Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.228
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 485-514, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654327

RESUMEN

Living organisms sense and respond to light, a crucial environmental factor, using photoreceptors, which rely on bound chromophores such as retinal, flavins, or linear tetrapyrroles for light sensing. The discovery of photoreceptors that sense light using 5'-deoxyadenosylcobalamin, a form of vitamin B12 that is best known as an enzyme cofactor, has expanded the number of known photoreceptor families and unveiled a new biological role of this vitamin. The prototype of these B12-dependent photoreceptors, the transcriptional repressor CarH, is widespread in bacteria and mediates light-dependent gene regulation in a photoprotective cellular response. CarH activity as a transcription factor relies on the modulation of its oligomeric state by 5'-deoxyadenosylcobalamin and light. This review surveys current knowledge about these B12-dependent photoreceptors, their distribution and mode of action, and the structural and photochemical basis of how they orchestrate signal transduction and control gene expression.


Asunto(s)
Proteínas Bacterianas/química , Cobamidas/metabolismo , Regulación Bacteriana de la Expresión Génica , Fotorreceptores Microbianos/química , Proteínas Represoras/química , Factores de Transcripción/química , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Bacillus megaterium/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cobamidas/química , Luz , Modelos Moleculares , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/efectos de la radiación , Fotoquímica , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Conformación Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Thermus thermophilus/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Vitamina B 12/química , Vitamina B 12/metabolismo
2.
Nature ; 631(8022): 789-795, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843825

RESUMEN

The ability to tame high-energy intermediates is important for synthetic chemistry, enabling the construction of complex molecules and propelling advances in the field of synthesis. Along these lines, carbenes and carbenoid intermediates are particularly attractive, but often unknown, high-energy intermediates1,2. Classical methods to access metal carbene intermediates exploit two-electron chemistry to form the carbon-metal bond. However, these methods are usually prohibitive because of reagent safety concerns, limiting their broad implementation in synthesis3-6. Mechanistically, an alternative approach to carbene intermediates that could circumvent these pitfalls would involve two single-electron steps: radical addition to metal to forge the initial carbon-metal bond followed by redox-promoted α-elimination to yield the desired metal carbene intermediate. Here we realize this strategy through a metallaphotoredox platform that exploits iron carbene reactivity using readily available chemical feedstocks as radical sources and α-elimination from six classes of previously underexploited leaving groups. These discoveries permit cyclopropanation and σ-bond insertion into N-H, S-H and P-H bonds from abundant and bench-stable carboxylic acids, amino acids and alcohols, thereby providing a general solution to the challenge of carbene-mediated chemical diversification.


Asunto(s)
Alcoholes , Aminoácidos , Ácidos Carboxílicos , Técnicas de Química Sintética , Hierro , Metano , Fotoquímica , Alcoholes/química , Aminoácidos/química , Carbono/química , Ácidos Carboxílicos/química , Catálisis , Ciclopropanos/química , Ciclopropanos/síntesis química , Hierro/química , Metano/análogos & derivados , Metano/química , Oxidación-Reducción , Fotoquímica/métodos , Técnicas de Química Sintética/métodos , Electrones
3.
Nature ; 628(8007): 326-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480891

RESUMEN

Heteroarenes are ubiquitous motifs in bioactive molecules, conferring favourable physical properties when compared to their arene counterparts1-3. In particular, semisaturated heteroarenes possess attractive solubility properties and a higher fraction of sp3 carbons, which can improve binding affinity and specificity. However, these desirable structures remain rare owing to limitations in current synthetic methods4-6. Indeed, semisaturated heterocycles are laboriously prepared by means of non-modular fit-for-purpose syntheses, which decrease throughput, limit chemical diversity and preclude their inclusion in many hit-to-lead campaigns7-10. Herein, we describe a more intuitive and modular couple-close approach to build semisaturated ring systems from dual radical precursors. This platform merges metallaphotoredox C(sp2)-C(sp3) cross-coupling with intramolecular Minisci-type radical cyclization to fuse abundant heteroaryl halides with simple bifunctional feedstocks, which serve as the diradical synthons, to rapidly assemble a variety of spirocyclic, bridged and substituted saturated ring types that would be extremely difficult to make by conventional methods. The broad availability of the requisite feedstock materials allows sampling of regions of underexplored chemical space. Reagent-controlled radical generation leads to a highly regioselective and stereospecific annulation that can be used for the late-stage functionalization of pharmaceutical scaffolds, replacing lengthy de novo syntheses.


Asunto(s)
Carbono , Técnicas de Química Sintética , Compuestos Heterocíclicos con 1 Anillo , Preparaciones Farmacéuticas , Carbono/química , Ciclización , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/química , Solubilidad , Oxidación-Reducción , Fotoquímica , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Técnicas de Química Sintética/métodos
4.
Annu Rev Biochem ; 83: 191-219, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905781

RESUMEN

Research into the molecular mechanisms of eukaryotic circadian clocks has proceeded at an electrifying pace. In this review, we discuss advances in our understanding of the structures of central molecular players in the timing oscillators of fungi, insects, and mammals. A series of clock protein structures demonstrate that the PAS (Per/Arnt/Sim) domain has been used with great variation to formulate the transcriptional activators and repressors of the clock. We discuss how posttranslational modifications and external cues, such as light, affect the conformation and function of core clock components. Recent breakthroughs have also revealed novel interactions among clock proteins and new partners that couple the clock to metabolic and developmental pathways. Overall, a picture of clock function has emerged wherein conserved motifs and structural platforms have been elaborated into a highly dynamic collection of interacting molecules that undergo orchestrated changes in chemical structure, conformational state, and partners.


Asunto(s)
Proteínas CLOCK/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Animales , Bovinos , Drosophila , Hongos/fisiología , Glicosilación , Humanos , Insectos/fisiología , Luz , Fosforilación , Fotoquímica/métodos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Rodopsina/fisiología , Opsinas de Bastones/fisiología , Transducción de Señal , Transcripción Genética
5.
Annu Rev Biochem ; 83: 341-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905785

RESUMEN

Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo-active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.


Asunto(s)
Química Farmacéutica/métodos , Diseño de Fármacos , Inhibidores Enzimáticos/química , Proteómica/métodos , Animales , Unión Competitiva , Línea Celular Tumoral , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Perfilación de la Expresión Génica , Humanos , Lactonas/química , Fenotipo , Fotoquímica/métodos , Proteoma
6.
Cell ; 159(5): 1153-1167, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25416952

RESUMEN

The endoribonuclease Dicer is known for its central role in the biogenesis of eukaryotic small RNAs/microRNAs. Despite its importance, Dicer target transcripts have not been directly mapped. Here, we apply biochemical methods to human cells and C. elegans and identify thousands of Dicer-binding sites. We find known and hundreds of additional miRNAs with high sensitivity and specificity. We also report structural RNAs, promoter RNAs, and mitochondrial transcripts as Dicer targets. Interestingly, most Dicer-binding sites reside on mRNAs/lncRNAs and are not significantly processed into small RNAs. These passive sites typically harbor small, Dicer-bound hairpins within intact transcripts and generally stabilize target expression. We show that passive sites can sequester Dicer and reduce microRNA expression. mRNAs with passive sites were in human and worm significantly associated with processing-body/granule function. Together, we provide the first transcriptome-wide map of Dicer targets and suggest conserved binding modes and functions outside of the miRNA pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , ARN Helicasas DEAD-box/metabolismo , Ribonucleasa III/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Inmunoprecipitación de Cromatina , Humanos , MicroARNs/metabolismo , Fotoquímica , ARN/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial , Proteínas de Unión al ARN/metabolismo , Sitio de Iniciación de la Transcripción , Transcriptoma
7.
Nature ; 596(7871): 250-256, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34182570

RESUMEN

The substitution of an alkyl electrophile by a nucleophile is a foundational reaction in organic chemistry that enables the efficient and convergent synthesis of organic molecules. Although there has been substantial recent progress in exploiting transition-metal catalysis to expand the scope of nucleophilic substitution reactions to include carbon nucleophiles1-4, there has been limited progress in corresponding reactions with nitrogen nucleophiles5-8. For many substitution reactions, the bond construction itself is not the only challenge, as there is a need to control stereochemistry at the same time. Here we describe a method for the enantioconvergent substitution of unactivated racemic alkyl electrophiles by a ubiquitous nitrogen-containing functional group, an amide. Our method uses a photoinduced catalyst system based on copper, an Earth-abundant metal. This process for asymmetric N-alkylation relies on three distinct ligands-a bisphosphine, a phenoxide and a chiral diamine. The ligands assemble in situ to form two distinct catalysts that act cooperatively: a copper/bisphosphine/phenoxide complex that serves as a photocatalyst, and a chiral copper/diamine complex that catalyses enantioselective C-N bond formation. Our study thus expands enantioselective N-substitution by alkyl electrophiles beyond activated electrophiles (those bearing at least one sp- or sp2-hybridized substituent on the carbon undergoing substitution)8-13 to include unactivated electrophiles.


Asunto(s)
Amidas/química , Cobre/química , Fotoquímica , Bromuros/química , Carbono/química , Catálisis , Ciclización , Diaminas/química , Ligandos , Nitrógeno/química , Fosfinas/química
8.
Nature ; 598(7881): 451-456, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34464959

RESUMEN

Metal-catalysed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcohols remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcohols would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcohols must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of commercially available, structurally diverse alcohols as coupling partners4. We report herein a metallaphotoredox-based cross-coupling platform in which free alcohols are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcohols as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technology represents a general strategy for the merger of in situ alcohol activation with transition metal catalysis.


Asunto(s)
Alcoholes/química , Bromuros/química , Carbono/química , Cloruros/química , Metales/química , Oxígeno/química , Fotoquímica , Catálisis , Metano/análogos & derivados , Metano/química , Nitrógeno/química , Oxidación-Reducción , Paclitaxel/química , Simvastatina/síntesis química , Simvastatina/química
9.
Proc Natl Acad Sci U S A ; 120(21): e2301521120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186849

RESUMEN

Channelrhodopsins with red-shifted absorption, rare in nature, are highly desired for optogenetics because light of longer wavelengths more deeply penetrates biological tissue. RubyACRs (Anion ChannelRhodopsins), a group of four closely related anion-conducting channelrhodopsins from thraustochytrid protists, are the most red-shifted channelrhodopsins known with absorption maxima up to 610 nm. Their photocurrents are large, as is typical of blue- and green-absorbing ACRs, but they rapidly decrease during continuous illumination (desensitization) and extremely slowly recover in the dark. Here, we show that long-lasting desensitization of RubyACRs results from photochemistry not observed in any previously studied channelrhodopsins. Absorption of a second photon by a photocycle intermediate with maximal absorption at 640 nm (P640) renders RubyACR bistable (i.e., very slowly interconvertible between two spectrally distinct forms). The photocycle of this bistable form involves long-lived nonconducting states (Llong and Mlong), formation of which is the reason for long-lasting desensitization of RubyACR photocurrents. Both Llong and Mlong are photoactive and convert to the initial unphotolyzed state upon blue or ultraviolet (UV) illumination, respectively. We show that desensitization of RubyACRs can be reduced or even eliminated by using ns laser flashes, trains of short light pulses instead of continuous illumination to avoid formation of Llong and Mlong, or by application of pulses of blue light between pulses of red light to photoconvert Llong to the initial unphotolyzed state.


Asunto(s)
Luz , Fotones , Channelrhodopsins , Aniones/metabolismo , Fotoquímica
10.
Nature ; 574(7780): 722-725, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645759

RESUMEN

The enzyme protochlorophyllide oxidoreductase (POR) catalyses a light-dependent step in chlorophyll biosynthesis that is essential to photosynthesis and, ultimately, all life on Earth1-3. POR, which is one of three known light-dependent enzymes4,5, catalyses reduction of the photosensitizer and substrate protochlorophyllide to form the pigment chlorophyllide. Despite its biological importance, the structural basis for POR photocatalysis has remained unknown. Here we report crystal structures of cyanobacterial PORs from Thermosynechococcus elongatus and Synechocystis sp. in their free forms, and in complex with the nicotinamide coenzyme. Our structural models and simulations of the ternary protochlorophyllide-NADPH-POR complex identify multiple interactions in the POR active site that are important for protochlorophyllide binding, photosensitization and photochemical conversion to chlorophyllide. We demonstrate the importance of active-site architecture and protochlorophyllide structure in driving POR photochemistry in experiments using POR variants and protochlorophyllide analogues. These studies reveal how the POR active site facilitates light-driven reduction of protochlorophyllide by localized hydride transfer from NADPH and long-range proton transfer along structurally defined proton-transfer pathways.


Asunto(s)
Clorofila/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Synechococcus/enzimología , Synechocystis/enzimología , Catálisis , Clorofila/química , Estructura Molecular , Fotoquímica , Protoclorofilida/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
11.
J Biol Chem ; 299(6): 104726, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37094700

RESUMEN

The position of the counterion in animal rhodopsins plays a crucial role in maintaining visible light sensitivity and facilitating the photoisomerization of their retinal chromophore. The counterion displacement is thought to be closely related to the evolution of rhodopsins, with different positions found in invertebrates and vertebrates. Interestingly, box jellyfish rhodopsin (JelRh) acquired the counterion in transmembrane 2 independently. This is a unique feature, as in most animal rhodopsins, the counterion is found in a different location. In this study, we used Fourier Transform Infrared spectroscopy to examine the structural changes that occur in the early photointermediate state of JelRh. We aimed to determine whether the photochemistry of JelRh is similar to that of other animal rhodopsins by comparing its spectra to those of vertebrate bovine rhodopsin (BovRh) and invertebrate squid rhodopsin (SquRh). We observed that the N-D stretching band of the retinal Schiff base was similar to that of BovRh, indicating the interaction between the Schiff base and the counterion is similar in both rhodopsins, despite their different counterion positions. Furthermore, we found that the chemical structure of the retinal in JelRh is similar to that in BovRh, including the changes in the hydrogen-out-of-plane band that indicates a retinal distortion. Overall, the protein conformational changes induced by the photoisomerization of JelRh yielded spectra that resemble an intermediate between BovRh and SquRh, suggesting a unique spectral property of JelRh, and making it the only animal rhodopsin with a counterion in TM2 and an ability to activate Gs protein.


Asunto(s)
Rodopsina , Bases de Schiff , Animales , Bovinos , Fotoquímica , Rodopsina/química , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Cubomedusas
12.
J Biol Chem ; 299(5): 104670, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024091

RESUMEN

Nonphotochemical quenching (NPQ) is an important photoprotective mechanism that quickly dissipates excess light energy as heat. NPQ can be induced in a few seconds to several hours; most studies of this process have focused on the rapid induction of NPQ. Recently, a new, slowly induced form of NPQ, called qH, was found during the discovery of the quenching inhibitor suppressor of quenching 1 (SOQ1). However, the specific mechanism of qH remains unclear. Here, we found that hypersensitive to high light 1 (HHL1)-a damage repair factor of photosystem II-interacts with SOQ1. The enhanced NPQ phenotype of the hhl1 mutant is similar to that of the soq1 mutant, which is not related to energy-dependent quenching or other known NPQ components. Furthermore, the hhl1 soq1 double mutant showed higher NPQ than the single mutants, but its pigment content and composition were similar to those of the wildtype. Overexpressing HHL1 decreased NPQ in hhl1 to below wildtype levels, whereas NPQ in hhl1 plants overexpressing SOQ1 was lower than that in hhl1 but higher than that in the wildtype. Moreover, we found that HHL1 promotes the SOQ1-mediated inhibition of plastidial lipoprotein through its von Willebrand factor type A domain. We propose that HHL1 and SOQ1 synergistically regulate NPQ.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Calor , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Mutación , Fotoquímica , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Plastidios/metabolismo , Dominios Proteicos , Factor de von Willebrand/química
13.
J Am Chem Soc ; 146(25): 17456-17473, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38861358

RESUMEN

Photomodulable fluorescent probes are drawing increasing attention due to their applications in advanced bioimaging. Whereas photoconvertible probes can be advantageously used in tracking, photoswitchable probes constitute key tools for single-molecule localization microscopy to perform super-resolution imaging. Herein, we shed light on a red and far-red BODIPY, namely, BDP-576 and BDP-650, which possess both properties of conversion and switching. Our study demonstrates that these pyrrolyl-BODIPYs convert into typical green- and red-emitting BODIPYs that are perfectly adapted to microscopy. We also showed that this pyrrolyl-BODIPYs undergo Directed Photooxidation Induced Conversion, a photoconversion mechanism that we recently introduced, where the pyrrole moiety plays a central role. These unique features were used to develop targeted photoconvertible probes toward different organelles or subcellular units (plasma membrane, mitochondria, nucleus, actin, Golgi apparatus, etc.) using chemical targeting moieties and a Halo tag. We notably showed that BDP-650 could be used to track intracellular vesicles over more than 20 min in two-color imagings with laser scanning confocal microscopy, demonstrating its robustness. The switching properties of these photoconverters were studied at the single-molecule level and were then successfully used in live single-molecule localization microscopy in epithelial cells and neurons. Both membrane- and mitochondria- targeted probes could be used to decipher membrane 3D architecture and mitochondrial dynamics at the nanoscale. This study builds a bridge between the photoconversion and photoswitching properties of probes undergoing directed photooxidation and shows the versatility and efficacy of this mechanism in advanced live imaging.


Asunto(s)
Compuestos de Boro , Compuestos de Boro/química , Compuestos de Boro/farmacología , Fotoquímica/métodos , Oxidación-Reducción , Supervivencia Celular/efectos de los fármacos , Humanos , Células HeLa , Neuronas/citología , Neuronas/efectos de los fármacos
14.
Biochem Biophys Res Commun ; 695: 149393, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38171234

RESUMEN

Rational synthetic expansion of photoresponsive ligands is important for photopharmacological studies. Adenosine A2A receptor (A2AR) is stimulated by adenosine and related in Parkinson's disease and other diseases. Here, we report the crystal structure of the A2AR in complex with the novel photoresponsive ligand photoNECA (blue) at 3.34 Å resolution. PhotoNECA (blue) was designed for this structural study and the cell-based assay showed a photoresponsive and receptor selective characteristics of photoNECA (blue) for A2AR. The crystal structure explains the binding mode, photoresponsive mechanism and receptor selectivity of photoNECA (blue). Our study would promote not only the rational design of photoresponsive ligands but also dynamic structural studies of A2AR.


Asunto(s)
Receptor de Adenosina A2A , Humanos , Adenosina/metabolismo , Ligandos , Enfermedad de Parkinson , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Fotoquímica/métodos , Colorantes Fluorescentes/química
15.
Photosynth Res ; 159(2-3): 273-289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198121

RESUMEN

Halomicronema hongdechloris, the first cyanobacterium reported to produce the red-shifted chlorophyll f (Chl f) upon acclimation to far-red light, demonstrates remarkable adaptability to diverse light conditions. The photosystem II (PS II) of this organism undergoes reversible changes in its Chl f content, ranging from practically zero under white-light culture conditions to a Chl f: Chl a ratio of up to 1:8 when exposed to far-red light (FRL) of 720-730 nm for several days. Our ps time- and wavelength-resolved fluorescence data obtained after excitation of living H. hongdechloris cells indicate that the Soret band of a far-red (FR) chlorophyll involved in charge separation absorbs around 470 nm. At 10 K, the fluorescence decay at 715-720 nm is still fast with a time constant of 165 ps indicating an efficient electron tunneling process. There is efficient excitation energy transfer (EET) from 715-720 nm to 745 nm with the latter resulting from FR Chl f, which mainly functions as light-harvesting pigment upon adaptation to FRL. From there, excitation energy reaches the primary donor in the reaction center of PS II with an energetic uphill EET mechanism inducing charge transfer. The fluorescence data are well explained with a secondary donor PD1 represented by a red-shifted Chl a molecule with characteristic fluorescence around 715 nm and a more red-shifted FR Chl f with fluorescence around 725 nm as primary donor at the ChlD1 or PD2 position.


Asunto(s)
Clorofila , Cianobacterias , Electrones , Fotoquímica , Clorofila/química , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Transferencia de Energía
16.
Photosynth Res ; 161(3): 233-248, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38900375

RESUMEN

David Mauzerall was born on July 22, 1929 to a working-class family in the small, inland textile town of Sanford, Maine. Those humble origins instilled a lifelong frugality and an innovative spirit. After earning his PhD degree in 1954 in physical organic chemistry with Frank Westheimer at the University of Chicago, he joined The Rockefeller Institute for Medical Research (now University) as a postdoctoral fellow that summer, rose to the rank of professor, and remained there for the rest of his career. His work over more than 60 years encompassed porphyrin biosynthesis, photoinduced electron-transfer reactions in diverse architectures (solutions, bilayer lipid membranes, reaction centers, chromatophores, and intact leaves), the light-saturation curve of photosynthesis, statistical treatments of photoreactions, and "all-things porphyrins." His research culminated in studies he poetically referred to as "listening to leaves" through the use of pulsed photoacoustic spectroscopy to probe the course and thermodynamics of photosynthesis in its native state. His research group was always small; indeed, of 185 total publications, 39 were singly authored. In brief, David Mauzerall has blended a deep knowledge of distinct disciplines of physical organic chemistry, photochemistry, spectroscopy and biophysics with ingenious experimental methods, incisive mathematical analysis, pristine personal integrity, and unyielding love of science to deepen our understanding of photosynthesis in its broadest context. He thought creatively - and always independently. His work helped systematize the fields of photosynthesis and the origin of life and made them more quantitative. The present article highlights a number of salient scientific discoveries and includes comments from members of his family, friends, and collaborators (Gary Brudvig, Greg Edens, Paul Falkowski, Alzatta Fogg, G. Govindjee, Nancy Greenbaum, Marilyn Gunner, Harvey Hou, Denise and Michele Mauzerall, Thomas Moore, and William Parson) as part of a celebration of his 95th birthday.


Asunto(s)
Fotosíntesis , Historia del Siglo XX , Historia del Siglo XXI , Fotoquímica/historia , Porfirinas/metabolismo , Porfirinas/química
17.
Plant Cell Environ ; 47(4): 1255-1268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38178610

RESUMEN

Rising temperatures and increases in drought negatively impact the efficiency and sustainability of both agricultural and forest ecosystems. Although hydraulic limitations on photosynthesis have been extensively studied, a solid understanding of the links between whole plant hydraulics and photosynthetic processes at the cellular level under changing environmental conditions is still missing, hampering our predictive power for plant mortality. Here, we examined plant hydraulic traits and CO2 assimilation rate under progressive water limitation by implementing Photosystem II (PSII) dynamics with a whole plant process model (TREES). The photosynthetic responses to plant water status were parameterized based on measurements of chlorophyll a fluorescence, gas exchange and water potential for Brassica rapa (R500) grown in a greenhouse under fully watered to lethal drought conditions. The updated model significantly improved predictions of photosynthesis, stomatal conductance and leaf water potential. TREES with PSII knowledge predicted a larger hydraulic safety margin and a decrease in percent loss of conductivity. TREES predicted a slower decrease in leaf water potential, which agreed with measurements. Our results highlight the pressing need for incorporating PSII drought photochemistry into current process models to capture cross-scale plant water dynamics from cell to whole plant level.


Asunto(s)
Clorofila , Agua , Agua/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Sequías , Clorofila A , Fotoquímica , Ecosistema , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo
18.
Photochem Photobiol Sci ; 23(1): 153-162, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066379

RESUMEN

Photophysics and photochemistry of a potential light-activated cytotoxic dirhodium complex [Rh2(µ-O2CCH3)2(bpy)(dppz)](O2CCH3)2, where bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine (Complex 1 or Rh2) in aqueous solutions was studied by means of stationary photolysis and time-resolved methods in time range from hundreds of femtoseconds to microseconds. According to the literature, Complex 1 demonstrates both oxygen-dependent (due to singlet oxygen formation) and oxygen-independent cytotoxicity. Photoexchange of an acetate ligand to a water molecule was the only observed photochemical reaction, which rate was increased by oxygen removal from solutions. Photoexcitation of Complex 1 results in the formation of the lowest triplet electronic excited state, which lifetime is less than 10 ns. This time is too short for diffusion-controlled quenching of the triplet state by dissolved oxygen resulting in 1O2 formation. We proposed that singlet oxygen is produced by photoexcitation of weakly bound van der Waals complexes [Rh2…O2], which are formed in solutions. If this is true, no oxygen-independent light-induced cytotoxicity of Complex 1 exists. Residual cytotoxicity deaerated solutions are caused by the remaining [Rh2…O2] complexes.


Asunto(s)
Antineoplásicos , Oxígeno Singlete , Fotoquímica , Antineoplásicos/farmacología , Antineoplásicos/química , Oxígeno
19.
Org Biomol Chem ; 22(15): 3025-3034, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38530278

RESUMEN

Four dinucleotide analogs of thymidylyl(3'-5')thymidine (TpT) have been designed and synthesized with a view to increase the selectivity, with respect to CPD, of efficient UV-induced (6-4) photoproduct formation. The deoxyribose residues of these analogs have been modified to increase north and south conformer populations at 5'- and 3'-ends, respectively. Dinucleotides whose 5'-end north population exceeds ca. 60% and whose 3'-end population is almost completely south display a three-fold selective enhancement in (6-4) adduct production when exposed to UV radiation, compared to TpT. These experimental results undoubtedly provide robust foundations for studying the singular ground-state proreactive species involved in the (6-4) photoproduct formation mechanism.


Asunto(s)
Carbohidratos , Azúcares , Fotoquímica , Carbohidratos/química , Fosfatos de Dinucleósidos/química , Rayos Ultravioleta
20.
Chem Rev ; 122(2): 2752-2906, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34375082

RESUMEN

Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.


Asunto(s)
Invenciones , Fotoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA