Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.800
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Sex Med ; 21(7): 596-604, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38808370

RESUMEN

BACKGROUND: There are varying reports of immunohistochemically detected prostatic marker protein distribution in glands associated with the female urethra that may be related to tissue integrity at the time of fixation. AIM: In this study we used tissue derived from rapid autopsies of female patients to determine the distribution of glandular structures expressing prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) along the female urethra and in surrounding tissues, including the anterior vaginal wall (AVW). METHODS: Tissue blocks from 7 donors that contained the entire urethra and adjacent AVW were analyzed. These tissue samples were fixed within 4-12 hours of death and divided into 5-mm transverse slices that were paraffin embedded. Sections cut from each slice were immunolabeled for PSA or PSAP and a neighboring section was stained with hematoxylin and eosin. The sections were reviewed by light microscopy and analyzed using QuPath software. OBSERVATIONS: In tissue from all donors, glandular structures expressing PSA and/or PSAP were located within the wall of the urethra and were present along its whole length. RESULTS: In the proximal half of the urethra from all donors, small glands expressing PSAP, but not PSA, were observed adjacent to the and emptying into the lumen. In the distal half of the urethra from 5 of the 7 donors, tubuloacinar structures lined by a glandular epithelium expressed both PSA and PSAP. In addition, columnar cells at the surface of structures with a multilayered transitional epithelium in the distal half of the urethra from all donors expressed PSAP. No glands expressing PSA or PSAP were found in tissues surrounding the urethra, including the AVW. CLINICAL IMPLICATIONS: Greater understanding of the distribution of urethral glands expressing prostatic proteins in female patients is important because these glands are reported to contribute to the female sexual response and to urethral pathology, including urethral cysts, diverticula, and adenocarcinoma. STRENGTHS AND LIMITATIONS: Strengths of the present study include the use of rapid autopsy to minimize protein degradation and autolysis, and the preparation of large tissue sections to demonstrate precise anatomical relations within all the tissues surrounding the urethral lumen. Limitations include the sample size and that all donors had advanced malignancy and had undergone previous therapy which may have had unknown tissue effects. CONCLUSION: Proximal and distal glands expressing prostate-specific proteins were observed in tissue from all donors, and these glands were located only within the wall of the urethra.


Asunto(s)
Fosfatasa Ácida , Autopsia , Antígeno Prostático Específico , Uretra , Vagina , Humanos , Femenino , Uretra/patología , Vagina/patología , Vagina/química , Antígeno Prostático Específico/análisis , Fosfatasa Ácida/análisis , Fosfatasa Ácida/metabolismo , Persona de Mediana Edad , Anciano , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/análisis , Adulto , Biomarcadores/metabolismo , Inmunohistoquímica
2.
Mikrochim Acta ; 191(7): 368, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833176

RESUMEN

A colorimetric analysis platform has been successfully developed based on FeCo-NC dual-atom nanozyme (FeCo-NC DAzyme) for the detection of organophosphorus pesticides (OPPs). The FeCo-NC DAzyme exhibited exceptional oxidase-like activity (OXD), enabling the catalysis of colorless TMB to form blue oxidized TMB (oxTMB) without the need for H2O2 involvement. By combining acid phosphatase (ACP) hydrolase with FeCo-NC DAzyme, a "FeCo-NC DAzyme + TMB + ACP + SAP" colorimetric system was constructed, which facilitated the rapid detection of malathion. The chromogenic system was applied to detect malathion using a smartphone-based app and an auxiliary imaging interferogram device for colorimetric measurements, which have a linear range of 0.05-4.0 µM and a limit of detection (LOD) as low as 15 nM in real samples, comparable to UV-Vis and HPLC-DAD detection methods. Overall, these findings present a novel approach for convenient, rapid, and on-site monitoring of OPPs.


Asunto(s)
Colorimetría , Límite de Detección , Plaguicidas , Teléfono Inteligente , Colorimetría/métodos , Plaguicidas/análisis , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química , Malatión/análisis , Malatión/química , Oxidorreductasas/química , Hierro/química , Fosfatasa Ácida/análisis , Fosfatasa Ácida/química , Bencidinas
3.
Calcif Tissue Int ; 113(4): 437-448, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37566229

RESUMEN

Quantification of in vitro osteoclast cultures (e.g. cell number) often relies on manual counting methods. These approaches are labour intensive, time consuming and result in substantial inter- and intra-user variability. This study aimed to develop and validate an automated workflow to robustly quantify in vitro osteoclast cultures. Using ilastik, a machine learning-based image analysis software, images of tartrate resistant acid phosphatase-stained mouse osteoclasts cultured on dentine discs were used to train the ilastik-based algorithm. Assessment of algorithm training showed that osteoclast numbers strongly correlated between manual- and automatically quantified values (r = 0.87). Osteoclasts were consistently faithfully segmented by the model when visually compared to the original reflective light images. The ability of this method to detect changes in osteoclast number in response to different treatments was validated using zoledronate, ticagrelor, and co-culture with MCF7 breast cancer cells. Manual and automated counting methods detected a 70% reduction (p < 0.05) in osteoclast number, when cultured with 10 nM zoledronate and a dose-dependent decrease with 1-10 µM ticagrelor (p < 0.05). Co-culture with MCF7 cells increased osteoclast number by ≥ 50% irrespective of quantification method. Overall, an automated image segmentation and analysis workflow, which consistently and sensitively identified in vitro osteoclasts, was developed. Advantages of this workflow are (1) significantly reduction in user variability of endpoint measurements (93%) and analysis time (80%); (2) detection of osteoclasts cultured on different substrates from different species; and (3) easy to use and freely available to use along with tutorial resources.


Asunto(s)
Resorción Ósea , Osteoclastos , Ratones , Animales , Ácido Zoledrónico , Ticagrelor , Técnicas de Cocultivo , Células Cultivadas , Fosfatasa Ácida/análisis , Fosfatasa Ácida Tartratorresistente , Diferenciación Celular
4.
Mikrochim Acta ; 190(6): 220, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37178236

RESUMEN

Organophosphorus pesticides (OP) have extensive applications in agriculture, while their overuse causes inevitable residues in food, soil, and water, ultimately being harmful to human health and even causing diverse dysfunctions. Herein, a novel colorimetric platform was established for quantitative determination of malathion based on peroxidase mimic AuPt alloy decorated on CeO2 nanorods (CeO2@AuPt NRs). The synthesized nanozyme oxidized colorless 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Besides, the oxidized TMB was inversely reduced by ascorbic acid (AA), which were originated from hydrolysis of L-ascorbic acid-2-phosphate (AA2P) with the assistance of acid phosphatase (ACP). Based upon this observation ACP analysis was explored by colorimetry, showing a wid linear range of 0.2 ~ 3.5 U L-1 and a low limit of detection (LOD = 0.085 U L-1, S/N = 3). Furthermore, malathion present in the colorimetric system inhibited the activity of ACP and simultaneously affected the generation of AA, in turn promoting the recovery of the chromogenic reaction. Based on this, the LOD was decreased to 1.5 nM (S/N = 3) for the assay of malathion with a wide linear range of 6 ~ 100 nM. This simple colorimetric platform provides some informative guidelines for determination of other pesticides and disease markers.


Asunto(s)
Peroxidasa , Plaguicidas , Humanos , Peroxidasa/química , Plaguicidas/análisis , Malatión/análisis , Compuestos Organofosforados , Colorimetría , Peróxido de Hidrógeno/química , Oxidorreductasas , Colorantes/química , Fosfatasa Ácida/análisis
5.
Anal Bioanal Chem ; 413(15): 3925-3932, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33932155

RESUMEN

Acid phosphatase has become a significant indicator of prognostic and medical diagnosis, and its dysfunction may lead to a series of diseases. A novel dual-signal fluorescence method for acid phosphatase detection based on europium polymer (europium-pyridine dicarboxylicacid-adenine) and pyridoxal phosphate (PLP) was proposed. PLP coordinated with europium polymer via Eu3+ and P-O bonds, and the fluorescence of europium polymer was quenched due to the photoinduced electron transfer (PET) effect between aldehyde and europium polymer. Upon addition of acid phosphatase, the PLP was transformed to phosphate (Pi) and pyridoxal (PL). The PL was released from the surface of europium polymer, and the blue emission was enhanced due to the formation of internal hemiacetal, while the fluorescence of europium polymer recovered. The blue (PL) and red emission (Eu3+) were positively correlated with acid phosphatase activity; thus the sensitive assay of acid phosphatase was effectively achieved. The two signals were applied to determine the acid phosphatase with limits of detection (LOD) of 0.04 mU/mL and 0.38 mU/mL, and the linear ranges were 0.13-5.00 mU/mL and 1.25-20.00 mU/mL, respectively. The probe can be used to trace the acid phosphatase in biological systems and holds promise for use in clinical diagnosis and early prevention.


Asunto(s)
Fosfatasa Ácida/análisis , Colorantes Fluorescentes/química , Límite de Detección , Espectrometría de Fluorescencia/métodos
6.
Anal Bioanal Chem ; 413(17): 4545-4555, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34037808

RESUMEN

Cutaneous leishmaniasis (CL) is one of the illnesses caused by Leishmania parasite infection, which can be asymptomatic or severe according to the infecting Leishmania strain. CL is commonly diagnosed by directly detecting the parasites or their DNA in tissue samples. New diagnostic methodologies target specific proteins (biomarkers) secreted by the parasite during the infection process. However, specific bioreceptors for the in vivo or in vitro detection of these novel biomarkers are rather limited in terms of sensitivity and specificity. For this reason, we here introduce three novel peptides as bioreceptors for the highly sensitive and selective identification of acid phosphatase (sAP) and proteophosphoglycan (PPG), which have a crucial role in leishmaniasis infection. These high-affinity peptides have been designed from the conservative domains of the lectin family, holding the ability to interact with the biological target and produce the same effect than the original protein. The synthetic peptides have been characterized and the affinity and kinetic constants for their interaction with the targets (sAP and PPG) have been determined by a surface plasmon resonance biosensor. Values obtained for KD are in the nanomolar range, which is comparable to high-affinity antibodies, with the additional advantage of a high biochemical stability and simpler production. Pep2854 exhibited a high affinity for sAP (KD = 1.48 nM) while Pep2856 had a good affinity for PPG (KD 1.76 nM). This study evidences that these peptidomimetics represent a novel alternative tool to the use of high molecular weight proteins for biorecognition in the diagnostic test and biosensor devices for CL.


Asunto(s)
Fosfatasa Ácida/análisis , Leishmania/aislamiento & purificación , Leishmaniasis Cutánea/parasitología , Proteínas de la Membrana/análisis , Péptidos/química , Proteoglicanos/análisis , Proteínas Protozoarias/análisis , Resonancia por Plasmón de Superficie/métodos , Sitios de Unión , Humanos , Leishmania/enzimología , Leishmaniasis Cutánea/diagnóstico , Modelos Moleculares , Péptidos/síntesis química , Peptidomiméticos/síntesis química , Peptidomiméticos/química
7.
Can J Microbiol ; 67(6): 464-475, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33301360

RESUMEN

Experiments were carried out to elucidate linkage between methane consumption and mineralization of phosphorous (P) from different P sources. The treatments were (i) no CH4 + no P amendment (absolute control), (ii) with CH4 + no P amendment (control), (iii) with CH4 + inorganic P as Ca3(PO4)2, and (iv) with CH4 + organic P as sodium phytate. P sources were added at 25 µg P·(g soil)-1. Soils were incubated to undergo three repeated CH4 feeding cycles, referred to as feeding cycle I, feeding cycle II, and feeding cycle III. CH4 consumption rate k (µg CH4 consumed·(g soil)-1·day-1) was 0.297 ± 0.028 in no P amendment control, 0.457 ± 0.016 in Ca3(PO4)2, and 0.627 ± 0.013 in sodium phytate. Rate k was stimulated by 2 to 6 times over CH4 feeding cycles and followed the trend of sodium phytate > Ca3(PO4)2 > no P amendment control. CH4 consumption stimulated P solubilization from Ca3(PO4)2 by a factor of 2.86. Acid phosphatase (µg paranitrophenol released·(g soil)-1·h-1) was higher in sodium phytate than the no P amendment control. Abundance of 16S rRNA and pmoA genes increased with CH4 consumption rates. The results of the study suggested that CH4 consumption drives mineralization of unavailable inorganic and organic P sources in the soil ecosystem.


Asunto(s)
Ecosistema , Metano/metabolismo , Fósforo/metabolismo , Suelo , Fosfatasa Ácida/análisis , Fosfatasa Ácida/metabolismo , Disponibilidad Biológica , Genes Microbianos/genética , Metano/análisis , Oxigenasas/genética , Fósforo/análisis , Fósforo/farmacocinética , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
8.
J Basic Microbiol ; 61(2): 165-176, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33448033

RESUMEN

Sugarcane/peanut intercropping is a highly efficient planting pattern in South China. However, the effects of sugarcane/peanut intercropping on soil quality need to be clarified. This study characterized the soil microbial community and the soil quality in sugarcane/peanut intercropping systems by the Illumina MiSeq platform. The results showed that the intercropping sugarcane (IS) system significantly increased the total N (TN), available N (AN), available P (AP), pH value, and acid phosphatase activity (ACP), but it had little effect on the total P (TP), total K (TK), available K (AK), organic matter (OM), urease activity, protease activity, catalase activity, and sucrase activity, compared with those in monocropping sugarcane (MS) and monocropping peanut (MP) systems. Both intercropping peanut (IP) and IS soils contained more bacteria and fungi than soils in the MP and MS fields, and the microbes identified were mainly Chloroflexi and Acidobacteria, respectively. Intercropping significantly increased the number of unique microbes in IS soils (68 genera), compared with the numbers in the IP (14), MS (17), and MP (16) systems. The redundancy analysis revealed that the abundances of culturable Acidobacteriaceae subgroup 1, nonculturable DA111, and culturable Acidobacteria were positively correlated with the measured soil quality in the intercropping system. Furthermore, the sugarcane/peanut intercropping significantly increased the economic benefit by 87.84% and 36.38%, as compared with that of the MP and MS, respectively. These results suggest that peanut and sugarcane intercropping increases the available N and P content by increasing the abundance of rhizospheric microbes, especially Acidobacteriaceae subgroup 1, DA111, and Acidobacteria.


Asunto(s)
Agricultura/métodos , Arachis/crecimiento & desarrollo , Saccharum/crecimiento & desarrollo , Microbiología del Suelo , Suelo/química , Fosfatasa Ácida/análisis , Agricultura/economía , Arachis/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Concentración de Iones de Hidrógeno , Microbiota , Nitrógeno/análisis , Fosfatos/análisis , Saccharum/microbiología
9.
Environ Microbiol ; 22(8): 3561-3571, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32564477

RESUMEN

Phylogenetic analysis of more than 4000 annotated bacterial acid phosphatases was carried out. Our analysis enabled us to sort these enzymes into the following three types: (1) class B acid phosphatases, which were distantly related to the other types, (2) class C acid phosphatases and (3) generic acid phosphatases (GAP). Although class B phosphatases are found in a limited number of bacterial families, which include known pathogens, class C acid phosphatases and GAP proteins are found in a variety of microbes that inhabit soil, fresh water and marine environments. As part of our analysis, we developed three profiles, named Pfr-B-Phos, Pfr-C-Phos and Pfr-GAP, to describe the three groups of acid phosphatases. These sequence-based profiles were then used to scan genomes and metagenomes to identify a large number of formerly unknown acid phosphatases. A number of proteins in databases annotated as hypothetical proteins were also identified by these profiles as putative acid phosphatases. To validate these in silico results, we cloned genes encoding candidate acid phosphatases from genomic DNA or recovered from metagenomic libraries or genes synthesized in vitro based on protein sequences recovered from metagenomic data. Expression of a number of these genes, followed by enzymatic analysis of the proteins, further confirmed that sequence similarity searches using our profiles could successfully identify previously unknown acid phosphatases.


Asunto(s)
Fosfatasa Ácida/análisis , Fosfatasa Ácida/clasificación , Bacterias/genética , Bacterias/metabolismo , Genoma Bacteriano/genética , Fosfatasa Ácida/genética , Secuencia de Aminoácidos , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica/genética , Metagenoma/genética , Metagenómica , Filogenia
10.
Anal Chem ; 92(2): 2130-2135, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31850751

RESUMEN

Plasmon resonance energy transfer (PRET), as a new form of energy transfer first discovered in 2007, has been widely applied for the biomolecular recognition, detection of ions, cellular physiological status monitoring, and energy conversion. It occurs between noble metal nanoparticles (donor) and conjugated molecules or nanoparticles (acceptor). In this study, we used urchin-like gold nanoplasmonics (UGPs) and oxTMB as a new donor-acceptor pair to establish a novel PRET coupling system, avoiding trivial modification. PRET from UGPs to conjugated redox-active oxTMB leads to resonant quenching in the localized surface plasmon resonance (LSPR) spectra. However, when the acid phosphatase (ACP) was introduced, the hydrolyzate ascorbic acid (AA) converted from 2-phospho-l-ascorbic acid trisodium salt (AAP) could be capable of reducing oxTMB into TMB, thereby preventing the occurrence of PRET. The recovery of the scattering spectral intensity of UGPs was linearly related to the concentration of ACP in the range of 0.1 to 5.0 U/L, and the ACP with a detection limit of 0.076 U/L could be measured. In addition, this method also showed good selectivity attributed to the substrate specificity of enzyme.


Asunto(s)
Fosfatasa Ácida/análisis , Resonancia por Plasmón de Superficie , Fosfatasa Ácida/metabolismo , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Bencidinas/química , Bencidinas/metabolismo , Transferencia de Energía , Oro/química , Oro/metabolismo , Nanopartículas del Metal/química , Tamaño de la Partícula , Platino (Metal)/química , Platino (Metal)/metabolismo , Propiedades de Superficie
11.
Org Biomol Chem ; 18(6): 1148-1154, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31971197

RESUMEN

Fluorescent probes for the detection of acid phosphatases (ACP) are important in the investigation of the pathology and diagnosis of diseases. We reported a lysosome-targeted near-infrared (NIR) fluorescent probe SHCy-P based on a novel NIR-emitting thioxanthene-indolium dye for the detection of ACP. The probe showed a long wavelength fluorescence emission at λem = 765 nm. Due to the ACP-catalyzed cleavage of the phosphate group in SHCy-P, the probe exhibited high selectivity and sensitivity for the 'turn-on' detection of ACP with a limit of detection as low as 0.48 U L-1. The probe SHCy-P could also be used to detect and image endogenous ACP in lysosomes. In light of these prominent properties, we envision that SHCy-P will be an efficient optical imaging approach for investigating the ACP activity in disease diagnosis.


Asunto(s)
Fosfatasa Ácida/análisis , Colorantes Fluorescentes/química , Lisosomas/enzimología , Imagen Óptica , Fosfatasa Ácida/metabolismo , Biocatálisis , Células HeLa , Humanos , Indoles/química , Rayos Infrarrojos , Estructura Molecular , Tioxantenos/química
12.
Ecotoxicol Environ Saf ; 206: 111405, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010592

RESUMEN

Soils might be a final sink for Ag2S nanoparticles (NPs). Still, there are limited data on their effects on soil bacterial communities (SBC). To bridge this gap, we investigated the effects of Ag2S NPs (10 mg kg-1 soil) on the structure and function of SBC in a terrestrial indoor mesocosm, using a multi-species design. During 28 days of exposure, the SBC function-related parameters were analysed in terms of enzymatic activity, community level physiological profile, culture of functional bacterial groups [phosphorous-solubilizing bacteria (P-SB) and heterotrophic bacteria (HB)], and SBC structure was analysed by 16S rRNA gene-targeted denaturing gradient gel electrophoresis. The SBC exposed to Ag2S NPs showed a significative decrease of functional parameters, such as ß-glucosidase activity and L-arginine consumption, and increase of the acid phosphatase activity. At the structural level, significantly lower richness and diversity were detected, but at later exposure times compared to the AgNO3 treatment, likely because of a low dissolution rate of Ag2S NPs. In fact, stronger effects were observed in soils spiked with AgNO3, in both functional and structural parameters. Changes in SBC structure seem to negatively correlate with parameters related to phosphorous (acid phosphatase activity) and carbon cycling (abundance of HB, P-SB, and ß-glucosidase activity). Our results indicate a significant effect of Ag2S NPs on SBC, specifically on parameters related to carbon and phosphorous cycling, at doses as low as 10 mg kg-1 soil. These effects were only observed after 28 days, highlighting the importance of long-term exposure experiments for slowly dissolving NPs.


Asunto(s)
Nanopartículas del Metal/toxicidad , Microbiota/efectos de los fármacos , Compuestos de Plata/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Suelo/química , Fosfatasa Ácida/análisis , Microbiota/genética , Oxidorreductasas/análisis , ARN Ribosómico 16S , Contaminantes del Suelo/análisis , beta-Glucosidasa/análisis
13.
Mikrochim Acta ; 187(6): 357, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32468344

RESUMEN

The preparation of aggregation-induced emission-type copper nanoclusters (CuNCs) capped with polydopamine (PDA) is described. PDA was formed via in situ polymerization of dopamine in the presence of alkaline polyethylenimine. The PDA-capped CuNCs (PDA-CuNCs) exhibit orange fluorescence with maximal emission at 580 nm upon excitation at 340 nm, a storage stability of at least 2 weeks, and a quantum yield (QY) of 2.54% in aqueous solution. The QY is 28-fold higher than that of sole CuNCs. The fluorescence of the PDA-CuNCs is quenched by Fe3+ ion while it is recovered by PO43- due to its stronger affinity for Fe3+. On this basis, a fluorometric phosphate assay was developed that has a 1.5 nM detection limit and a linear range over 0.003-70 µM. The method was satisfactorily applied to the determination of phosphate in local tap water and human sera, and the results agreed well with those obtained by a colorimetric method. In the presence of acid phosphatase (ACP), PO43- is produced by the catalytic hydrolysis of adenosine triphosphate (ACP substrate). Thus, a fluorogenic assay for screening ACP activity was established. Response is linear over the activity range 0.0012-25 U L-1, with a detection limit of 0.001 U L-1 (at S/N = 3). Graphic abstract We proposed an effective polydopamine-templating strategy for the in situ synthesis of highly emissive and stable CuNCs and demonstrated its use as an ion-driven fluorescence switch for the determination of phosphate and acid phosphatase activity.


Asunto(s)
Fosfatasa Ácida/análisis , Colorantes Fluorescentes/química , Indoles/química , Nanopartículas del Metal/química , Fosfatos/sangre , Polímeros/química , Espectrometría de Fluorescencia/métodos , Fosfatasa Ácida/química , Adenosina Trifosfato/química , Cobre/química , Agua Potable/análisis , Pruebas de Enzimas/métodos , Humanos , Hierro/química , Límite de Detección
14.
Anal Bioanal Chem ; 411(25): 6645-6653, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31372699

RESUMEN

Carbon dot (CD)-based fluorescent probes have been widely exploited; however, multi-component detection using CDs without tedious surface modification is always a challenging task. Here, we develop a convenient and simple CD-based "on-off-on" fluorescent probe for detection of copper(II) ion (Cu2+), ascorbic acid (AA), and acid phosphatase (ACP). Cu2+ leads to the fluorescence quenching of CDs. The limit of detection (LOD) for Cu2+ is 2.4 µM. When AA is added into the CDs + Cu2+ solution, Cu2+ is reduced by AA to Cu+, causing the fluorescence recovery of CDs. The fluorescent intensity linearly correlates with the concentration of AA in the range of 100-2800 µM with LOD of 60 µM. Besides, the probe has potential application for detection of AA in real samples such as VC tablets, orange juice, and fresh orange. The probe can also indirectly detect ACP that enzymatically hydrolyzes ascorbic acid-phosphate (AAP) to produce AA. This work expands the application of CDs in the multi-component detection and provides a facile fluorescent probe for detection of AA in real samples. Graphical abstract.


Asunto(s)
Fosfatasa Ácida/análisis , Ácido Ascórbico/análisis , Carbono/química , Cobre/análisis , Colorantes Fluorescentes/química , Cationes Bivalentes/análisis , Jugos de Frutas y Vegetales/análisis , Límite de Detección , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Solanum tuberosum/enzimología , Espectrometría de Fluorescencia/métodos , Comprimidos
15.
Mikrochim Acta ; 186(8): 558, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31338595

RESUMEN

The author describe a method for preparation of green fluorescent nitrogen-doped carbon dots (N-CDs) through hydrothermal treatment of a mixture of lotus leaf juice and ethylenediamine (EDA). The N-CDs have uniform size, good dispersibility and water solubility. Under 316 and 366 nm photoexcitation, they show dual fluorescence with emission peaks at 415 and 509 nm, respectively. They are positively charge and display low cytotoxicity. This makes them an excellent choice for fluorometric assays and for bioimaging. A ratiometric assay was developed for the determination of the activity of acid phosphatase (ACP). It is based on the aggregation- induced quenching (AIQ) of the fluorescence of the N-CDs by sodium hexametaphosphate (NaPO3)6. Enzymatic hydrolysis of (NaPO3)6 by ACP leads to the disintegration of (NaPO3)6 and to the restoration of fluorescence. The measurement of the ratio of fluorescence at two wavelengths (415 and 509 nm), background interference and fluctuating signals can be widely eliminated. The method works in the 1-50 U·L-1 ACP activity range and has a detection limit of 0.43 U·L-1. It was successfully applied (a) to the determination of ACP in spiked serum samples, (b) to ACP inhibitor screening, and (c) to imaging of ACP in HePG2 cells. Graphical abstract Schematic presentation of the synthesis of nitrogen-doped carbon dots (N-CDs), and their application to the ratiometric fluorometric determination of acid phosphatase (ACP) based on the aggregation-induced quenching and enzymatic hydrolysis.


Asunto(s)
Fosfatasa Ácida , Carbono/química , Colorantes Fluorescentes/química , Nitrógeno/química , Fosfatasa Ácida/análisis , Fosfatasa Ácida/antagonistas & inhibidores , Fosfatasa Ácida/sangre , Fosfatasa Ácida/química , Tecnología Química Verde , Células Hep G2 , Humanos , Lotus , Fosfatos/química , Extractos Vegetales/química , Hojas de la Planta
16.
Microb Ecol ; 76(1): 92-101, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27623965

RESUMEN

Bioturbation and bioirrigation induced by burrowing macrofauna are recognized as important processes in aquatic sediment since macrofaunal activities lead to the alteration of sediment characteristics. However, there is a lack of information on how macrofauna influence microbial abundance and extracellular enzyme activity in mangrove sediment. In this study, the environmental parameters, extracellular enzyme activities, and microbial abundance were determined and their relationships were explored. Sediment samples were taken from the surface (S) and lower layer (L) without burrow, as well as crab burrow wall (W) and bottom of crab burrow (B) located at the Mai Po Nature Reserve, Hong Kong. The results showed that the burrowing crabs could enhance the activities of oxidase and hydrolases. The highest activities of phenol oxidase and acid phosphatase were generally observed in B sediment, while the highest activity of N-acetyl-glucosaminidase was found in W sediment. The enzymatic stoichiometry indicated that the crab-affected sediment had similar microbial nitrogen (N) and phosphorous (P) availability relative to carbon (C), lower than S but higher than L sediment. Furthermore, it was found that the highest abundance of both bacteria and fungi was shown in S sediment, and B sediment presented the lowest abundance. Moreover, the concentrations of phosphorus and soluble phenolics in crab-affected sediment were almost higher than the non-affected sediment. The alterations of phenolics, C/P and N/P ratios as well as undetermined environmental factors by the activities of crabs might be the main reasons for the changes of enzyme activity and microbial abundance. Finally, due to the important role of phenol oxidase and hydrolases in sediment organic matter (SOM) decomposition, it is necessary to take macrofaunal activities into consideration when estimating the C budget in mangrove ecosystem in the future.


Asunto(s)
Braquiuros/fisiología , Microbiología Ambiental , Enzimas/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Microbiota/fisiología , Fosfatasa Ácida/análisis , Animales , Carbono , Ecosistema , Monitoreo del Ambiente , Pruebas de Enzimas , Hong Kong , Hidrolasas/análisis , Nitrógeno , Oxidorreductasas/análisis , Fenoles , Fósforo , Humedales
17.
Ecotoxicol Environ Saf ; 164: 571-578, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30149356

RESUMEN

Mesotrione (2-[4-(methylsulfonyl)-2-nithobenzoyl]-1, 3-cyclohexanedione) is a selective triketone herbicide that has been widely used in corn production for the past 15 years. However, its potential for risk to soil ecosystems is poorly documented. The present study investigated the soil enzyme activity and soil microbial community responses to a 20 days' mesotrione exposure at doses of 0.1, 1.0 and 5.0 mg/kg. On days 2, 5, 10 and 20, activities of soil ß-glucosidase, urease and acid phosphatase, soil microbe abundances, soil microbial community structure and abundance of the AOA-amoA and AOB-amoA genes were measured. Results showed that activities of urease and acid phosphatase were relatively stable, with no difference found between the mesotrione-treated group and control at the end of exposure. But ß-glucosidase activity was reduced in the 5.0 mg/kg mesotrione treatment. In the 1.0 and 5.0 mg/kg mesotrione-treated soil, abundance of bacteria, fungi and actinomycetes all were reduced. In the 0.1 mg/kg mesotrione-treated soil, only fungi abundance was reduced by the end of the exposure. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed soil microbial community structure could be affected by mesotrione at all experimental doses, and microbial diversity declined slightly after mesotrione exposure. Abundance of AOA-amoA and AOB-amoA genes were reduced markedly in 1.0 and 5.0 mg/kg mesotrione-treated soil. The present study suggests that mesotrione at higher doses might induce negative impacts on soil microbes, a finding which merits additional research and which should be accounted for when application of this herbicide is considered.


Asunto(s)
Ciclohexanonas/toxicidad , Herbicidas/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Fosfatasa Ácida/análisis , Biodiversidad , Ciclohexanonas/análisis , Herbicidas/análisis , Suelo/química , Contaminantes del Suelo/análisis , Ureasa/análisis , beta-Glucosidasa/análisis
18.
Ecotoxicol Environ Saf ; 151: 21-27, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29304414

RESUMEN

Fluorine can flow into the environment after leakage or spill accidents and these excessive amounts can cause adverse effects on terrestrial ecosystems. Using three media (filter paper, soil, and filter-paper-on-soil), we investigated the toxic effects of fluorine on the germination and growth of crops (barley, mung bean, sorghum, and wheat), on the activities of soil exoenzymes (acid phosphatase, arylsulfatase, fluorescein diacetate hydrolase, and urease) and on the survival, abnormality, and cytotoxicity of Eisenia andrei earthworms. The germination and growth of crops were affected by fluorine as exposure concentration increased. The activities of the four enzymes after 0-, 3-, 10-, and 20-day periods varied as exposure concentration increased. According to in vivo and in vitro earthworm assays, E. andrei mortality, abnormality, and cytotoxicity increased with increasing fluorine concentration. Overall, fluorine significantly affected each tested species in the concentration ranges used in this study. The activities of soil exoenzymes were also affected by soil fluorine concentration, although in an inconsistent manner. Albeit the abnormally high concentrations of fluorine in soil compared to that observed under natural conditions, its toxicity was much restrained possibly due to the adsorption of fluorine on soil particles and its combination with soil cations.


Asunto(s)
Productos Agrícolas/efectos de los fármacos , Flúor/toxicidad , Hidrolasas/análisis , Oligoquetos/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Suelo/química , Fosfatasa Ácida/análisis , Adsorción , Animales , Arilsulfatasas/análisis , Ecosistema , Germinación/efectos de los fármacos , Ureasa/análisis
19.
Zhonghua Nan Ke Xue ; 24(4): 291-296, 2018 Apr.
Artículo en Zh | MEDLINE | ID: mdl-30168946

RESUMEN

Human seminal plasma is rich in potential biological markers for male infertility and male reproductive system diseases, which have an application value in the diagnosis and treatment of male infertility. The methods for the detection of semen biochemical markers have been developed from the manual, semi-automatic to the present automatic means. The automatic detection of semen biochemical markers is known for its advantages of simple reagent composition and small amount of reagents for each test, simple setting of parameters, whole automatic procedure with few errors, short detection time contributive to batch detection and reduction of manpower cost, simple calibration and quality control procedure to ensure accurate and reliable results, output of results in the order of the samples in favor of clinical diagnosis and treatment, and open reagents applicable to various automatic biochemistry analyzers. At present, the automatic method is applied in the detection of such semen biochemical markers as seminal plasma total and neutral alpha-glucosidase, acid phosphatase, fructose, γ-glutamyl transpeptidase, zinc, citric acid, uric acid, superoxide dismutase and carnitine, sperm acrosin and lactate dehydrogenase C4, and semen free elastase, which can be used to evaluate the secretory functions of the epididymis, seminal vesicle and prostate, sperm acrosome and energy metabolism function, seminal plasma antioxidative function, and infection or silent infection in the male genital tract.


Asunto(s)
Biomarcadores/análisis , Infertilidad Masculina/diagnóstico , Semen/química , Fosfatasa Ácida/análisis , Carnitina/análisis , Ácido Cítrico/análisis , Epidídimo/metabolismo , Fructosa/análisis , Humanos , Isoenzimas , L-Lactato Deshidrogenasa , Masculino , Próstata/metabolismo , Vesículas Seminales , Espermatozoides/química , alfa-Glucosidasas/análisis , gamma-Glutamiltransferasa/análisis
20.
Ecotoxicol Environ Saf ; 135: 368-374, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27771594

RESUMEN

It is essential to remediate or amend soils contaminated with various heavy metals or pollutants so that the soils may be used again safely. Verifying that the remediated or amended soils meet soil quality standards is an important part of the process. We estimated the activity levels of eight soil exoenzymes (acid phosphatase, arylsulfatase, catalase, dehydrogenase, fluorescein diacetate hydrolase, protease, urease, and ß-glucosidase) in contaminated and remediated soils from two sites near a non-ferrous metal smelter, using colorimetric and titrimetric determination methods. Our results provided the levels of activity of soil exoenzymes that indicate soil health. Most enzymes showed lower activity levels in remediated soils than in contaminated soils, with the exception of protease and urease, which showed higher activity after remediation in some soils, perhaps due to the limited nutrients available in remediated soils. Soil exoenzymes showed significantly higher activity in soils from one of the sites than from the other, due to improper conditions at the second site, including high pH, poor nutrient levels, and a high proportion of sand in the latter soil. Principal component analysis revealed that ß-glucosidase was the best indicator of soil ecosystem health, among the enzymes evaluated. We recommend using ß-glucosidase enzyme activity as a prior indicator in estimating soil ecosystem health.


Asunto(s)
Contaminación Ambiental/análisis , Restauración y Remediación Ambiental , Enzimas/análisis , Contaminantes del Suelo/análisis , Suelo/química , beta-Glucosidasa/análisis , Fosfatasa Ácida/análisis , Arilsulfatasas/análisis , Catalasa/análisis , Concentración de Iones de Hidrógeno , Hidrolasas/análisis , Metales Pesados/análisis , Oxidorreductasas/análisis , Péptido Hidrolasas/análisis , Ureasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA