Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 880
Filtrar
1.
J Antimicrob Chemother ; 79(7): 1577-1580, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38742706

RESUMEN

BACKGROUND: The blaB, blaGOB and blaCME genes are thought to confer ß-lactam resistance to Elizabethkingia anophelis, based on experiments conducted primarily on Escherichia coli. OBJECTIVES: To determine the individual contributions of ß-lactamase genes to increased MICs in E. anophelis and to assess their impact on the in vivo efficacy of carbapenem therapy. METHODS: Scarless gene deletion of one or more ß-lactamase gene(s) was performed in three clinical E. anophelis isolates. MICs were determined by broth microdilution. Hydrolytic activity and expressions of ß-lactamase genes were measured by an enzymatic assay and quantitative RT-PCR, respectively. In vivo efficacy was determined using Galleria mellonella and murine thigh infection models. RESULTS: The presence of blaB resulted in >16-fold increases, while blaGOB caused 4-16-fold increases of carbapenem MICs. Hydrolysis of carbapenems was highest in lysates of blaB-positive strains, possibly due to the constitutionally higher expression of blaB. Imipenem was ineffective against blaB-positive isolates in vivo in terms of improvement of the survival of wax moth larvae and reduction of murine bacterial load. The deletion of blaB restored the efficacy of imipenem. The blaB gene was also responsible for a >4-fold increase of ampicillin/sulbactam and piperacillin/tazobactam MICs. The presence of blaCME, but not blaB or blaGOB, increased the MICs of ceftazidime and cefepime by 8-16- and 4-8-fold, respectively. CONCLUSIONS: The constitutionally and highly expressed blaB gene in E. anophelis was responsible for increased MICs of carbapenems and led to their poor in vivo efficacy. blaCME increased the MICs of ceftazidime and cefepime.


Asunto(s)
Antibacterianos , Infecciones por Flavobacteriaceae , Flavobacteriaceae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , beta-Lactamas , Animales , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Flavobacteriaceae/efectos de los fármacos , Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/tratamiento farmacológico , Antibacterianos/farmacología , Ratones , beta-Lactamas/farmacología , Modelos Animales de Enfermedad , Carbapenémicos/farmacología , Mariposas Nocturnas/microbiología , Humanos , Resistencia betalactámica/genética , Femenino
2.
Appl Environ Microbiol ; 90(2): e0202523, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38259074

RESUMEN

Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.


Asunto(s)
Algas Comestibles , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humanos , Metagenoma , Kelp/metabolismo , Polisacáridos/metabolismo , Alginatos/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Carbono/metabolismo
3.
Appl Environ Microbiol ; 90(7): e0036724, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38953371

RESUMEN

Flavobacteriia are the dominant and active bacteria during algal blooms and play an important role in polysaccharide degradation. However, little is known about phages infecting Flavobacteriia, especially during green tide. In this study, a novel virus, vB_TgeS_JQ, infecting Flavobacteriia was isolated from the surface water of the Golden Beach of Qingdao, China. Transmission electron microscopy demonstrated that vB_TgeS_JQ had the morphology of siphovirus. The experiments showed that it was stable from -20°C to 45°C and pH 5 to pH 8, with latent and burst periods both lasting for 20 min. Genomic analysis showed that the phage vB_TgeS_JQ contained a 40,712-bp dsDNA genome with a GC content of 30.70%, encoding 74 open-reading frames. Four putative auxiliary metabolic genes were identified, encoding electron transfer-flavoprotein dehydrogenase, calcineurin-like phosphoesterase, phosphoribosyl-ATP pyrophosphohydrolase, and TOPRIM nucleotidyl hydrolase. The abundance of phage vB_TgeS_JQ was higher during Ulva prolifera (U. prolifera) blooms compared with other marine environments. The phylogenetic and comparative genomic analyses revealed that vB_TgeS_JQ exhibited significant differences from all other phage isolates in the databases and therefore was classified as an undiscovered viral family, named Zblingviridae. In summary, this study expands the knowledge about the genomic, phylogenetic diversity and distribution of flavobacterial phages (flavophages), especially their roles during U. prolifera blooms. IMPORTANCE: The phage vB_TgeS_JQ was the first flavobacterial phage isolated during green tide, representing a new family in Caudoviricetes and named Zblingviridae. The abundance of phage vB_TgeS_JQ was higher during the Ulva prolifera blooms. This study provides insights into the genomic, phylogenetic diversity, and distribution of flavophages, especially their roles during U. prolifera blooms.


Asunto(s)
Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/clasificación , China , Flavobacteriaceae/virología , Flavobacteriaceae/genética , Eutrofización , Agua de Mar/virología , Agua de Mar/microbiología , ADN Viral/genética , Ulva/virología , Siphoviridae/genética , Siphoviridae/clasificación , Siphoviridae/aislamiento & purificación , Siphoviridae/ultraestructura
4.
BMC Microbiol ; 24(1): 214, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886642

RESUMEN

BACKGROUND: Bergeyella porcorum is a newly identified bacterium that has an ambiguous relationship with pneumonia in pigs. However, few studies have adequately characterized this species. RESULTS: In this study, we analyzed the morphological, physiological, and genomic characteristics of the newly identified B. porcorum sp. nov. strain QD2021 isolated from pigs. The complete genome sequence of the B. porcorum QD2021 strain consists of a single circular chromosome (2,271,736 bp, 38.51% G + C content), which encodes 2,578 genes. One plasmid with a size of 70,040 bp was detected. A total of 121 scattered repeat sequences, 319 tandem repeat sequences, 4 genomic islands, 5 prophages, 3 CRISPR sequences, and 51 ncRNAs were predicted. The coding genes of the B. porcorum genome were successfully annotated across eight databases (NR, GO, KEGG, COG, TCDB, Pfam, Swiss-Prot and CAZy) and four pathogenicity-related databases (PHI, CARD, VFDB and ARDB). In addition, a comparative genome analysis was performed to explore the evolutionary relationships of B. porcorum QD2021. CONCLUSIONS: To our knowledge, this is the first study to provide fundamental phenotypic and whole-genome sequences for B. porcorum. Our results extensively expand the current knowledge and could serve as a valuable genomic resource for future research on B. porcorum.


Asunto(s)
Composición de Base , Genoma Bacteriano , Filogenia , Secuenciación Completa del Genoma , Animales , China , Genoma Bacteriano/genética , Porcinos , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Flavobacteriaceae/clasificación , Enfermedades de los Porcinos/microbiología , ADN Bacteriano/genética , Islas Genómicas , Plásmidos/genética , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Análisis de Secuencia de ADN , Anotación de Secuencia Molecular
5.
Artículo en Inglés | MEDLINE | ID: mdl-39230938

RESUMEN

Three Gram-stain-negative, aerobic, non-motile, chemoheterotrophic, short-rod-shaped bacteria, designated CDY1-MB1T, CDY2-MB3, and BDY3-MB2, were isolated from three marine sediment samples collected in the eastern Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains were related to the genus Aequorivita and close to the type strain of Aequorivita vitellina F4716T (with similarities of 98.0-98.1%). Strain CDY1-MB1T can grow at 15-37 °C (optimum 30 °C) and in media with pH 6-9 (optimum, pH 7), and tolerate up to 10% (w/v) NaCl. The predominant cellular fatty acids of strain CDY1-MB1T were iso-C15 : 0 (20.7%) and iso-C17 : 0 3-OH (12.8%); the sole respiratory quinone was menaquinone 6; the major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and two unidentified polar lipids. The digital DNA-DNA hybridization/average nucleotide identity values between strains CDY1-MB1T, CDY2-MB3, and BDY3-MB2 and A. vitellina F4716T were 24.7%/81.6-81.7%, thereby indicating that strain CDY1-MB1T should represent a novel species of the genus Aequorivita. The genomic DNA G+C contents were 37.6 % in all three strains. Genomic analysis showed the presence of genes related to nitrogen and sulphur cycling, as well as metal reduction. The genetic traits of these strains indicate their possible roles in nutrient cycling and detoxification processes, potentially shaping the deep-sea ecosystem's health and resilience. Based upon the consensus of phenotypic and genotypic analyses, strain CDY1-MB1T should be classified as a novel species of the genus Aequorivita, for which the name Aequorivita flava sp. nov. is proposed. The type strain is CDY1-MB1T (=MCCC 1A16935T=KCTC 102223T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Agua de Mar , Análisis de Secuencia de ADN , Vitamina K 2 , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Océano Pacífico , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , ADN Bacteriano/genética , Agua de Mar/microbiología , Fosfolípidos/análisis , Fosfatidiletanolaminas , Flavobacteriaceae/aislamiento & purificación , Flavobacteriaceae/genética , Flavobacteriaceae/clasificación
6.
Artículo en Inglés | MEDLINE | ID: mdl-39207221

RESUMEN

Two novel bacteria, MJ-SS3T and MJ-SS4, were isolated from tidal flat sediment sampled in Gochang, Republic of Korea. The isolates were Gram-stain-negative, aerobic, non-motile, rod-shaped, yellow-coloured, oxidase-positive, and catalase-positive. Strains MJ-SS3T and MJ-SS4 grew at 20-37 °C (optimum, 30 °C), at pH 6-8 (optimum, pH 7.0) and in the presence of 0-7 % (w/v) NaCl (optimum, 2.0 % NaCl). Strains MJ-SS3T and MJ-SS4 showed 99.9 % 16S rRNA gene sequence similarity. Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that strains MJ-SS3T and MJ-SS4 were affiliated with the family Flavobacteriaceae and most closely related to Formosa maritima 1494T (95.3 %), Hanstruepera flava NBU2984T (95.2 %), Yeosuana marina JLT21T (95.2 %), Meridianimaribacter flavus NH57NT (95.1 %), and Geojedonia litorea YCS-16T (95.1 %). The major respiratory quinone was menaquinone-6. The major identified polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and amino lipids. The major cellular fatty acids of strain MJ-SS3T were iso-C15 : 1 G (24.6 %), iso-C15 : 0 (21.6 %), and iso-C17 : 0 3-OH (15.8 %). The genome length of strain MJ-SS3T is 3.1 Mbp (DNA G+C content, 32.5 mol%) and it has 2822 coding and 59 tRNA genes. The average amino acid identity and average nucleotide identity values, as well as biochemical, phylogenetic, and physiological characteristics, strongly supported the genotypic and phenotypic differentiation of strains MJ-SS3T and MJ-SS4 from other members of the family Flavobacteriaceae. Hence, strains MJ-SS3T and MJ-SS4 are considered to represent a novel species of a new genus in the family Flavobacteriaceae, for which the Gilvirhabdus luticola gen. nov., sp. nov. is proposed. The type strain is MJ-SS3T (=KCTC 102114T=KEMB 20189T=JCM 36595T), with reference strain MJ-SS4 (=KCTC 102115=KEMB 20190).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Flavobacteriaceae , Sedimentos Geológicos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Vitamina K 2 , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos/química , República de Corea , ADN Bacteriano/genética , Vitamina K 2/análogos & derivados , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Flavobacteriaceae/clasificación , Cloruro de Sodio/metabolismo , Agua de Mar/microbiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-38995174

RESUMEN

A novel facultatively anaerobic and Gram-stain-negative bacterium, designated FJH33T, was isolated from mangrove sediment sampled in Zhangzhou, PR China. Cells of strain FJH33T were rod-shaped or slightly curved-shaped, with widths of 0.3-0.5 µm and lengths of 1.0-3.0 µm. Optimum growth of strain FJH33T occurred in the presence of 3 % NaCl (w/v), at 33 °C and at pH 7.0. Oxidase activity was negative, while catalase activity was positive. Its iron-reducing ability was determined. Based on 16S rRNA gene sequence similarity, strain FJH33T was most closely related to Maribellus luteus XSD2T (95.1 %), followed by Maribellus sediminis Y2-1-60T (95.0 %) and Maribellus maritimus 5E3T (94.9 %). Genome analysis of strains FJH33T and M. luteus XSD2T revealed low genome relatedness, with an average nucleotide identity value of 73.8% and a digital DNA-DNA hybridization value of 19.0%. Phylogenetic trees built from 16S rRNA genes and genome sequences showed that strain FJH33T represents a relatively independent phylogenetic lineage within the genus Maribellus. The major cellular fatty acids (≥10 %) were iso-C15 : 0 and C18 : 1 ω9c. The sole respiratory quinone was MK-7. The polar lipids consisted of phosphatidylethanolamine, diphosphatidylcholine, diphosphatidyglycerol and one unidentified lipid. The DNA G+C content was 41.4 mol%. Based on the integrated results of phylogenetic, physiological, biochemical and chemotaxonomic characterizations, we propose that strain FJH33T represents a novel species of the genus Maribellus, for which the name Maribellus mangrovi sp. nov. is proposed. The type strain is FJH33T (=KCTC 102210T=MCCC 1H01459T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Vitamina K 2 , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , China , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Hierro/metabolismo , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Humedales
8.
Artículo en Inglés | MEDLINE | ID: mdl-38885037

RESUMEN

Strain I65T (=KACC 22647T=JCM 35315T), a novel Gram-stain-negative, strictly aerobic, non-motile, non-spore-forming, rod-shaped, and orange-pigmented bacterium was isolated from influent water of a wastewater treatment system after treatment with several antibiotics, such as meropenem, gentamicin, and macrolide. The newly identified bacterial strain I65T exhibits significant multi-drug and heavy metal resistance characteristics. Strain I65T was grown in Reasoner's 2A medium [0 %-2 % (w/v) NaCl (optimum, 0 %), pH 5.0-10.0 (optimum, pH 7.0), and 20-45°C (optimum, 30 °C)]. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that strain I65T was closely related to Niabella yanshanensis CCBAU 05354T (99.56 % sequence similarity), Niabella hibiscisoli THG-DN5.5T (97.51 %), and Niabella ginsengisoli GR10-1T (97.09 %). Further analysis of the whole-genome sequence confirmed that the digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between strain I65T and N. yanshanensis CCBAU 05354T were 23.4, 80.7, and 85.0 %, respectively, suggesting that strain I65T is distinct from N. yanshanensis. The genome size of strain I65T was 6.1 Mbp, as assessed using the Oxford Nanopore platform, and its genomic DNA G+C content was 43.0 mol%. The major fatty acids of strain I65T were iso-C15 : 0 and iso-C15 : 1 G, and the major respiratory quinone was MK-7. Moreover, the major polar lipid of strain I65T was phosphatidylethanolamine. Based on genotypic, chemotaxonomic, and phenotype data, strain I65T represents a novel species belonging to the genus Niabella, for which the name Niabella defluvii sp. nov. is proposed. The type strain is I65T (=KACC 22647T=JCM 35315T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Aguas Residuales , Aguas Residuales/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Flavobacteriaceae/clasificación , Antibacterianos/farmacología , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Fosfolípidos/análisis , Microbiología del Agua , Secuenciación Completa del Genoma
9.
Int Microbiol ; 27(4): 1169-1180, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38127105

RESUMEN

The bacteria belonging to the Myroides genus are opportunistic pathogens causing community or hospital-acquired infections that result in treatment failure due to antibiotic resistance. This study aimed to investigate molecular mechanisms of antibiotic resistance, clonal relatedness, and the biofilm forming capacity of the 51 multi-drug resistant Myroides odoratimimus. All isolates were screened for blaKPC, blaOXA, blaVIM, blaIMP, blaMUS, blaTUS, blaNDM, and blaB genes by using PCR amplification. Whole genome sequencing (WGS) was applied on three randomly selected isolates for further investigation of antibiotic resistance mechanisms. Clonal relatedness was analyzed by Pulsed-field gel electrophoresis (PFGE) and the microtiter plate method was used to demonstrate biofilm formation. All isolates were positive for biofilm formation. PCR analysis resulted in a positive for only the blaMUS-1 gene. WGS identified blaMUS-1, erm(F), ere(D), tet(X), and sul2 genes in all strains tested. Moreover, the genomic analyses of three strains revealed that genomes contained a large number of virulence factors (VFs). PFGE yielded a clustering rate of 96%. High clonal relatedness, biofilm formation, and multi-drug resistance properties may lead to the predominance of these opportunistic pathogens in hospital environments and make them cause nosocomial infections.


Asunto(s)
Antibacterianos , Biopelículas , Carbapenémicos , Farmacorresistencia Bacteriana Múltiple , Flavobacteriaceae , Genoma Bacteriano , Secuenciación Completa del Genoma , Farmacorresistencia Bacteriana Múltiple/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Humanos , Flavobacteriaceae/genética , Flavobacteriaceae/efectos de los fármacos , Flavobacteriaceae/aislamiento & purificación , Flavobacteriaceae/clasificación , Carbapenémicos/farmacología , Antibacterianos/farmacología , Infecciones por Flavobacteriaceae/microbiología , Pruebas de Sensibilidad Microbiana , Factores de Virulencia/genética , beta-Lactamasas/genética , Electroforesis en Gel de Campo Pulsado
10.
Eur J Clin Microbiol Infect Dis ; 43(4): 797-803, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38356016

RESUMEN

Fourier-transform infrared (FTIR) spectroscopy has the potential to be used for bacterial typing and outbreak characterization. We evaluated FTIR for the characterization of an outbreak caused by Elizabethkingia miricola. During the 2020-2021 period, 26 isolates (23 clinical and 3 environmental) were collected and analyzed by FTIR (IR Biotyper) and core-genome MLST (cgMLST), in addition to antimicrobial susceptibility testing. FTIR spectroscopy and cgMLST showed that 22 of the isolates were related to the outbreak, including the environmental samples, with only one discordance between both methods. Then, FTIR is useful for E. miricola typing and can be easily implemented in the laboratory.


Asunto(s)
Flavobacteriaceae , Humanos , Tipificación de Secuencias Multilocus , Espectroscopía Infrarroja por Transformada de Fourier , Flavobacteriaceae/genética , Brotes de Enfermedades
11.
J Trop Pediatr ; 70(5)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39164190

RESUMEN

The objective of this study was to determine the risk factors associated with Elizabethkingia anophelis infection in neonates admitted to a tertiary care neonatal intensive care unit (NICU). A case-control study was undertaken as part of the outbreak investigation for E. anophelis sepsis in a tertiary care NICU in South India. Thirty-eight neonates with E. anophelis bloodstream infection (BSI) between January 2021 and February 2022 were enrolled as cases, and 38 neonates symptomatic with other BSIs, were selected as controls, and risk factors analysed. The 38 cases were relatively stable neonates, likely to be admitted to level 1 and level 2 NICU, unlike the controls, who were sicker and required level 3 NICU care. Only a third of neonates with Elizabethkingia sepsis had traditional risk factors like central lines, need for respiratory support or perinatal risk factors. Multiple logistic regression analysis revealed that neonates with E. anophelis infection were more likely to be stable and on only enteral feeds, cared in level 1 or 2 of the NICU. This observation, combined with isolation of Elizabethkingia meningosepticum from breast pumps earlier, led us to autoclave the feeding vessels and milk containers along with provision of hot water for cleaning breast pumps, and adoption of general infection control measures, after which incident cases declined. Sanger sequencing of 10 representative isolates obtained from the neonates showed 100% sequence identity to E. anophelis. Infection due to E. anophelis affects relatively stable neonates without traditional risk factors for sepsis. Adherence to asepsis routines and housekeeping protocols helps to prevent the spread of infection.


Elizabethkingia anophelis is an emerging pathogen causing infection in neonates. In the present case­control study, we found that E. anophelis was more likely to infect otherwise healthy neonates, on enteral nutrition, without the traditional risk factors for sepsis. Mortality was 23.7% (9/38). About 55.3% (21/38) had meningitis and 23.8% (9/38) had hydrocephalus. Additionally, 76% isolates were multi-drug resistant, with the isolates showing highest susceptibility to minocycline (100%) and levofloxacin (97.8%). Source identification was not possible even after multiple rounds of extensive environmental testing, but it is possibly related to contamination of water and/or milk sources. Interventions addressing the same led to a dramatic decline in the infection rates, though occasional infection without clustering continues to occur. Sanger sequencing of 10 representative isolates confirmed sequence identity to E. anophelis.


Asunto(s)
Brotes de Enfermedades , Infecciones por Flavobacteriaceae , Flavobacteriaceae , Unidades de Cuidado Intensivo Neonatal , Centros de Atención Terciaria , Humanos , Recién Nacido , Estudios de Casos y Controles , Flavobacteriaceae/aislamiento & purificación , Flavobacteriaceae/genética , Factores de Riesgo , Masculino , Femenino , Infecciones por Flavobacteriaceae/epidemiología , Infecciones por Flavobacteriaceae/microbiología , India/epidemiología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Sepsis/epidemiología , Sepsis/microbiología
12.
J Sci Food Agric ; 104(13): 8240-8247, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38932571

RESUMEN

BACKGROUND: α-l-Fucose confers unique functions for fucose-containing biomolecules such as human milk oligosaccharides. α-l-Fucosidases can serve as desirable tools in the application of fucosylated saccharides. Discovering novel α-l-fucosidases and elucidating their enzyme properties are always worthy tasks. RESULTS: A GH95 family α-l-fucosidase named Afc95A_Wf was cloned from the genome of the marine bacterium Wenyingzhuangia fucanilytica and expressed in Escherichia coli. It exhibited maximum activity at 40 °C and pH 7.5. Afc95A_Wf defined a different substrate specificity among reported α-l-fucosidases, which was capable of hydrolyzing α-fucoside in CNP-fucose, Fucα1-2Galß1-4Glc and Galß1-4(Fucα1-3)Glc, and showed a preference for α1,2-fucosidic linkage. It adopted Asp residue in the amino acid sequence at position 391, which was distinct from the previously acknowledged residue of Asn. The predicted tertiary structure and site-directed mutagenesis revealed that Asp391 participates in the catalysis of Afc95A_Wf. The differences in the substrate specificity and catalytic site shed light on that Afc95A_Wf adopted a novel mechanism in catalysis. CONCLUSION: A GH95 family α-l-fucosidase (Afc95A_Wf) was cloned and expressed. It showed a cleavage preference for α1,2-fucosidic linkage to α1,3-fucosidic linkage. Afc95A_Wf demonstrated a different substrate specificity and a residue at an important catalytic site compared with known GH95 family proteins, which revealed the occurrence of diversity on catalytic mechanisms in the GH95 family. © 2024 Society of Chemical Industry.


Asunto(s)
Proteínas Bacterianas , Dominio Catalítico , alfa-L-Fucosidasa , alfa-L-Fucosidasa/genética , alfa-L-Fucosidasa/metabolismo , alfa-L-Fucosidasa/química , Especificidad por Sustrato , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flavobacteriaceae/enzimología , Flavobacteriaceae/genética , Secuencia de Aminoácidos , Cinética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Fucosa/metabolismo , Fucosa/química , Organismos Acuáticos/enzimología , Organismos Acuáticos/genética
13.
Emerg Infect Dis ; 29(7): 1488-1489, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37347900

RESUMEN

We retrospectively reviewed Elizabethkingia spp. culture and susceptibility results from 86 veterinary diagnostic laboratory results from US dogs and cats. We noted 26 E. menigoseptica, 1 E. miricola, and 59 unspeciated Elizabethkingia isolates from 9 US states (2-22 isolates per state). Elizabethkingia infections in animals might increase risks to humans.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Infecciones por Flavobacteriaceae , Flavobacteriaceae , Humanos , Animales , Gatos , Perros , Estados Unidos/epidemiología , Infecciones por Flavobacteriaceae/diagnóstico , Infecciones por Flavobacteriaceae/epidemiología , Infecciones por Flavobacteriaceae/veterinaria , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/epidemiología , Estudios Retrospectivos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Flavobacteriaceae/genética
14.
Environ Microbiol ; 25(9): 1713-1727, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121608

RESUMEN

Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved ß-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.


Asunto(s)
Flavobacteriaceae , Xilanos , Xilanos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Polisacáridos/metabolismo , Flavobacteriaceae/genética , Genómica
15.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38054484

RESUMEN

A novel yellow-pigmented bacterial strain, designated YZ-48T, was isolated from the sediment of the Yangtze River, PR China. Cells were Gram-stain-negative, non-motile, rod-shaped, strictly aerobic, catalase-positive and oxidase-positive. The strain grew optimally on R2A medium at 37 °C, pH 7.0 and with 1.0 % (w/v) NaCl. Strain YZ-48T showed the closest 16S rRNA gene sequence similarity to Flavobacterium solisilvae SE-s27T (96.4 %) and F. dankookense DSM 25687T (96.2 %). The phylogenetic trees based on 16S rRNA gene sequences showed that strain YZ-48T belonged to the genus Flavobacterium but formed a distinct phylogenetic lineage. The obtained average nucleotide identity and digital DNA-DNA hybridization values between YZ-48T and the two closest strains were 75.0 and 74.5 % and 19.6 and 19.0 %, respectively. The sole respiratory quinone was MK-6. The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and three unidentified polar lipids. The major cellular fatty acids were iso-C16 : 0, iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and iso-C16 : 0 3-OH. The DNA G+C content was 40.2 mol%. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain YZ-48T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium sedimenticola sp. nov. is proposed, with strain YZ-48T (=KCTC 82329T=CCTC AB 2023061T=MCCC 1K08804T) as the type strain.


Asunto(s)
Flavobacteriaceae , Flavobacterium , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Técnicas de Tipificación Bacteriana , Vitamina K 2/química , Flavobacteriaceae/genética
16.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37942742

RESUMEN

Two novel rod-shaped, Gram-stain-negative, aerobic and non-motile bacterial strains, designated M39T and C2-7T, were isolated from the coastal sediment of Xiaoshi Island, Weihai, PR China. Growth of strain M39T occurred at 15-37 °C, at pH 6.0-9.0 and in the presence of 1.0-9.0 % (w/v) NaCl. Strain C2-7T grew at 15-40 °C, at pH 6.0-8.0 and in the presence of 0.5-8.0 % (w/v) NaCl. Phylogenetic analysis based 16S rRNA gene sequences revealed that strains M39T and C2-7T belong to the phylum Bacteroidota. Based on the results of 16S rRNA gene sequence analysis, the closest relative of strain M39T was Robiginitalea marina KCTC 92035T (95.4 %), and the closest relative of strain C2-7T was Algoriphagus namhaensis DPG-3T (97.0 %). The percentage of conserved protein and average nucleotide identity values between strain M39T and some species of the genus Robiginitalea were 66.9-77.6% and 69.3-71.0 %, respectively, while those between strain C2-7T and some species of the genus Algoriphagus were 68.0-70.1% and 56.1-72.6 %, respectively. The major cellular fatty acids (>10 %) of strain M39T consisted of iso-C15 : 1 F, iso-C15 : 0 and iso-C17 : 0 3-OH, while those of strain C2-7T were iso-C15 : 0 and C16 : 1 ω7c/C16 : 1 ω6c. MK-6 was the only respiratory quinone that was compatible with the genus of strain M39T. The predominant menaquinone of strain C2-7T was MK-7. The major polar lipids of strain M39T were phosphatidylethanolamine and glycolipids, and those of strain C2-7T were phosphatidylethanolamine, one unidentified aminolipid and four unidentified lipids. The DNA G+C contents of strains M39T and C2-7T were 46.9 and 40.8 mol%, respectively. Based upon the results presented in this study, strains M39T and C2-7T represent novel species of the genera Robiginitalea and Algoriphagus, respectively, for which the names Robiginitalea aurantiaca sp. nov. and Algoriphagus sediminis sp. nov. are proposed with the type strains M39T (=MCCC 1H00498T=KCTC 92014T) and C2-7T (=MCCC 1H00414T=KCTC 92027T).


Asunto(s)
Flavobacteriaceae , Fosfatidiletanolaminas , Fosfatidiletanolaminas/química , Ácidos Grasos/química , Agua de Mar/microbiología , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Técnicas de Tipificación Bacteriana , Flavobacteriaceae/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-37505091

RESUMEN

Rapid advancements in DNA sequencing technologies are providing new approaches for bacterial taxonomy. The genus Sabulilitoribacter is a member of the family Flavobacteriaceae, which consists of more than 150 genera. In this study, genome sequence analysis was conducted to revisit the taxonomic status of Sabulilitoribacter arenilitoris and Sabulilitoribacter multivorans, the only two species of this genus. Genome sequence based phylogeny analysis showed that the genus Sabulilitoribacter was non-monophyletic: S. multivorans, the type species of genus Sabulilitoribacter, was clustered with the type species of the genus Flaviramulus, whereas S. arenilitoris formed a robust cluster with the only two species of the genus Wocania. The values of average amino acid identity, genome-wide average nucleotide identity, alignment fractions and some phenotypic features showed that S. multivorans was more closely related with the type species of the genus Flaviramulus than with S. arenilitoris, and S. arenilitoris was more closely related with the only two species of the genus Wocania than with S. multivorans. Based on these results, we consequently propose that S. multivorans and S. arenilitoris should be reclassified as Flaviramulus multivorans comb. nov. and Wocania arenilitoris comb. nov. respectively.


Asunto(s)
Ácidos Grasos , Flavobacteriaceae , Análisis de Secuencia de ADN , Ácidos Grasos/química , Filogenia , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Flavobacteriaceae/genética
18.
Antonie Van Leeuwenhoek ; 116(2): 185-192, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36374402

RESUMEN

The Gram-stain-negative, golden-yellow-colored, non-spore-forming, strictly aerobic, slender rod-shaped bacterial strain, designated KN852T, was isolated from a seamount in the tropical western Pacific. The predominant respiratory quinone was MK-7 and the polar lipid profiles contained phosphatidylethanolamine, one unidentified phospholipid and six unidentified polar lipids. The predominant cellular fatty acids were iso-C15:0, summed feature 3(C16:1ω7c and/or iso-C15:0 2OH), iso-C17:0 3OH and iso-C15:1 G. Phylogenetic analyses of 16S rRNA gene sequence revealed that strain KN852T was affiliated with the family Flammeovirgaceae of the phylum Bacteroidota and formed a distinct lineage. The genomic DNA G + C content of strain KN852T was 34.8%. Collectively, based on phenotypic, chemotaxonomic, phylogenetic and genomic evidence presented, strain KN852T represents a novel species of a novel genus of the family Flammeovirgaceae, for which the name Marinigracilibium pacificum gen. nov., sp. nov. is proposed. The type strain is KN852T (= CGMCC 1.17119T = KCTC 72433T).


Asunto(s)
Flavobacteriaceae , Flavobacteriaceae/genética , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Vitamina K 2 , Ácidos Grasos , Bacteroidetes/genética
19.
Antonie Van Leeuwenhoek ; 116(12): 1345-1357, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37837564

RESUMEN

An auxin-producing bacterial strain, CC-SYL302T, was isolated from paddy soil in Taiwan and identified using a polyphasic taxonomic approach. The cells were observed to be aerobic, non-motile, non-spore-forming rods, and tested positive for catalase and oxidase. Produced carotenoid but flexirubin-type pigments were absent. Optimal growth of strain CC-SYL302T was observed at 25 °C, pH 7.0, and with 2% (w/v) NaCl present. Based on analysis of 16S rRNA gene sequences, it was determined that strain CC-SYL302T belongs to the genus Flavobacterium of the Flavobacteriaceae family. The closest known relatives of this strain are F. tangerinum YIM 102701-2 T (with 93.3% similarity) and F. cucumis R2A45-3 T (with 93.1% similarity). Digital DNA-DNA hybridization (dDDH) values were calculated to assess the genetic distance between strain CC-SYL302T and its closest relatives, with mean values of 21.3% for F. tangerinum and 20.4% for F. cucumis. Strain CC-SYL302T exhibited the highest orthologous average nucleotide identity (OrthoANI) values with members of the Flavobacterium genus, ranging from 67.2 to 72.1% (n = 22). The dominating cellular fatty acids (> 5%) included iso-C14:0, iso-C15:0, iso-C16:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C16:1 ω6c/C16:1 ω7c and C16:0 10-methyl/iso-C17:1 ω9c. The polar lipid profile consisted of phosphatidylethanolamine, an unidentified aminolipid, an unidentified aminophospholipid, and nine unidentified polar lipids. The genome (2.7 Mb) contained 33.6% GC content, and the major polyamines were putrescine and sym-homospermidine. Strain CC-SYL302T exhibits distinct phylogenetic, phenotypic, and chemotaxonomic characteristics, as well as unique results in comparative analysis of 16S rRNA gene sequence, OrthoANI, dDDH, and phylogenomic placement. Therefore, it is proposed that this strain represents a new species of the Flavobacterium genus, for which the name Flavobacterium agricola sp. nov. is proposed. The type strain is CC-SYL302T (= BCRC 81320 T = JCM 34764 T).


Asunto(s)
Flavobacteriaceae , Flavobacterium , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Flavobacteriaceae/genética , ADN , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Vitamina K 2/química
20.
Antonie Van Leeuwenhoek ; 116(3): 291-302, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36586048

RESUMEN

The strain M-43T was isolated from the Oncorhynchus mykiss from a fish farm in Mugla, Turkey. Pairwise 16S rRNA gene sequence analysis was used to identify strain M-43T. The strain was a member of the genus Myroides sharing the highest 16S rRNA gene sequence identity levels of 98.7%, 98.3%, and 98.3% with the type strains of M. profundi D25T, M. odoratimimus subsp. odoratimimus CCUG 39352T and M. odoratimimus subsp. xuanwuensis DSM27251T, respectively. A polyphasic taxonomic approach including whole genome-based analyses was employed to confirm the taxonomic provenance of strain M-43T within the genus Myroides. The overall genome relatedness indices (OGRI) for strain M-43T compared with its most closely related type strains M. odoratimimus subsp. xuanwuensis DSM 27251T, M. profundi D25T, and M. odoratimimus subsp. odoratimimus ATCC BAA-634T, were calculated as 25.3%, 25.1%, and 25% for digital DNA-DNA hybridization (dDDH), 83.3%, 83.6%, and 83.4% for average nucleotide identity (ANI) analyses, respectively. The OGRI values between strain M-43T and its close neighbors confirmed that the strain represents a novel species in the genus Myroides. The DNA G + C content of the strain is 33.7%. The major fatty acids are iso-C15:0 and summed feature 9 (iso-C17:1 ω9c and/or 10-methyl C16:0). The predominant polar lipids are phosphatidylethanolamine, an amino-lipid and five unidentified lipids. The major respiratory quinone is MK-6. Chemotaxonomic and phylogenomic analyses of this isolate confirmed that the strain represents a novel species for which the name Myroides oncorhynchi sp. nov. is proposed, with M-43T as the type strain (JCM 34205T = KCTC 82265T).


Asunto(s)
Flavobacteriaceae , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Flavobacteriaceae/genética , Bacterias Aerobias/genética , Ácidos Grasos/análisis , Genómica , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA