Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 604(7906): 541-545, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388215

RESUMEN

Fidaxomicin (Fdx) is widely used to treat Clostridioides difficile (Cdiff) infections, but the molecular basis of its narrow-spectrum activity in the human gut microbiome remains unknown. Cdiff infections are a leading cause of nosocomial deaths1. Fidaxomicin, which inhibits RNA polymerase, targets Cdiff with minimal effects on gut commensals, reducing recurrence of Cdiff infection2,3. Here we present the cryo-electron microscopy structure of Cdiff RNA polymerase in complex with fidaxomicin and identify a crucial fidaxomicin-binding determinant of Cdiff RNA polymerase that is absent in most gut microbiota such as Proteobacteria and Bacteroidetes. By combining structural, biochemical, genetic and bioinformatic analyses, we establish that a single residue in Cdiff RNA polymerase is a sensitizing element for fidaxomicin narrow-spectrum activity. Our results provide a blueprint for targeted drug design against an important human pathogen.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clostridioides , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN , Fidaxomicina/química , Fidaxomicina/farmacología , Fidaxomicina/uso terapéutico , Humanos
2.
Mol Cell ; 70(1): 60-71.e15, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606590

RESUMEN

Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Fidaxomicina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Diseño de Fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/ultraestructura , Fidaxomicina/química , Fidaxomicina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Mutación , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestructura , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Relación Estructura-Actividad
3.
Antimicrob Agents Chemother ; 68(3): e0122223, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265216

RESUMEN

Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stems from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trial results for recent antibiotic candidates, underscores the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an Minimum inhibitory concentration (MIC90) of 2 µg/mL, which was comparable to vancomycin (1 µg/mL), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK, therefore, represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Ratones , Vancomicina/farmacología , Oxidorreductasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fidaxomicina/farmacología , Infecciones por Clostridium/tratamiento farmacológico
4.
Antimicrob Agents Chemother ; 68(3): e0162123, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38364016

RESUMEN

Antimicrobial resistance is emerging in clinical strains of Clostridioides difficile. Ibezapolstat (IBZ) is a DNA polymerase IIIC inhibitor that has completed phase II clinical trials. IBZ has potent in vitro activity against wild-type, susceptible strains but its effect on C. difficile strains with reduced susceptibility to metronidazole (MTZ), vancomycin (VAN), or fidaxomicin (FDX) has not been tested. The primary objective of this study was to test the antibacterial properties of IBZ against multidrug-resistant C. difficile strains. The in vitro activity, bactericidal, and time-kill activity of IBZ versus comparators were evaluated against 100 clinical strains of which 59 had reduced susceptibility to other C. difficile antibiotics. Morphologic changes against a multidrug resistance strain were visualized by light and scanning electron microscopy. The overall IBZ MIC50/90 values (µg/mL) for evaluated C. difficile strains were 4/8, compared with 2/4 for VAN, 0.5/1 for FDX, and 0.25/4 for MTZ. IBZ MIC50/90 values did not differ based on non-susceptibility to antibiotic class or number of classes to which strains were non-susceptible. IBZ bactericidal activity was similar to the minimum inhibitory concentration (MIC) and maintained in wild-type and non-susceptible strains. Time-kill assays against two laboratory wild-type and two clinical non-susceptible strains demonstrated sustained IBZ activity despite reduced killing by comparator antibiotics for IBZ and VAN non-susceptible strains. Microscopy visualized increased cell lengthening and cellular damage in multidrug-resistant strains exposed to IBZ sub-MIC concentrations. This study demonstrated the potent antibacterial activity of IBZ against a large collection of C. difficile strains including multidrug-resistant strains. This study highlights the therapeutic potential of IBZ against multidrug-resistant strains of C. difficile.


Asunto(s)
Antiinfecciosos , Clostridioides difficile , Infecciones por Clostridium , Nucleósidos de Purina , Humanos , Clostridioides , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Vancomicina/farmacología , Vancomicina/uso terapéutico , Metronidazol/farmacología , Metronidazol/uso terapéutico , Fidaxomicina/farmacología , Fidaxomicina/uso terapéutico , Pruebas de Sensibilidad Microbiana
5.
J Biol Chem ; 298(4): 101752, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189142

RESUMEN

RNA polymerase (RNAP) binding protein A (RbpA) is essential for mycobacterial viability and regulates transcription initiation by increasing the stability of the RNAP-promoter open complex (RPo). RbpA consists of four domains: an N-terminal tail (NTT), a core domain (CD), a basic linker, and a sigma interaction domain. We have previously shown that truncation of the RbpA NTT and CD increases RPo stabilization by RbpA, implying that these domains inhibit this activity of RbpA. Previously published structural studies showed that the NTT and CD are positioned near multiple RNAP-σA holoenzyme functional domains and predict that the RbpA NTT contributes specific amino acids to the binding site of the antibiotic fidaxomicin (Fdx), which inhibits the formation of the RPo complex. Furthermore, deletion of the NTT results in decreased Mycobacterium smegmatis sensitivity to Fdx, but whether this is caused by a loss in Fdx binding is unknown. We generated a panel of rbpA mutants and found that the RbpA NTT residues predicted to directly interact with Fdx are partially responsible for RbpA-dependent Fdx activity in vitro, while multiple additional RbpA domains contribute to Fdx activity in vivo. Specifically, our results suggest that the RPo-stabilizing activity of RbpA decreases Fdx activity in vivo. In support of the association between RPo stability and Fdx activity, we find that another factor that promotes RPo stability in bacteria, CarD, also impacts to Fdx sensitivity. Our findings highlight how RbpA and other factors may influence RNAP dynamics to affect Fdx sensitivity.


Asunto(s)
Fidaxomicina , Mycobacterium smegmatis , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Fidaxomicina/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Regiones Promotoras Genéticas , Factor sigma/metabolismo
6.
BMC Vet Res ; 19(1): 238, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974163

RESUMEN

BACKGROUND: Previous studies have demonstrated that fidaxomicin, a macrocyclic lactone antibiotic used to treat recurrent Clostridioides difficile-associated diarrhea, also displays potent in vitro bactericidal activity against Clostridium perfringens strains isolated from humans. However, to date, there is no data on the susceptibility to fidaxomicin of C. perfringens strains of animal origin. On the other hand, although combination therapy has become popular in human and veterinary medicine, limited data are available on the effects of antibiotic combinations on C. perfringens. We studied the in vitro response of 21 C. perfringens strains obtained from dogs and cats to fidaxomicin and combinations of fidaxomicin with six other antibiotics. RESULTS: When tested by an agar dilution method, fidaxomicin minimum inhibitory concentrations (MICs) ranged between 0.004 and 0.032 µg/ml. Moreover, the results of Etest-based combination assays revealed that the incorporation of fidaxomicin into the test medium at a concentration equivalent to half the MIC significantly increased the susceptibility of isolates to metronidazole and erythromycin in 71.4% and 61.9% of the strains, respectively, and the susceptibility to clindamycin, imipenem, levofloxacin, and vancomycin in 42.9-52.4% of the strains. In contrast, » × MIC concentrations of fidaxomicin did not have any effect on levofloxacin and vancomycin MICs and only enhanced the effects of clindamycin, erythromycin, imipenem, and metronidazole in ≤ 23.8% of the tested strains. CONCLUSIONS: The results of this study demonstrate that fidaxomicin is highly effective against C. perfringens strains of canine and feline origin. Although fidaxomicin is currently considered a critically important antimicrobial that has not yet been licensed for veterinary use, we consider that the results reported in this paper provide useful baseline data to track the possible emergence of fidaxomicin resistant strains of C. perfringens in the veterinary setting.


Asunto(s)
Enfermedades de los Gatos , Clostridioides difficile , Infecciones por Clostridium , Enfermedades de los Perros , Gatos , Animales , Perros , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fidaxomicina/farmacología , Clostridium perfringens , Enfermedades de los Gatos/tratamiento farmacológico , Vancomicina/farmacología , Metronidazol/farmacología , Clindamicina , Levofloxacino/farmacología , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/veterinaria , Enfermedades de los Perros/tratamiento farmacológico , Imipenem/farmacología , Eritromicina/farmacología , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Pruebas de Sensibilidad Microbiana/veterinaria
7.
BMC Med ; 18(1): 204, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32731873

RESUMEN

BACKGROUND: Zika virus (ZIKV) infection is a global health problem, and its complications, including congenital Zika syndrome and Guillain-Barré syndrome, constitute a continued threat to humans. Unfortunately, effective therapeutics against ZIKV infection are not available thus far. METHODS: We screened the compounds collection consisting of 1789 FDA-approved drugs by a computational docking method to obtain anti-ZIKV candidate compounds targeting ZIKV RNA-dependent RNA polymerase (RdRp). SPR (BIAcore) assay was employed to demonstrate the candidate compounds' direct binding to ZIKV RdRp, and polymerase activity assay was used to determine the inhibitory effect on ZIKV RdRp-catalyzed RNA synthesis. The antiviral effects on ZIKV in vitro and in vivo were detected in infected cultured cells and in Ifnar1-/- mice infected by ZIKV virus using plaque assay, western blotting, tissue immunofluorescence, and immunohistochemistry. RESULTS: Here, we report that a first-in-class macrocyclic antibiotic, which has been clinically used to treat Clostridium difficile infection, fidaxomicin, potently inhibits ZIKV replication in vitro and in vivo. Our data showed that fidaxomicin was effective against African and Asian lineage ZIKV in a wide variety of cell lines of various tissue origins, and prominently suppressed ZIKV infection and significantly improved survival of infected mice. In addition, fidaxomicin treatment reduced the virus load in the brains and testes, and alleviated ZIKV-associated pathological damages, such as paralysis, hunching, and neuronal necrosis in the cerebra. Furthermore, our mechanistic study showed that fidaxomicin directly bound ZIKV NS5 protein and inhibited the RNA synthesis-catalyzing activity of ZIKV RdRp. CONCLUSIONS: Our data suggest that fidaxomicin may represent an effective anti-ZIKV agent. In the light that fidaxomicin is already a clinically used drug, there might be a promising prospect in the development of fidaxomicin to be an antiviral therapeutic.


Asunto(s)
Fidaxomicina/uso terapéutico , ARN Polimerasa Dependiente del ARN/uso terapéutico , Infección por el Virus Zika/tratamiento farmacológico , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Femenino , Fidaxomicina/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , ARN Polimerasa Dependiente del ARN/farmacología , Células Vero , Infección por el Virus Zika/patología
8.
J Infect Chemother ; 26(5): 483-491, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32165071

RESUMEN

OBJECTIVE: To investigate the effect of vancomycin and fidaxomicin on the diversity of intestinal microbiota in a mouse model of Clostridioides difficile infection. METHODS: Mice were divided into 11 models (4 mice per model): 6 uninoculated models and 5 models inoculated with C. difficile BI/NAP1/027. Inoculated models were prepared using intraperitoneal clindamycin followed by inoculation with C. difficile BI/NAP1/027. Uninoculated and C. difficile-inoculated mice received 2 or 7 days' vancomycin or fidaxomicin. Clostridium butyricum MIYAIRI 588 probiotic and lactoferrin prebiotic were administered for 10 days to uninoculated mice. Intestinal microbiome composition was investigated by sequence analyses of bacterial 16S rRNA genes from faeces, and microbiota diversity estimated. RESULTS: In uninoculated, untreated ('normal') mice, Clostridia (57.8%) and Bacteroidia (32.4%) accounted for the largest proportions of gut microbiota. The proportion of Clostridia was numerically reduced in C. difficile-inoculated versus normal mice. Administration of vancomycin to C. difficile-inoculated mice reduced the proportions of Bacteroidia and Clostridia, and increased that of Proteobacteria. Administration of fidaxomicin to C. difficile-inoculated mice reduced the proportion of Clostridia to a lesser extent, but increased that of Bacteroidia. Microbiota diversity was lower in C. difficile-inoculated versus normal mice (164.5 versus 349.1 operational taxonomic units (OTUs), respectively); treatment of C. difficile-inoculated mice with 7 days' vancomycin reduced diversity to a greater extent than did 7 days' fidaxomicin treatment (26.2 versus 134.2 OTUs, respectively). CONCLUSIONS: Both C. difficile inoculation and treatment with vancomycin or fidaxomicin reduced microbiota diversity; however, dysbiosis associated with fidaxomicin was milder than with vancomycin.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Fidaxomicina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Vancomicina/farmacología , Animales , Antibacterianos/uso terapéutico , Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/microbiología , Modelos Animales de Enfermedad , Heces/microbiología , Fidaxomicina/uso terapéutico , Humanos , Ratones , Microbiota/efectos de los fármacos , ARN Ribosómico 16S/genética , Vancomicina/uso terapéutico
9.
J Infect Chemother ; 26(7): 685-692, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32224190

RESUMEN

Clostridioides difficile infection results from a disturbance of the normal microbial flora of the colon, allowing proliferation of C. difficile and toxin production by toxigenic strains. Fidaxomicin, a macrocyclic antibiotic that prevents RNA synthesis in C. difficile and inhibits spore formation, toxin production, and cell proliferation, is clinically effective in treating C. difficile infection. As recent studies have suggested that biofilm formation influences C. difficile colonization and infection in the colon, we undertook the present study to determine the effects of fidaxomicin on C. difficile biofilm formation. Sub-minimum inhibitory concentrations (MICs) of fidaxomicin inhibited biofilm formation by C. difficile UK027 and delayed planktonic growth. Sub-MICs of vancomycin did not inhibit biofilm formation or affect planktonic growth. In C. difficile UK027 exposed to sub-MICs of fidaxomicin, mRNA expression of biofilm-related flagellin gene fliC was slightly increased compared with that of other biofilm-related genes (pilA1, cwp84, luxS, dccA, and spo0A). In conclusion, this study indicates that sub-MICs of fidaxomicin inhibit C. difficile UK027 biofilm formation by influencing cell growth and fliC transcription.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Fidaxomicina/farmacología , Antibacterianos/uso terapéutico , Clostridioides difficile/genética , Infecciones por Clostridium/microbiología , Fidaxomicina/uso terapéutico , Flagelina/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , ARN Bacteriano/biosíntesis , ARN Bacteriano/aislamiento & purificación , ARN Mensajero/biosíntesis , ARN Mensajero/aislamiento & purificación , Transcripción Genética/efectos de los fármacos
10.
Artículo en Inglés | MEDLINE | ID: mdl-31085514

RESUMEN

In 2011, we initiated a sentinel surveillance network to assess changes in Clostridioides (formerly Clostridium) difficile antimicrobial susceptibility to fidaxomicin from 6 geographically dispersed medical centers in the United States. This report summarizes data from 2013 to 2016. C. difficile isolates or toxin-positive stools from patients were referred to a central laboratory. Antimicrobial susceptibility was determined by agar dilution. CLSI, EUCAST, or FDA breakpoints were used, where applicable. Toxin gene profiles were characterized by multiplex PCR on each isolate. A random sample of approximately 40% of isolates, stratified by institution and year, was typed by restriction endonuclease analysis (REA). Among 1,889 isolates from 2013 to 2016, the fidaxomicin MIC90 was 0.5 µg/ml; all isolates were inhibited at ≤1 µg/ml. There were decreases in metronidazole and vancomycin MICs over time. Clindamycin resistance remained unchanged (27.3%). An increase in imipenem resistance was observed. By 2015 to 2016, moxifloxacin resistance decreased in all centers. The proportion of BI isolates decreased from 25.5% in 2011 to 2012 to 12.8% in 2015 to 2016 (P < 0.001). The BI REA group correlated with moxifloxacin resistance (BI 84% resistant versus non-BI 12.5% resistant). Fidaxomicin MICs have not changed among C. difficile isolates of U.S. origin over 5 years post licensure. There has been an overall decrease in MICs for vancomycin, metronidazole, moxifloxacin, and rifampin and an increase in isolates resistant to imipenem. Moxifloxacin resistance remained high among the BI REA group, but the proportion of BI isolates has decreased. Continued geographic variations in REA groups and antimicrobial resistance persist.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/microbiología , Diarrea/microbiología , Fidaxomicina/farmacología , ADP Ribosa Transferasas/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Clindamicina/farmacología , Clostridioides difficile/genética , Clostridioides difficile/aislamiento & purificación , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Enterotoxinas/genética , Humanos , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , Prohibitinas , Vigilancia de Guardia , Estados Unidos
11.
J Antimicrob Chemother ; 74(1): 6-10, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247587

RESUMEN

Objectives: The identification and characterization of clinical Clostridioides difficile isolates with reduced fidaxomicin susceptibility. Methods: Agar dilution assays were used to determine fidaxomicin MICs. Genome sequence data were obtained by single-molecule real-time (SMRT) sequencing in addition to amplicon sequencing of rpoB and rpoC alleles. Allelic exchange was used to introduce the identified mutation into C. difficile 630Δerm. Replication rates, toxin A/B production and spore formation were determined from the strain with reduced fidaxomicin susceptibility. Results: Out of 50 clinical C. difficile isolates, isolate Goe-91 revealed markedly reduced fidaxomicin susceptibility (MIC >64 mg/L). A V1143D mutation was identified in rpoB of Goe-91. When introduced into C. difficile 630Δerm, this mutation decreased fidaxomicin susceptibility (MIC >64 mg/L), but was also associated with a reduced replication rate, low toxin A/B production and markedly reduced spore formation. In contrast, Goe-91, although also reduced in toxin production, showed normal growth rates and only moderately reduced spore formation capacities. This indicates that the rpoBV1143D allele-associated fitness defect is less pronounced in the clinical isolate. Conclusions: To the best of our knowledge, this is the first description of a pathogenic clinical C. difficile isolate with markedly reduced fidaxomicin susceptibility. The lower-than-expected fitness burden of the resistance-mediating rpoBV1143D allele might be an indication for compensatory mechanisms that take place during in vivo selection of mutants.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/microbiología , ARN Polimerasas Dirigidas por ADN/genética , Fidaxomicina/farmacología , Mutación Missense , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Clostridioides difficile/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
12.
Eur J Clin Microbiol Infect Dis ; 38(6): 1187-1194, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30911926

RESUMEN

Poor outcomes following Clostridium difficile infection (CDI) have been associated with advanced age, presence of cancer and C. difficile PCR-ribotype 027. The impact of baseline risk factors on clinical outcomes was evaluated using data from the EXTEND study, in which rate of sustained clinical cure (SCC) in the overall population was significantly higher with an extended-pulsed fidaxomicin (EPFX) regimen than with vancomycin. Patients aged ≥ 60 years received EPFX (fidaxomicin 200 mg twice daily, days 1-5; once daily on alternate days, days 7-25) or vancomycin (125 mg four times daily, days 1-10). We analysed outcomes by advanced age, cancer diagnosis, CDI severity, prior CDI occurrence and infection with PCR-ribotype 027. The primary endpoint was SCC 30 days after end of treatment (EOT; clinical response at test-of-cure with no subsequent recurrence). SCC rates 30 days after EOT did not differ significantly between EPFX (124/177, 70.1%) and vancomycin (106/179, 59.2%) regardless of age, cancer diagnosis, CDI severity and prior CDI. In patients with PCR-ribotype 027, SCC rate 30 days after EOT was significantly higher with EPFX (20/25, 80%) than with vancomycin (9/22, 40.9%) (treatment difference, 39.1%; 95% CI, 13.2-64.9; P = 0.006). Subgroup analyses from the EXTEND study suggest that EPFX is efficacious as a potential treatment for CDI regardless of age, cancer diagnosis, infection with PCR-ribotype 027, CDI severity or prior CDI. ClinicalTrials.gov identifier: NCT02254967.


Asunto(s)
Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Fidaxomicina/administración & dosificación , Fidaxomicina/farmacología , Vancomicina/administración & dosificación , Vancomicina/farmacología , Anciano , Anciano de 80 o más Años , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Clostridioides difficile/clasificación , Clostridioides difficile/genética , Infecciones por Clostridium/patología , Heces/microbiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Recurrencia , Ribotipificación , Resultado del Tratamiento
13.
Artículo en Inglés | MEDLINE | ID: mdl-29038278

RESUMEN

Clostridium difficile causes diarrhea and colitis by releasing toxin A and toxin B. In the human colon, both toxins cause intestinal inflammation and stimulate tumor necrosis factor alpha (TNF-α) expression via the activation of NF-κB. It is well established that the macrolide antibiotic fidaxomicin is associated with reduced relapses of C. difficile infection. We showed that fidaxomicin and its primary metabolite OP-1118 significantly inhibited toxin A-mediated intestinal inflammation in mice in vivo and toxin A-induced cell rounding in vitro We aim to determine whether fidaxomicin and OP-1118 possess anti-inflammatory effects against toxin A and toxin B in the human colon and examine the mechanism of this response. We used fresh human colonic explants, NCM460 human colonic epithelial cells, and RAW264.7 mouse macrophages to study the mechanism of the activity of fidaxomicin and OP-1118 against toxin A- and B-mediated cytokine expression and apoptosis. Fidaxomicin and OP-1118 dose-dependently inhibited toxin A- and B-induced TNF-α and interleukin-1ß (IL-1ß) mRNA expression and histological damage in human colonic explants. Fidaxomicin and OP-1118 inhibited toxin A-mediated NF-κB phosphorylation in human and mouse intestinal mucosae. Fidaxomicin and OP-1118 also inhibited toxin A-mediated NF-κB phosphorylation and TNF-α expression in macrophages, which was reversed by the NF-κB activator phorbol myristate acetate (PMA). Fidaxomicin and OP-1118 prevented toxin A- and B-mediated apoptosis in NCM460 cells, which was reversed by the addition of PMA. PMA reversed the cytoprotective effect of fidaxomicin and OP-1118 in toxin-exposed human colonic explants. Fidaxomicin and OP-1118 inhibit C. difficile toxin A- and B-mediated inflammatory responses, NF-κB phosphorylation, and tissue damage in the human colon.


Asunto(s)
Aminoglicósidos/farmacología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Fidaxomicina/farmacología , FN-kappa B/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Células Epiteliales/microbiología , Células Epiteliales/patología , Humanos , Inflamación/tratamiento farmacológico , Interleucina-1beta/antagonistas & inhibidores , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones , Fosforilación/efectos de los fármacos , Células RAW 264.7 , Acetato de Tetradecanoilforbol/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
14.
Artículo en Inglés | MEDLINE | ID: mdl-29463537

RESUMEN

Clostridium difficile infection (CDI), a common cause of hospital-acquired infections, typically occurs after disruption of the normal gut microbiome by broad-spectrum antibiotics. Fidaxomicin is a narrow-spectrum antibiotic that demonstrates a reduced impact on the normal gut microbiota and is approved for the treatment of CDI. To further explore the benefits of this property, we used a murine model to examine the effects of fidaxomicin versus vancomycin on gut microbiota and susceptibility to C. difficile colonization while tracking microbiota recovery over time. Mice were exposed to fidaxomicin or vancomycin by oral gavage for 3 days and subsequently challenged with C. difficile spores at predetermined time points up to 21 days postexposure to antibiotics. Fecal samples were subsequently collected for analysis. Twenty-four hours postchallenge, mice were euthanized and the colon contents harvested. The microbiota was characterized using 16S rRNA gene sequencing. All fidaxomicin-exposed mice (except for one at day 8) were resistant to C. difficile colonization. However, 9 of 15 vancomycin-exposed mice were susceptible to C. difficile colonization until day 12. All vancomycin-exposed mice recovered colonization resistance by day 16. Bacterial diversity was similar prior to antibiotic exposure in both arms and decreased substantially after exposure. A shift in taxonomic structure and composition occurred after both exposures; however, the shift was greater in vancomycin-exposed than in fidaxomicin-exposed mice. In summary, compared with vancomycin, fidaxomicin exposure had less impact on microbiota composition, promoted faster microbial recovery, and had less impact on the loss of C. difficile colonization resistance.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Fidaxomicina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Vancomicina/farmacología , Animales , Infecciones por Clostridium/prevención & control , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética
15.
J Antimicrob Chemother ; 73(4): 973-980, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253242

RESUMEN

Objectives: To establish the role of specific, non-synonymous SNPs in the RNA polymerase ß subunit (rpoB) gene in reducing the susceptibility of Clostridium difficile to fidaxomicin and to explore the potential in vivo significance of rpoB mutant strains. Methods: Allelic exchange was used to introduce three different SNPs into the rpoB gene of an erythromycin-resistant derivative (CRG20291) of C. difficile R20291. The genome sequences of the created mutants were determined and each mutant analysed with respect to growth and sporulation rates, toxin A/B production and cytotoxicity against Vero cells, and in competition assays. Their comparative virulence and colonization ability was also assessed in a hamster infection model. Results: The MIC of fidaxomicin displayed by three mutants CRG20291-TA, CRG20291-TG and CRG20291-GT was substantially increased (>32, 8 and 2 mg/L, respectively) relative to that of the parent strain (0.25 mg/L). Genome sequencing established that the intended mutagenic substitutions in rpoB were the only changes present. Relative to CRG20291, all mutants had attenuated growth, were outcompeted by the parental strain, had lower sporulation and toxin A/B production capacities, and displayed diminished cytotoxicity. In a hamster model, virulence of all three mutants was significantly reduced compared with the progenitor strain, whereas the degree of caecum colonization was unaltered. Conclusions: Our study demonstrates that particular SNPs in rpoB lead to reduced fidaxomicin susceptibility. These mutations were associated with a fitness cost in vitro and reduced virulence in vivo.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/genética , ARN Polimerasas Dirigidas por ADN/genética , Farmacorresistencia Bacteriana , Fidaxomicina/farmacología , Aptitud Genética , Mutación Missense , Animales , Toxinas Bacterianas/metabolismo , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/patología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Femenino , Mesocricetus , Pruebas de Sensibilidad Microbiana , Esporas Bacterianas/crecimiento & desarrollo , Células Vero , Virulencia , Secuenciación Completa del Genoma
16.
Gut Microbes ; 16(1): 2342583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722061

RESUMEN

Vancomycin and metronidazole are commonly used treatments for Clostridioides difficile infection (CDI). However, these antibiotics have been associated with high levels of relapse in patients. Fidaxomicin is a new treatment for CDI that is described as a narrow spectrum antibiotic that is minimally active on the commensal bacteria of the gut microbiome. The aim of this study was to compare the effect of fidaxomicin on the human gut microbiome with a number of narrow (thuricin CD) and broad spectrum (vancomycin and nisin) antimicrobials. The spectrum of activity of each antimicrobial was tested against 47 bacterial strains by well-diffusion assay. Minimum inhibitory concentrations (MICs) were calculated against a select number of these strains. Further, a pooled fecal slurry of 6 donors was prepared and incubated for 24 h with 100 µM of each antimicrobial in a mini-fermentation system together with a no-treatment control. Fidaxomicin, vancomycin, and nisin were active against most gram positive bacteria tested in vitro, although fidaxomicin and vancomycin produced larger zones of inhibition compared to nisin. In contrast, the antimicrobial activity of thuricin CD was specific to C. difficile and some Bacillus spp. The MICs showed similar results. Thuricin CD exhibited low MICs (<3.1 µg/mL) for C. difficile and Bacillus firmus, whereas fidaxomicin, vancomycin, and nisin demonstrated lower MICs for all other strains tested when compared to thuricin CD. The narrow spectrum of thuricin CD was also observed in the gut model system. We conclude that the spectrum of activity of fidaxomicin is comparable to that of the broad-spectrum antibiotic vancomycin in vitro and the broad spectrum bacteriocin nisin in a complex community.


Asunto(s)
Antibacterianos , Heces , Fidaxomicina , Microbioma Gastrointestinal , Pruebas de Sensibilidad Microbiana , Nisina , Vancomicina , Nisina/farmacología , Antibacterianos/farmacología , Humanos , Fidaxomicina/farmacología , Vancomicina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Heces/microbiología , Bacterias/efectos de los fármacos , Bacterias/clasificación , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Bacteriocinas/farmacología
17.
Clin Ther ; 45(4): 356-362, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36906440

RESUMEN

PURPOSE: Bezlotoxumab is approved for prevention of recurrent Clostridioides (Clostridium) difficile infection (CDI) in adults receiving antibacterial treatment for CDI who are at high risk for recurrent CDI. Previous studies have shown that although serum albumin levels are an important predictor for bezlotoxumab exposure, this has no clinically meaningful impact on efficacy. This pharmacokinetic modeling study assessed whether hematopoietic stem cell transplant (HSCT) recipients, at increased risk of CDI and exhibiting decreased albumin levels within the first month posttransplant, are at risk of clinically relevant reductions in bezlotoxumab exposure. METHODS: Observed bezlotoxumab concentration-time data pooled from participants in Phase III trials MODIFY I and II (ClinicalTrials.gov identifiers NCT01241552/NCT01513239) and three Phase I studies (PN004, PN005, and PN006) were used to predict bezlotoxumab exposures in two adult post-HSCT populations: A Phase Ib study of posaconazole including allogeneic HSCT recipients (ClinicalTrials.gov identifier NCT01777763; posaconazole-HSCT population); and a Phase III study of fidaxomicin for CDI prophylaxis (ClinicalTrials.gov identifier NCT01691248; fidaxomicin-HSCT population). The bezlotoxumab PK model used the minimum albumin level for each individual in post-HSCT populations to mimic a "worst-case scenario." FINDINGS: Predicted worst-case bezlotoxumab exposures for the posaconazole-HSCT population (N = 87) were decreased by 10.8% versus bezlotoxumab exposures observed in the pooled Phase III/Phase I data set (N = 1587). No further decrease was predicted for the fidaxomicin-HSCT population (N = 350). IMPLICATIONS: Based on published population pharmacokinetic data, the predicted decrease in bezlotoxumab exposure in the post-HSCT populations is not expected to have a clinically meaningful effect on bezlotoxumab efficacy at the recommended 10 mg/kg dose. Dose modification is therefore not required in the hypoalbuminemia setting expected post-HSCT.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Fidaxomicina/farmacología , Fidaxomicina/uso terapéutico , Antibacterianos/efectos adversos , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Albúminas/uso terapéutico
18.
J Med Microbiol ; 71(6)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35708979

RESUMEN

Introduction. Nontuberculous mycobacteria (NTM) infections are increasing worldwide and are relatively resistant to many of the first- and second-line drugs to treat tuberculosis. Macrolide antibiotics, such as clarithromycin and azithromycin, are the key drugs for treating NTM infections. Fidaxomicin is a macrolide antibiotic that is widely used in treating Clostridium difficle (C.difficile) infections, and has high in vitro activity against Mycobacterium tuberculosis especially multidrug-resistant tuberculosis (MDR-TB) and has no cross-resistance with rifampicin.Hypothesis. Fidaxomicin may have in vitro activity against NTM strains.Aim. To find that whether the macrolide antibiotic fidaxomicin has in vitro activity against NTM strains.Methodology. Fidaxomicin used in this study was firstly tested on C. difficile reference strains and has shown to be effective and workable. And then 28 rapidly growing mycobacteria (RGM), 12 slowly growing mycobacteria (SGM) reference strains and 103 NTM clinical isolates were tested by the microplate-based AlamarBlue assay (MABA) method to determine the MICs. Fidaxomicin, rifampicin and clarithromycin were tested against M. abcessus complex subspecies 14 M. abscessus and 5 M. massiliense strains for inducible resistance determination.Results. In total, 21 out of 28 RGM and 9 of 12 SGM reference strains have the MICs of fidaxomicin at or below 1 µg ml-1. Fidaxomicin also showed low MIC values for some clinical isolates including M. abscessus complex, M. avium complex, M. fortuitum, M. kansasii and M. parascrofulaceum. Fidaxomicin also has no inducible macrolide resistance in M. abscessus complex in comparison with clarithromycin.Conclusion. Fidaxomicin has high in vitro activity against most of the NTM reference strains and some prevalent NTM clinical isolates. This promising finding warrants further investigation on the actions of fidaxomicn in vivo and as a potential antibiotic for NTM treatment.


Asunto(s)
Clostridioides difficile , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Claritromicina/farmacología , Claritromicina/uso terapéutico , Farmacorresistencia Bacteriana , Fidaxomicina/farmacología , Humanos , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas , Rifampin/farmacología , Rifampin/uso terapéutico
19.
J Med Microbiol ; 70(3)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33593474

RESUMEN

This study aimed to evaluate whether the antibiotic fidaxomicin has in vitro activity against Mycobacterium tuberculosis (Mtb). 38 fully drug-sensitive Mtb strains and 34 multidrug-resistant tuberculosis (MDR-TB) strains were tested using the microplate alamar blue assay (MABA) method to determine the minimum inhibitory concentrations (MICs) for fidaxomicin and rifampicin. Fidaxomicin has high in vitro activity against Mtb and is a potential drug to treat Mtb, and MDR-TB infections in particular.


Asunto(s)
Antituberculosos/farmacología , Fidaxomicina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Rifampin/farmacología , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
20.
Microb Drug Resist ; 27(12): 1672-1676, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34037477

RESUMEN

In this study, we report the results of the epidemiological analysis of Clostridioides difficile ribotypes (RTs) and antimicrobial susceptibility testing. Most isolates were RT027, representing 73% (84/115) of isolates. No isolates with reduced susceptibility to fidaxomicin were found; however, 38 (33.04%) isolates had reduced susceptibility to metronidazole, and 7 isolates (6.1%) had reduced susceptibility to vancomycin. These findings highlight the need for continuous surveillance of C. difficile RTs and antimicrobial susceptibility testing.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Farmacorresistencia Bacteriana/genética , Fidaxomicina/farmacología , Genes Bacterianos , Humanos , Metronidazol/farmacología , México , Pruebas de Sensibilidad Microbiana , Ribotipificación , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA