenilalanina , Fenilcetonurias , Humanos , Fenilcetonurias/sangre , Biomarcadores/sangre , Adulto , Masculino , Femenino , Adulto Joven , Estudios de Casos y Controles , Fenilalanina/sangre , Metabolómica/métodos , Cromatografía Líquida de Alta Presión , Relevancia Clínica
4.
J Inherit Metab Dis ; 47(4): 636-650, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38433424

RESUMEN

Infants born to mothers with phenylketonuria (PKU) may develop congenital abnormalities because of elevated phenylalanine (Phe) levels in the mother during pregnancy. Maintenance of blood Phe levels between 120 and 360 µmol/L reduces risks of birth defects. Sapropterin dihydrochloride helps maintain blood Phe control, but there is limited evidence on its risk-benefit ratio when used during pregnancy. Data from the maternal sub-registries-KAMPER (NCT01016392) and PKUDOS (NCT00778206; PKU-MOMs sub-registry)-were collected to assess the long-term safety and efficacy of sapropterin in pregnant women in a real-life setting. Pregnancy and infant outcomes, and the safety of sapropterin were assessed. Final data from 79 pregnancies in 57 women with PKU are reported. Sapropterin dose was fairly constant before and during pregnancy, with blood Phe levels maintained in the recommended target range during the majority (82%) of pregnancies. Most pregnancies were carried to term, and the majority of liveborn infants were reported as 'normal' at birth. Few adverse and serious adverse events were considered related to sapropterin, with these occurring in participants with high blood Phe levels. This report represents the largest population of pregnant women with PKU exposed to sapropterin. Results demonstrate that exposure to sapropterin during pregnancy was well-tolerated and facilitated maintenance of blood Phe levels within the target range, resulting in normal delivery. This critical real-world data may facilitate physicians and patients to make informed treatment decisions about using sapropterin in pregnant women with PKU and in women of childbearing age with PKU who are responsive to sapropterin.


Asunto(s)
Biopterinas , Fenilalanina , Fenilcetonurias , Resultado del Embarazo , Sistema de Registros , Humanos , Embarazo , Femenino , Adulto , Fenilalanina/sangre , Biopterinas/análogos & derivados , Biopterinas/uso terapéutico , Biopterinas/efectos adversos , Recién Nacido , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/sangre , Fenilcetonuria Materna/tratamiento farmacológico , Adulto Joven , Europa (Continente) , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/sangre
5.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791104

RESUMEN

The published data on the vitamin status of patients with phenylketonuria (PKU) is contradictory; therefore, this systematic review and meta-analysis evaluated the vitamin status of PKU patients. A comprehensive search of multiple databases (PubMed, Web of Sciences, Cochrane, and Scopus) was finished in March 2024. The included studies compared vitamin levels between individuals diagnosed with early-treated PKU and healthy controls while excluding pregnant and lactating women, untreated PKU or hyperphenylalaninemia cases, control groups receiving vitamin supplementation, PKU patients receiving tetrahydrobiopterin or pegvaliase, and conference abstracts. The risk of bias in the included studies was assessed by the Newcastle-Ottawa scale. The effect sizes were expressed as standardised mean differences. The calculation of effect sizes with 95% CI using fixed-effects models and random-effects models was performed. A p-value < 0.05 was considered statistically significant. The study protocol was registered in the PROSPERO database (CRD42024519589). Out of the initially identified 11,086 articles, 24 met the criteria. The total number of participants comprised 770 individuals with PKU and 2387 healthy controls. The meta-analyses of cross-sectional and case-control studies were conducted for vitamin B12, D, A, E, B6 and folate levels. PKU patients demonstrated significantly higher folate levels (random-effects model, SMD: 1.378, 95% CI: 0.436, 2.320, p = 0.004) and 1,25-dihydroxyvitamin D concentrations (random-effects model, SMD: 2.059, 95% CI: 0.250, 3.868, p = 0.026) compared to the controls. There were no significant differences in vitamin A, E, B6, B12 or 25-dihydroxyvitamin D levels. The main limitations of the evidence include a limited number of studies and their heterogeneity and variability in patients' compliance. Our findings suggest that individuals with PKU under nutritional guidance can achieve a vitamin status comparable to that of healthy subjects. Our study provides valuable insights into the nutritional status of PKU patients, but further research is required to confirm these findings and explore additional factors influencing vitamin status in PKU.


Asunto(s)
Fenilcetonurias , Vitaminas , Fenilcetonurias/sangre , Humanos , Vitaminas/sangre , Vitamina D/sangre , Vitamina D/análogos & derivados , Ácido Fólico/sangre , Vitamina B 12/sangre , Vitamina A/sangre
6.
Am J Hum Genet ; 107(2): 234-250, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32668217

RESUMEN

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Fenilcetonurias/epidemiología , Fenilcetonurias/genética , Alelos , Biopterinas/análogos & derivados , Biopterinas/genética , Europa (Continente) , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Genotipo , Homocigoto , Humanos , Mutación/genética , Fenotipo , Fenilalanina/sangre , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/sangre
7.
Mol Genet Metab ; 134(3): 250-256, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34656426

RESUMEN

BACKGROUND: In phenylketonuria (PKU), treatment monitoring is based on frequent blood phenylalanine (Phe) measurements, as this is the predictor of neurocognitive and behavioural outcome by reflecting brain Phe concentrations and brain biochemical changes. Despite clinical studies describing the relevance of blood Phe to outcome in PKU patients, blood Phe does not explain the variance in neurocognitive and behavioural outcome completely. METHODS: In a PKU mouse model we investigated 1) the relationship between plasma Phe and brain biochemistry (Brain Phe and monoaminergic neurotransmitter concentrations), and 2) whether blood non-Phe Large Neutral Amino Acids (LNAA) would be of additional value to blood Phe concentrations to explain brain biochemistry. To this purpose, we assessed blood amino acid concentrations and brain Phe as well as monoaminergic neurotransmitter levels in in 114 Pah-Enu2 mice on both B6 and BTBR backgrounds using (multiple) linear regression analyses. RESULTS: Plasma Phe concentrations were strongly correlated to brain Phe concentrations, significantly negatively correlated to brain serotonin and norepinephrine concentrations and only weakly correlated to brain dopamine concentrations. From all blood markers, Phe showed the strongest correlation to brain biochemistry in PKU mice. Including non-Phe LNAA concentrations to the multiple regression model, in addition to plasma Phe, did not help explain brain biochemistry. CONCLUSION: This study showed that blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, necessitating a search for other additional parameters. TAKE-HOME MESSAGE: Blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, necessitating a search for other additional parameters.


Asunto(s)
Química Encefálica , Encéfalo/fisiopatología , Fenilcetonurias/sangre , Fenilcetonurias/fisiopatología , Aminoácidos/sangre , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/análisis , Fenilalanina/análisis
8.
Mol Genet Metab ; 132(2): 119-127, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33485801

RESUMEN

Sapropterin dihydrochloride has been approved for the treatment of hyperphenylalaninemia in infants and young children with phenylketonuria (PKU). Sapropterin can reduce phenylalanine (Phe) levels in tetrahydrobiopterin (BH4)-responsive patients, potentially preventing the intellectual impairment caused by elevated Phe levels. The long-term effect of sapropterin on intellectual functioning was assessed using the Full-Scale Intelligence Quotient (FSIQ) in 62 children who began treatment before the age of 6 years. Over each 2-year interval, the estimate of mean change in FSIQ was -0.5768 with a lower limit of the 95% confidence interval (CI) of -1.60. At the end of the follow-up period (Year 7), the least squares mean estimate of the change in FSIQ from baseline was 1.14 with a lower limit of the 95% CI of -3.53. These lower limits were both within the clinically expected variation of 5 points. During the whole study period, mean blood Phe levels remained within the American College of Medical Genetics (ACMG) target range of 120-360 µmol/L. In addition, height, weight, and head circumference were maintained within normal ranges throughout follow-up, as defined by growth charts from the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) for children below and above the age of 24 months, respectively. All patients (n = 65) enrolled in this study experienced at least one adverse event, as expected from previous studies. In conclusion, long-term use of sapropterin in individuals with PKU helps to control blood Phe, preserve intellectual functioning, and maintain normal growth in BH4-responsive children who initiated treatment between the ages of 0 to 6 years.


Asunto(s)
Biopterinas/análogos & derivados , Fenilalanina/sangre , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/fisiopatología , Biopterinas/administración & dosificación , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Personas con Discapacidades Mentales/rehabilitación , Fenilalanina/genética , Fenilcetonurias/sangre
9.
Mol Genet Metab ; 132(4): 215-219, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33610470

RESUMEN

BACKGROUND: A subset of patients with phenylketonuria benefit from treatment with tetrahydrobiopterin (BH4), although there is no consensus on the definition of BH4 responsiveness. The aim of this study therefore was to gain insight into the definitions of long-term BH4 responsiveness being used around the world. METHODS: We performed a web-based survey targeting healthcare professionals involved in the treatment of PKU patients. Data were analysed according to geographical region (Europe, USA/Canada, other). RESULTS: We analysed 166 responses. Long-term BH4 responsiveness was commonly defined using natural protein tolerance (95.6%), improvement of metabolic control (73.5%) and increase in quality of life (48.2%). When a specific value for a reduction in phenylalanine concentrations was reported (n = 89), 30% and 20% were most frequently used as cut-off values (76% and 19% of respondents, respectively). When a specific relative increase in natural protein tolerance was used to define long-term BH4 responsiveness (n = 71), respondents most commonly reported cut-off values of 30% and 100% (28% of respondents in both cases). Respondents from USA/Canada (n = 50) generally used less strict cut-off values compared to Europe (n = 96). Furthermore, respondents working within the same center answered differently. CONCLUSION: The results of this study suggest a very heterogeneous situation on the topic of defining long-term BH4 responsiveness, not only at a worldwide level but also within centers. Developing a strong evidence- and consensus-based definition would improve the quality of BH4 treatment.


Asunto(s)
Biopterinas/análogos & derivados , Fenilalanina/genética , Fenilcetonurias/tratamiento farmacológico , Biopterinas/efectos adversos , Biopterinas/uso terapéutico , Canadá/epidemiología , Europa (Continente)/epidemiología , Humanos , Fenilalanina/sangre , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/sangre , Fenilcetonurias/epidemiología , Fenilcetonurias/patología , Estados Unidos/epidemiología
10.
Am J Med Genet A ; 185(7): 1991-2002, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33765361

RESUMEN

Neurotoxic effects caused by high phenylalanine (Phe) in patients with phenylketonuria (PKU) can be avoided through dietary treatment. However, achieving the recommended Phe levels has been a challenge. This study aimed to investigate factors associated with adherence to PKU treatment among patients followed at a medical genetics public service in southern Brazil. Twenty-nine patients (early diagnosed, n = 20; late-diagnosed, n = 9) with classical (n = 16) or mild PKU (n = 13) aged 6-34 years (16.4 ± 7.5) and 16 caregivers were included. Blood Phe levels were recorded, and assessment tools measuring barriers to treatment, IQ, knowledge about disease, treatment, and perceived adherence were collected. Classical PKU patients showed higher current blood Phe levels than mild PKU patients (U = 37.000, p = 0.003). Lifetime and childhood Phe levels were associated with recent metabolic control (τ = 0.76, p = 0.000; τ = 0.70, p = 0.000, respectively). The perception of barriers to treatment was associated with a higher blood Phe level (τ = 0.39, p = 0.003). Tolerance to Phe, metabolic control throughout childhood, and perceived difficulty in living with demands of treatment are important factors of greater vulnerability to poor adherence in PKU patients.


Asunto(s)
Dieta , Fenilalanina/sangre , Fenilcetonurias/dietoterapia , Fenilcetonurias/genética , Adolescente , Brasil/epidemiología , Niño , Femenino , Humanos , Masculino , Fenilalanina/efectos adversos , Fenilcetonurias/sangre , Fenilcetonurias/patología , Adulto Joven
11.
J Inherit Metab Dis ; 44(6): 1353-1368, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34145605

RESUMEN

Previous studies have suggested that cognitive and psychosocial underfunctioning in early-treated adults with phenylketonuria (PKU) may be explained by suboptimal adherence to dietary treatments, however, these studies often employ small samples, with different outcome measures, definitions and cut-offs. Samples have also tended to comprise participants with a limited range of blood phenylalanine concentrations, and often individuals who may not have been treated early enough to avoid neurological damage. In this study, we explore the impact of lifetime dietary control, as indicated by blood phenylalanine concentrations in childhood, adolescence and adulthood, on long-term cognitive and psychosocial outcomes in a large sample of adults with PKU who were diagnosed by neonatal screening and commenced on dietary treatment within the first month of life. One hundred and fifty-four participants underwent cognitive testing, assessing attention, learning, working memory, language, executive functioning and processing speed. One hundred and forty-nine completed measures of psychosocial functioning, documenting educational, occupational, quality of life, emotional and social outcomes which were compared with a group of healthy controls. Many adults with PKU demonstrated cognitive impairments, most frequently affecting processing speed (23%), executive function (20%) and learning (12%). Cognitive outcomes were related to measures of historic metabolic control, but only processing speed was significantly related to phenylalanine concentration at the time of testing after controlling for historic levels. Adults with PKU did not, however, differ from controls in educational, occupational, quality of life or emotional outcomes, or on a measure of family functioning, and showed only minor differences in relationship style. These findings have implications for patient counselling and decisions regarding the management of PKU in adulthood.


Asunto(s)
Cognición , Emociones , Fenilcetonurias/psicología , Adulto , Atención , Estudios de Casos y Controles , Función Ejecutiva , Femenino , Humanos , Inhibición Psicológica , Pruebas del Lenguaje , Masculino , Memoria a Corto Plazo , Salud Mental , Persona de Mediana Edad , Fenilalanina/sangre , Fenilcetonurias/sangre , Fenilcetonurias/dietoterapia , Calidad de Vida , Reino Unido , Adulto Joven
12.
Cochrane Database Syst Rev ; 1: CD001507, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33427303

RESUMEN

BACKGROUND: Phenylketonuria is an inherited disease for which the main treatment is the dietary restriction of the amino acid phenylalanine. The diet has to be initiated in the neonatal period to prevent or reduce mental handicap. However, the diet is very restrictive and unpalatable and can be difficult to follow. A deficiency of the amino acid tyrosine has been suggested as a cause of some of the neuropsychological problems exhibited in phenylketonuria. Therefore, this review aims to assess the efficacy of tyrosine supplementation for phenylketonuria. This is an update of previously published versions of this review. OBJECTIVES: To assess the effects of tyrosine supplementation alongside or instead of a phenylalanine-restricted diet for people with phenylketonuria, who commenced on diet at diagnosis and either continued on the diet or relaxed the diet later in life. To assess the evidence that tyrosine supplementation alongside, or instead of a phenylalanine-restricted diet improves intelligence, neuropsychological performance, growth and nutritional status, mortality rate and quality of life. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register which is comprised of references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. Additional studies were identified from handsearches of the Journal of Inherited Metabolic Disease (from inception in 1978 to 1998). The manufacturers of prescribable dietary products used in the treatment of phenylketonuria were also contacted for further references. Date of the most recent search of the Group's Inborn Errors of Metabolism Trials Register: 07 December 2020. SELECTION CRITERIA: All randomised or quasi-randomised trials investigating the use of tyrosine supplementation versus placebo in people with phenylketonuria in addition to, or instead of, a phenylalanine-restricted diet. People treated for maternal phenylketonuria were excluded. DATA COLLECTION AND ANALYSIS: Two authors independently assessed the trial eligibility, methodological quality and extracted the data. MAIN RESULTS: Six trials were found, of which three trials reporting the results of a total of 56 participants, were suitable for inclusion in the review. The blood tyrosine concentrations were significantly higher in the participants receiving tyrosine supplements than those in the placebo group, mean difference 23.46 (95% confidence interval 12.87 to 34.05). No significant differences were found between any of the other outcomes measured. The trials were assessed as having a low to moderate risk of bias across several domains. AUTHORS' CONCLUSIONS: From the available evidence no recommendations can be made about whether tyrosine supplementation should be introduced into routine clinical practice. Further randomised controlled studies are required to provide more evidence. However, given this is not an active area of research, we have no plans to update this review in the future.


Asunto(s)
Suplementos Dietéticos , Fenilcetonurias/tratamiento farmacológico , Tirosina/uso terapéutico , Humanos , Inteligencia/efectos de los fármacos , Pruebas Neuropsicológicas , Fenilalanina/sangre , Fenilcetonurias/sangre , Fenilcetonurias/dietoterapia , Placebos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Tirosina/sangre
13.
Mol Genet Metab ; 131(4): 380-389, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33234470

RESUMEN

BACKGROUND: Pyruvoyl Tetrahydropterin Synthase (PTPS) Deficiency is the most common form of BH4 deficiency resulting in hyperphenylalaninemia. It can have variable clinical severity and there is limited information on the clinical presentation, natural history and effectiveness of newborn screening for this condition. METHODS: Retrospective data (growth and clinical parameters, biochemical and genetic testing results, treatment) were collected from 19 patients with PTPS deficiency in different centers, to evaluate biochemical and clinical outcomes. Descriptive statistics was used for qualitative variables, while linear regression analysis was used to correlate quantitative variables. RESULTS: Patients with PTPS deficiency had an increased incidence of prematurity (4/18) with an average gestational age only mildly reduced (37.8 ± 2.4 weeks) and low birth weight (-1.14 ± 0.97 SD below that predicted for gestational age). With time, weight and height approached normal. VALUES: All patients were identified by newborn screening for an elevated phenylalanine level. However, phenylalanine levels were normal in two whose testing was performed at or before 24 h of age. Sapropterin dihydrochloride treatment normalized phenylalanine levels. Molecular testing identified novel variants in the PTS gene, some of which present in more than one affected family. The neurotransmitter derivatives 5-hydroxyindoleacetic acid (5HIAA) and homovanillic acid (HVA) in the CSF were decreased in most cases except in 2 families with the peripheral form of PTPS deficiency. With time, HVA and 5HIAA became abnormally low in two of these patients requiring therapy. Prolactin (whose secretion is inhibited by dopamine) levels were elevated in several patients with PTPS deficiency and inversely correlated with the z-scores for height (p < 0.01) and weight (p < 0.05). Most patients with PTPS deficiency had delayed development early in life, improving around school age with IQs mostly in the normal range, with a small decline in older individuals. From a neurological standpoint, most patients had normal brain MRI and minor EEG anomalies, although some had persistent neurological symptoms. DISCUSSION: Patients with PTPS deficiency have not only an increased incidence of prematurity, but also decreased birth weight when corrected for gestational age. Hyperphenylalaninemia can be absent in the first day of life. Therapy with sapropterin dihydrochloride normalizes phenylalanine levels and neurotransmitter precursors can improve CSF neurotransmitter metabolites levels. Insufficient dopaminergic stimulation (as seen from elevated prolactin) might result in decreased height in patients with PTPS deficiency. Despite early delays in development, many patients can achieve independence in adult life, with usually normal neuroimaging and EEG.


Asunto(s)
Fenilcetonurias/genética , Liasas de Fósforo-Oxígeno/deficiencia , Prolactina/genética , Adolescente , Adulto , Biopterinas/sangre , Biopterinas/líquido cefalorraquídeo , Niño , Preescolar , Femenino , Ácido Homovanílico/líquido cefalorraquídeo , Humanos , Indoles/líquido cefalorraquídeo , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Tamizaje Neonatal , Fenilalanina/líquido cefalorraquídeo , Fenilcetonurias/sangre , Fenilcetonurias/líquido cefalorraquídeo , Fenilcetonurias/diagnóstico por imagen , Fenilcetonurias/patología , Liasas de Fósforo-Oxígeno/líquido cefalorraquídeo , Liasas de Fósforo-Oxígeno/genética , Prolactina/líquido cefalorraquídeo , Prolactina/metabolismo
14.
J Inherit Metab Dis ; 43(5): 944-951, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32392388

RESUMEN

Many similarities between tryptophan (Trp) and phenylalanine (Phe) metabolisms exist. It is possible that a modification of Trp metabolism might be seen in phenylketonuria (PKU). As some of these metabolites have neuroactive properties, they should be consider in neurological impairment seen in this pathology and not totally explained by blood Phe concentrations. One hundred and fifty-one adult PKU patients (mean age 26.8 years) were included for this study. Plasma Trp, kynurenine (KYN), 3-hydroxykynurenic acid (3HK), and kynurenic acid (KA) were analyzed by liquid chromatography coupled with tandem mass spectrometry. KYN and 3HK were significantly lower in PKU patients compared to general population (P < .0001), and KA was significantly enhanced is this population (P = .009). Furthermore, 3HK concentration was significantly different between PKU patients underwent controlled low-Phe diet compared to PKU patients without this diet (P = .0016). In PKU patients with diet, taking AA substitute enable higher plasma 3HK concentration than without (P = .0008) but still not reaching general population level (P < .0001). Although further study has to be done, it is clear that Trp metabolism is modified in adult PKU patients. An exploration of complete Trp metabolism, and not only Trp concentration, is needed in PKU population, but also in other inborn error of metabolism treated with hypoprotidic diet.


Asunto(s)
Fenilcetonurias/sangre , Triptófano/metabolismo , Adulto , Análisis Químico de la Sangre/métodos , Cromatografía Liquida , Femenino , Francia , Humanos , Masculino , Fenilcetonurias/diagnóstico , Fenilcetonurias/metabolismo , Estudios Prospectivos , Espectrometría de Masas en Tándem
15.
J Inherit Metab Dis ; 43(2): 179-188, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31433494

RESUMEN

Analysis of blood phenylalanine is central to the monitoring of patients with phenylketonuria (PKU) and age-related phenylalanine target treatment-ranges (0-12 years; 120-360 µmol/L, and >12 years; 120-600 µmol/L) are recommended in order to prevent adverse neurological outcomes. These target treatment-ranges are based upon plasma phenylalanine concentrations. However, patients are routinely monitored using dried bloodspot (DBS) specimens due to the convenience of collection. Significant differences exist between phenylalanine concentrations in plasma and DBS, with phenylalanine concentrations in DBS specimens analyzed by flow-injection analysis tandem mass spectrometry reported to be 18% to 28% lower than paired plasma concentrations analyzed using ion-exchange chromatography. DBS specimens with phenylalanine concentrations of 360 and 600 µmol/L, at the critical upper-target treatment-range thresholds would be plasma equivalents of 461 and 768 µmol/L, respectively, when a reported difference of 28% is taken into account. Furthermore, analytical test imprecision and bias in conjunction with pre-analytical factors such as volume and quality of blood applied to filter paper collection devices to produce DBS specimens affect the final test results. Reporting of inaccurate patient results when comparing DBS results to target treatment-ranges based on plasma concentrations, together with inter-laboratory imprecision could have a significant impact on patient management resulting in inappropriate dietary change and potentially adverse patient outcomes. This review is intended to provide perspective on the issues related to the measurement of phenylalanine in blood specimens and to provide direction for the future needs of PKU patients to ensure reliable monitoring of metabolic control using the target treatment-ranges.


Asunto(s)
Pruebas con Sangre Seca/métodos , Fenilalanina/sangre , Fenilcetonurias/sangre , Aminoácidos/sangre , Cromatografía Líquida de Alta Presión/métodos , Pruebas con Sangre Seca/instrumentación , Humanos , Espectrometría de Masas en Tándem/métodos
16.
Cochrane Database Syst Rev ; 7: CD001304, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32672365

RESUMEN

BACKGROUND: Phenylketonuria is an inherited disease treated with dietary restriction of the amino acid phenylalanine. The diet is initiated in the neonatal period to prevent learning disability; however, it is restrictive and can be difficult to follow. Whether the diet can be relaxed or discontinued during adolescence or should be continued for life remains a controversial issue, which we aim to address in this review. This is an updated version of a previously published review. OBJECTIVES: To assess the effects of a low-phenylalanine diet commenced early in life for people with phenylketonuria. To assess the possible effects of relaxation or termination of the diet on intelligence, neuropsychological outcomes and mortality, growth, nutritional status, eating behaviour and quality of life. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. Most recent search of the Inborn Errors of Metabolism Trials Register: 30 April 2020. SELECTION CRITERIA: All randomised or quasi-randomised controlled trials comparing a low-phenylalanine diet to relaxation or termination of dietary restrictions in people with phenylketonuria. DATA COLLECTION AND ANALYSIS: Two authors independently assessed study eligibility and methodological quality, and subsequently extracted the data. MAIN RESULTS: We included four studies in this review (251 participants), and found few significant differences between treatment and comparison groups for the outcomes of interest. Blood phenylalanine levels were significantly lower in participants with phenylketonuria following a low-phenylalanine diet compared to those on a less restricted diet, mean difference (MD) at three months -698.67 (95% confidence interval (CI) -869.44 to -527.89). Intelligence quotient was significantly higher in participants who continued the diet than in those who stopped the diet, MD after 12 months 5.00 (95% CI 0.40 to 9.60). However, these results came from a single study. AUTHORS' CONCLUSIONS: The results of non-randomised studies have concluded that a low-phenylalanine diet is effective in reducing blood phenylalanine levels and improving intelligence quotient and neuropsychological outcomes. We were unable to find any randomised controlled studies that have assessed the effect of a low-phenylalanine diet versus no diet from diagnosis. In view of evidence from non-randomised studies, such a study would be unethical and it is recommended that low-phenylalanine diet should be commenced at the time of diagnosis. There is uncertainty about the precise level of phenylalanine restriction and when, if ever, the diet should be relaxed. This should be addressed by randomised controlled studies; however, no new studies are expected in this area so we do not plan to update this review.


Asunto(s)
Fenilalanina/administración & dosificación , Fenilcetonurias/dietoterapia , Preescolar , Humanos , Inteligencia , Fenilalanina/sangre , Fenilcetonurias/sangre , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Privación de Tratamiento
17.
Scand J Clin Lab Invest ; 80(8): 619-622, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33161754

RESUMEN

OBJECTIVE: To investigate the incidence of phenylalanine hydroxylase (PAH) deficiency and PAH genotypes in neonates in Hainan, China. Methods: We performed heal stick to collect blood and obtain dry blood spot specimens from newborns in Hainan from January 2007 to December 2016. Phenylalanine (Phe) concentration in these dry blood spots was measured by the fluorescence method to screen phenylketonuria (PKU). For suspicious samples, the genotypes of the PAH gene were amplified by biotin labeled oligonucleotide primers. Polymerase chain reaction (PCR) products were then analyzed by flow-through hybridization to detect genotypes. At the same time, peripheral blood samples of children suspicious of PKU and their parents were used to perform gene sequencing. Results: Of the 914,520 newborns screened, 29 of them had PAH deficiency. The incidence of PAH deficiency in Hainan was 3.17/100,000. A total of 58 mutant alleles belonging to 15 different types were identified in the 29 patients. In terms of genotypes frequency, the top 4 were: c.611A > G 20.7% (12/58) , c.728G > A 17.2%, c.158G > A 15.2% (9/58) and c.721C > T 13.8% (8/58). The frequencies of other genotypes were all below 10%. Conclusion: The incidence of PAH deficiency in Hainan is relatively high among all provinces in southern China. With a total frequency of 67.2%, c.611A > G, c.728G > A, c.158G > A and c.721C > T, and are the most common PAH gene genotypes.


Asunto(s)
Genotipo , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/epidemiología , Fenilcetonurias/genética , Polimorfismo Genético , Alelos , China/epidemiología , Pruebas con Sangre Seca , Femenino , Expresión Génica , Frecuencia de los Genes , Humanos , Incidencia , Recién Nacido , Masculino , Fenilalanina/sangre , Fenilalanina Hidroxilasa/deficiencia , Fenilcetonurias/sangre , Fenilcetonurias/diagnóstico , Análisis de Secuencia de ADN
18.
Ann Nutr Metab ; 76(4): 251-258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32998147

RESUMEN

BACKGROUND: Only few data on dietary management of adult phenylketonuria (PKU) patients are published. OBJECTIVES: This study aimed to assess living situation, dietary practices, and health conditions of early-treated adult PKU patients. METHODS: A total of 183 early-treated PKU patients ≥18 years from 8 German metabolic centers received access to an online survey, containing 91 questions on sociodemographic data, dietary habits, and health conditions. RESULTS: 144/183 patients (66% females) completed the questionnaire. Compared with German population, the proportion of single-person households was higher (22 vs. 47%), the rate of childbirth was lower (1.34 vs. 0.4%), but educational and professional status did not differ. 82% of the patients adhered to a low-protein diet, 45% consumed modified low-protein food almost daily, and 84% took amino acid mixtures regularly. 48% of the patients never interrupted diet, and 14% stopped diet permanently. 69% of the patients reported to feel better with diet, and 91% considered their quality of life at least as good. The prevalence of depressive symptoms was high (29%) and correlated significantly to phenylalanine blood concentrations (p = 0.046). However, depressive symptoms were only mild in the majority of patients. CONCLUSION: This group of early-treated adult German PKU patients is socially well integrated, reveals a surprisingly high adherence to diet and amino acid intake, and considers the restrictions of diet to their daily life as low.


Asunto(s)
Dieta con Restricción de Proteínas/estadística & datos numéricos , Conducta Alimentaria/psicología , Fenilcetonurias/psicología , Calidad de Vida , Actividades Cotidianas/psicología , Adolescente , Adulto , Aminoácidos/administración & dosificación , Estudios Transversales , Depresión/epidemiología , Depresión/etiología , Dieta con Restricción de Proteínas/psicología , Suplementos Dietéticos/estadística & datos numéricos , Femenino , Estado de Salud , Humanos , Masculino , Persona de Mediana Edad , Cooperación del Paciente/psicología , Cooperación del Paciente/estadística & datos numéricos , Fenilalanina/sangre , Fenilcetonurias/sangre , Fenilcetonurias/dietoterapia , Prevalencia , Encuestas y Cuestionarios , Adulto Joven
19.
Metab Brain Dis ; 35(7): 1225-1229, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32661828

RESUMEN

Phenylketonuria (PKU) is the most common inborn error of amino acids metabolism. PKU management aims to keep as soon as possible blood phenylalanine (Phe), a non-acutely neurotoxic metabolite, within safe ranges through a dietary Phe restriction tailored to individual dietary Phe tolerance. Information on initial neonatal management of PKU, when Phe tolerance is still unknown, is scanty. We reviewed the metabolic data from 304 patients with PAH deficiency detected at newborn screening within the last 37 years. In keeping with the general neonatal management of intoxication-type inborn errors of metabolism, initial management consisted in a Phe wash-out through the exclusive administration of normocaloric Phe-free formulas until normalization of blood Phe. Based on genotype and Phe tolerance assessed at follow-up, 55 patients had classic PKU (18%), 50 mild PKU (17%), and 199 non-PKU hyperphenylalaninemia (HPA) (65%). The duration of Phe wash-out amounted to 7 ± 2 days in classic PKU, 4 ± 2 days in mild PKU, and < 24 h in non-PKU HPA (p < 0.001). After the wash-out, dietary Phe re-introduction and its upwardly titration allowed the assessment of individual metabolic phenotype. During the first 6 years of life, Phe tolerance was stable in classic PKU (~ 200 mg/day) but increased in milder forms, allowing unrestricted diet in non-PKU HPA. Neonatal Phe wash-out in PKU ensures the earliest correction of HPA. This metabolic reset also facilitates the prompt definition of individual Phe tolerance, allowing anticipation of dietary personalization and optimization of longitudinal metabolic control.


Asunto(s)
Fenilalanina/sangre , Fenilcetonurias/diagnóstico , Femenino , Humanos , Recién Nacido , Masculino , Tamizaje Neonatal , Fenotipo , Fenilcetonurias/sangre , Estudios Retrospectivos
20.
J Clin Lab Anal ; 34(3): e23106, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31762087

RESUMEN

BACKGROUND: Hyperphenylalaninemia is the most common genetic metabolic disease. Early treatment prevents brain injury effectively. The present study aimed to detect the exact amino acid status of patients with hyperphenylalaninemia before treatment. METHODS: Data of 116 newborn patients from our Newborn Screening Center and 161 older patients from our clinic before treatment were collected. The content of 17 amino acids in their blood was determined by tandem mass spectrometry and compared with normal controls. Relationship between phenylalanine and other amino acids in patients was analyzed using the smoothing curve fitting and threshold effect analysis. RESULTS: Most amino acids in the blood of patients were within the normal range; however, they were different significantly from those of the normal children. Newborn patients showed higher phenylalanine (346.30 vs 45.90 µmol/L), valine (121.50 vs 110.30 µmol/L), citrulline, ornithine and lower tyrosine (52.97 vs 66.12 µmol/L), threonine (68.68 vs 78.21 µmol/L), glutamine levels than observed in normal newborns. Older patients showed significantly higher phenylalanine (844.00 vs 51.82 µmol/L), valine (117.60 vs 110.90 µmol/L), histidine, serine and lower tyrosine (55.97 vs 67.31 µmol/L), threonine (35.94 vs 51.89 µmol/L), alanine, asparagine, glutamic acid, methionine, arginine, glycine, ornithine, glutamine content than found in matched normal children. Tyrosine, valine, ornithine, and threonine in newborn patients and tyrosine, glycine, glutamine, and threonine in older patients had a nonlinear correlation with phenylalanine levels with obvious threshold effect and clear inflection points. CONCLUSION: Significant difference was observed in the amino acid status between pretherapeutic hyperphenylalaninemia patients and normal children. Some amino acids showed notable threshold effect with phenylalanine level in a nonlinear pattern.


Asunto(s)
Aminoácidos/sangre , Fenilcetonurias/sangre , Fenilcetonurias/terapia , Estudios de Casos y Controles , Femenino , Humanos , Lactante , Recién Nacido , Dinámicas no Lineales , Fenilalanina Hidroxilasa/deficiencia , Fenilalanina Hidroxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA