Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Mol Cell ; 81(11): 2445-2459.e13, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33905682

RESUMEN

How are E3 ubiquitin ligases configured to match substrate quaternary structures? Here, by studying the yeast GID complex (mutation of which causes deficiency in glucose-induced degradation of gluconeogenic enzymes), we discover supramolecular chelate assembly as an E3 ligase strategy for targeting an oligomeric substrate. Cryoelectron microscopy (cryo-EM) structures show that, to bind the tetrameric substrate fructose-1,6-bisphosphatase (Fbp1), two minimally functional GID E3s assemble into the 20-protein Chelator-GIDSR4, which resembles an organometallic supramolecular chelate. The Chelator-GIDSR4 assembly avidly binds multiple Fbp1 degrons so that multiple Fbp1 protomers are simultaneously ubiquitylated at lysines near the allosteric and substrate binding sites. Importantly, key structural and biochemical features, including capacity for supramolecular assembly, are preserved in the human ortholog, the CTLH E3. Based on our integrative structural, biochemical, and cell biological data, we propose that higher-order E3 ligase assembly generally enables multipronged targeting, capable of simultaneously incapacitating multiple protomers and functionalities of oligomeric substrates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Moléculas de Adhesión Celular/química , Fructosa-Bifosfatasa/química , Péptidos y Proteínas de Señalización Intracelular/química , Complejos Multienzimáticos/química , Proteínas de Saccharomyces cerevisiae/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Microscopía por Crioelectrón , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Expresión Génica , Gluconeogénesis/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células K562 , Cinética , Modelos Moleculares , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Sf9 , Spodoptera , Homología Estructural de Proteína , Especificidad por Sustrato , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
2.
Cell ; 154(1): 134-45, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23791384

RESUMEN

Dysfunction of protein quality control contributes to the cellular pathology of polyglutamine (polyQ) expansion diseases and other neurodegenerative disorders associated with aggregate deposition. Here we analyzed how polyQ aggregation interferes with the clearance of misfolded proteins by the ubiquitin-proteasome system (UPS). We show in a yeast model that polyQ-expanded proteins inhibit the UPS-mediated degradation of misfolded cytosolic carboxypeptidase Y(∗) fused to green fluorescent protein (GFP) (CG(∗)) without blocking ubiquitylation or proteasome function. Quantitative proteomic analysis reveals that the polyQ aggregates sequester the low-abundant and essential Hsp40 chaperone Sis1p. Overexpression of Sis1p restores CG(∗) degradation. Surprisingly, we find that Sis1p, and its homolog DnaJB1 in mammalian cells, mediates the delivery of misfolded proteins into the nucleus for proteasomal degradation. Sis1p shuttles between cytosol and nucleus, and its cellular level limits the capacity of this quality control pathway. Upon depletion of Sis1p by polyQ aggregation, misfolded proteins are barred from entering the nucleus and form cytoplasmic inclusions.


Asunto(s)
Péptidos/metabolismo , Pliegue de Proteína , Proteolisis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/metabolismo , Células HEK293 , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
3.
Biochemistry ; 59(4): 582-593, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31895557

RESUMEN

Gid4, a subunit of the ubiquitin ligase GID, is the recognition component of the Pro/N-degron pathway. Gid4 targets proteins in particular through their N-terminal (Nt) proline (Pro) residue. In Saccharomyces cerevisiae and other Saccharomyces yeasts, the gluconeogenic enzymes Fbp1, Icl1, and Mdh2 bear Nt-Pro and are conditionally destroyed by the Pro/N-degron pathway. However, in mammals and in many non-Saccharomyces yeasts, for example, in Kluyveromyces lactis, these enzymes lack Nt-Pro. We used K. lactis to explore evolution of the Pro/N-degron pathway. One question to be addressed was whether the presence of non-Pro Nt residues in K. lactis Fbp1, Icl1, and Mdh2 was accompanied, on evolutionary time scales (S. cerevisiae and K. lactis diverged ∼150 million years ago), by a changed specificity of the Gid4 N-recognin. We used yeast-based two-hybrid binding assays and protein-degradation assays to show that the non-Pro (Ala) Nt residue of K. lactis Fbp1 makes this enzyme long-lived in K. lactis. We also found that the replacement, through mutagenesis, of Nt-Ala and the next three residues of K. lactis Fbp1 with the four-residue Nt-PTLV sequence of S. cerevisiae Fbp1 sufficed to make the resulting "hybrid" Fbp1 a short-lived substrate of Gid4 in K. lactis. We consider a blend of quasi-neutral genetic drift and natural selection that can account for these and related results. To the best of our knowledge, this work is the first study of the ubiquitin system in K. lactis, including development of the first protein-degradation assay (based on the antibiotic blasticidin) suitable for use with this organism.


Asunto(s)
Kluyveromyces/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Evolución Molecular , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/metabolismo , Gluconeogénesis/genética , Kluyveromyces/enzimología , Kluyveromyces/genética , Malato Deshidrogenasa/metabolismo , Mutagénesis , Prolina/química , Proteolisis , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología
4.
Protein Expr Purif ; 168: 105570, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31953182

RESUMEN

Aspergillus niger has been employed to produce heterologous proteins due to its high capacity for expression and secretion; nevertheless, expression levels of human proteins have been modest. We were interested in investigating whether A. niger can express and secret human erythropoietin (HuEPO) at high yields. Our strategy was to combine the presence of introns with CRISPR-Cas9 to increase the yield of the recombinant protein. The epo gene was codon-optimized and its expression driven by the PmbfA promoter. Another version of epo contained introns from the fructose-1,6-bisphosphatase (fbp) gene. Two recombinant clones, uME12 (no introns) and uME23 (with introns), were selected based on the resistance to the antibiotic and because they showed a protein profile different from that of the parental strain, as shown by SDS-PAGE. Expression of epo was confirmed by RT-PCR in both colonies but the recombinant EPO protein (rHUEPO) was detected by Western blot only in uME23. The rHuEPO yield from uME23 was estimated at about 1.8 mg L-1 by ELISA, demonstrating that the presence of introns resulted in higher yield, possibly by conferring more stability to mRNA. On the other hand, as part of our strategy we decided to inactivate in the strain uME23 the following genes vps, prtT, algC and och1 which are involved in protein secretion, regulating of protease expression and protein glycosylation in A. niger, with CRISPR-Cas9, yielding the muPS20 transformant. muPS20 is a protease-free strain and its rHuEPO production level was increased 41.1-fold. Moreover, its molecular weight was ≈27 kDa showing that mutations in the above mentioned genes improved secretion, prevented proteolytic degradation and hyperglycosylation of heterologous protein.


Asunto(s)
Aspergillus niger/genética , Eritropoyetina/biosíntesis , Genes Fúngicos , Intrones , Plásmidos/metabolismo , ARN Mensajero/genética , Aspergillus niger/metabolismo , Sistemas CRISPR-Cas , Clonación Molecular , Eritropoyetina/genética , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicosilación , Humanos , Plásmidos/química , Regiones Promotoras Genéticas , Estabilidad Proteica , Proteolisis , ARN Mensajero/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
5.
Nature ; 513(7517): 251-5, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25043030

RESUMEN

Clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, is characterized by elevated glycogen levels and fat deposition. These consistent metabolic alterations are associated with normoxic stabilization of hypoxia-inducible factors (HIFs) secondary to von Hippel-Lindau (VHL) mutations that occur in over 90% of ccRCC tumours. However, kidney-specific VHL deletion in mice fails to elicit ccRCC-specific metabolic phenotypes and tumour formation, suggesting that additional mechanisms are essential. Recent large-scale sequencing analyses revealed the loss of several chromatin remodelling enzymes in a subset of ccRCC (these included polybromo-1, SET domain containing 2 and BRCA1-associated protein-1, among others), indicating that epigenetic perturbations are probably important contributors to the natural history of this disease. Here we used an integrative approach comprising pan-metabolomic profiling and metabolic gene set analysis and determined that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) is uniformly depleted in over six hundred ccRCC tumours examined. Notably, the human FBP1 locus resides on chromosome 9q22, the loss of which is associated with poor prognosis for ccRCC patients. Our data further indicate that FBP1 inhibits ccRCC progression through two distinct mechanisms. First, FBP1 antagonizes glycolytic flux in renal tubular epithelial cells, the presumptive ccRCC cell of origin, thereby inhibiting a potential Warburg effect. Second, in pVHL (the protein encoded by the VHL gene)-deficient ccRCC cells, FBP1 restrains cell proliferation, glycolysis and the pentose phosphate pathway in a catalytic-activity-independent manner, by inhibiting nuclear HIF function via direct interaction with the HIF inhibitory domain. This unique dual function of the FBP1 protein explains its ubiquitous loss in ccRCC, distinguishing FBP1 from previously identified tumour suppressors that are not consistently mutated in all tumours.


Asunto(s)
Carcinoma de Células Renales/enzimología , Fructosa-Bifosfatasa/metabolismo , Neoplasias Renales/enzimología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/fisiopatología , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Glucólisis , Humanos , Neoplasias Renales/genética , Neoplasias Renales/fisiopatología , Modelos Moleculares , NADP/metabolismo , Estructura Terciaria de Proteína , Porcinos
6.
Anal Chem ; 89(8): 4708-4715, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28345864

RESUMEN

Protein complexes often represent an ensemble of different assemblies with distinct functions and regulation. This increased complexity is enabled by the variety of protein diversification mechanisms that exist at every step of the protein biosynthesis pathway, such as alternative splicing and post transcriptional and translational modifications. The resulting variation in subunits can generate compositionally distinct protein assemblies. These different forms of a single protein complex may comprise functional variances that enable response and adaptation to varying cellular conditions. Despite the biological importance of this layer of complexity, relatively little is known about the compositional heterogeneity of protein complexes, mostly due to technical barriers of studying such closely related species. Here, we show that native mass spectrometry (MS) offers a way to unravel this inherent heterogeneity of protein assemblies. Our approach relies on the advanced Orbitrap mass spectrometer capable of multistage MS analysis across all levels of protein organization. Specifically, we have implemented a two-step fragmentation process in the inject flatapole device, which was converted to a linear ion trap, and can now probe the intact protein complex assembly, through its constituent subunits, to the primary sequence of each protein. We demonstrate our approach on the yeast homotetrameric FBP1 complex, the rate-limiting enzyme in gluconeogenesis. We show that the complex responds differently to changes in growth conditions by tuning phosphorylation dynamics. Our methodology deciphers, on a single instrument and in a single measurement, the stoichiometry, kinetics, and exact position of modifications, contributing to the exposure of the multilevel diversity of protein complexes.


Asunto(s)
Fructosa-Bifosfatasa/química , Espectrometría de Masas/métodos , Proteínas de Saccharomyces cerevisiae/química , Fosforilación , Subunidades de Proteína/química , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Temperatura
7.
Extremophiles ; 21(3): 513-521, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28299451

RESUMEN

Pyrobaculum calidifontis genome harbors an open reading frame Pcal_0111 annotated as fructose bisphosphate aldolase. Although the gene is annotated as fructose bisphosphate aldolase, it exhibits a high homology with previously reported fructose-1,6-bisphosphate aldolase/phosphatase from Thermoproteus neutrophilus. To examine the biochemical properties of Pcal_0111, we have cloned and expressed the gene in Escherichia coli. Purified recombinant Pcal_0111 catalyzed both phosphatase and aldolase reactions with specific activity values of 4 U and 1.3 U, respectively. These values are highest among the fructose 1,6-bisphosphatases/aldolases characterized from archaea. The enzyme activity increased linearly with the increase in temperature until 100 °C. Recombinant Pcal_0111 is highly stable with a half-life of 120 min at 100 °C. There was no significant change in the circular dichroism spectra of the protein up to 90 °C. The enzyme activity was not affected by AMP but strongly inhibited by ATP with an IC50 value of 0.75 mM and mildly by ADP. High thermostability and inhibition by ATP make Pcal_0111 a unique fructose 1,6-bisphosphatase/aldolase.


Asunto(s)
Proteínas Arqueales/metabolismo , Fructosa-Bifosfatasa/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Pyrobaculum/enzimología , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Estabilidad de Enzimas , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/genética , Calor , Desnaturalización Proteica , Pyrobaculum/genética
8.
Biochem J ; 472(2): 225-37, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26417114

RESUMEN

Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.


Asunto(s)
Metabolismo Energético , Fructosa-Bifosfatasa/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Gluconeogénesis , Glucólisis , Hepatocitos/metabolismo , Modelos Biológicos , Animales , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/genética , Células HeLa , Hepatocitos/citología , Hepatocitos/enzimología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Masculino , Microscopía Confocal , Transporte de Proteínas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo
9.
J Biol Chem ; 289(12): 8450-61, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24436333

RESUMEN

The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser(45) → His substantially fills the central cavity of pFBPase, and the triple mutation Ser(45) → His, Thr(46) → Arg, and Leu(186) → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.


Asunto(s)
Adenosina Monofosfato/metabolismo , Fructosa-Bifosfatasa/metabolismo , Fructosadifosfatos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Evolución Molecular , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Porcinos
10.
Biochim Biophys Acta ; 1840(6): 1798-807, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24444799

RESUMEN

BACKGROUND: Fructose-1,6-bisphosphatase, a major enzyme of gluconeogenesis, is inhibited by AMP, Fru-2,6-P2 and by high concentrations of its substrate Fru-1,6-P2. The mechanism that produces substrate inhibition continues to be obscure. METHODS: Four types of experiments were used to shed light on this: (1) kinetic measurements over a very wide range of substrate concentrations, subjected to detailed statistical analysis; (2) fluorescence studies of mutants in which phenylalanine residues were replaced by tryptophan; (3) effect of Fru-2,6-P2 and Fru-1,6-P2 on the exchange of subunits between wild-type and Glu-tagged oligomers; and (4) kinetic studies of hybrid forms of the enzyme containing subunits mutated at the active site residue tyrosine-244. RESULTS: The kinetic experiments with the wild-type enzyme indicate that the binding of Fru-1,6-P2 induces the appearance of catalytic sites with lower affinity for substrate and lower catalytic activity. Binding of substrate to the high-affinity sites, but not to the low-affinity sites, enhances the fluorescence emission of the Phe219Trp mutant; the inhibitor, Fru-2,6-P2, competes with the substrate for the high-affinity sites. Binding of substrate to the low-affinity sites acts as a "stapler" that prevents dissociation of the tetramer and hence exchange of subunits, and results in substrate inhibition. CONCLUSIONS: Binding of the first substrate molecule, in one dimer of the enzyme, produces a conformational change at the other dimer, reducing the substrate affinity and catalytic activity of its subunits. GENERAL SIGNIFICANCE: Mimics of the substrate inhibition of fructose-1,6-bisphosphatase may provide a future option for combatting both postprandial and fasting hyperglycemia.


Asunto(s)
Biocatálisis , Fructosa-Bifosfatasa/química , Riñón/enzimología , Animales , Secuencia de Bases , Sitios de Unión , Fructosa-Bifosfatasa/antagonistas & inhibidores , Fructosa-Bifosfatasa/metabolismo , Fructosadifosfatos/química , Datos de Secuencia Molecular , Subunidades de Proteína , Especificidad por Sustrato , Porcinos
11.
J Mol Recognit ; 28(8): 480-91, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25763559

RESUMEN

The present work introduces a surface plasmon resonance-based method for the discrimination of direct competition and allosteric effects that occur in ternary systems comprising a receptor protein and two small-molecular-weight ligands that bind to it. Fatty acid binding protein 4, fructose-1,6-bisphosphatase and human serum albumin were used as model receptor molecules to demonstrate the performance of the method. For each of the receptor molecules, pairs of ligand molecules were selected for which either direct competition or an allosteric effect had already been determined by other methods. The method of discrimination introduced here is based on the surface plasmon resonance responses observed at equilibrium when an immobilized receptor protein is brought into contact with binary mixtures of interacting ligands. These experimentally determined responses are compared with the responses calculated using a theoretical model that considers both direct competition and allosteric ligand interaction modes. This study demonstrates that the allosteric ternary complex model, which enables calculation of the fractional occupancy of the protein by each ligand in such ternary systems, is well suited for the theoretical calculation of these types of responses. For all of the ternary systems considered in this work, the experimental and calculated responses in the chosen concentration ratio range were identical within a five-σ confidence interval when the calculations considered the correct interaction mode of the ligands (direct competition or different types of allosteric regulation), and in case of allosteric modulation, also the correct strength of this effect. This study also demonstrates that the allosteric ternary complex model-based calculations are well suited to predict the ideal concentration ratio range or even single concentration ratios that can serve as hot spots for discrimination, and such hot spots can drastically reduce the numbers of measurements needed for discrimination between direct competition and distinct modulation modes (neutral, positive or negative allostery).


Asunto(s)
Ligandos , Resonancia por Plasmón de Superficie/métodos , Albúminas/química , Regulación Alostérica , Sitios de Unión , Proteínas de Unión a Ácidos Grasos/química , Fructosa-Bifosfatasa/química , Humanos , Modelos Moleculares , Unión Proteica
12.
Arch Biochem Biophys ; 575: 61-8, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25906744

RESUMEN

The chloroplastic fructose-1,6-bisphosphatase (FBPase) is a late-limiting enzyme in the Calvin cycle. In the present study, we isolated and characterized the cDNAs encoding two types of chloroplastic FBPase isoforms (EgFBPaseI and II) from Euglena gracilis. The Km values of recombinant EgFBPaseI and EgFBPaseII for fructose 1,6-bisphosphate (Fru 1,6-P2) were 165 ± 17 and 2200 ± 200 µM, respectively. The activity of EgFBPaseI was inhibited by 1mM H2O2 and recovered when incubated with DTT. The activity of EgFBPaseII was resistant to concentrations of H2O2 up to 1mM, which was distinct from those of EgFBPaseI and spinach chloroplastic FBPase. The suppression of EgFBPaseI gene expression by gene silencing markedly decreased photosynthetic activity and inhibited cell growth. The results of the present study clearly demonstrated that EgFBPaseI played a critical role in photosynthesis in Euglena chloroplasts.


Asunto(s)
Cloroplastos/enzimología , Euglena gracilis/enzimología , Fructosa-Bifosfatasa/metabolismo , Secuencia de Aminoácidos , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Datos de Secuencia Molecular , Filogenia , Interferencia de ARN , Homología de Secuencia de Aminoácido
13.
Biosci Biotechnol Biochem ; 79(12): 1957-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26214137

RESUMEN

Euglena gracilis has the ability to accumulate a storage polysaccharide, a ß-1,3-glucan known as paramylon, under aerobic conditions. Under anaerobic conditions, E. gracilis cells degrade paramylon and synthesize wax esters. Cytosolic fructose-1,6-bisphosphatase (FBPase) appears to be a key enzyme in gluconeogenesis and position branch point of carbon partitioning between paramylon and wax ester biosynthesis. We herein identified and characterized cytosolic FBPase from E. gracilis. The Km and Vmax values of EgFBPaseIII were 16.5 ± 1.6 µM and 30.4 ± 7.2 µmol min(-1) mg protein(-1), respectively. The activity of EgFBPaseIII was not regulated by AMP or reversible redox modulation. No significant differences were observed in the production of paramylon in transiently suppressed EgFBPaseIII gene expression cells by RNAi (KD-EgFBPaseIII); nevertheless, FBPase activity was markedly decreased in KD-EgFBPaseIII cells. On the other hand, the growth of KD-EgFBPaseIII cells was slightly higher than that of control cells.


Asunto(s)
Citosol/enzimología , Euglena gracilis/citología , Fructosa-Bifosfatasa/metabolismo , Secuencia de Aminoácidos , Biomasa , Euglena gracilis/enzimología , Euglena gracilis/genética , Euglena gracilis/metabolismo , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Glucanos/biosíntesis , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Biochem Biophys Res Commun ; 445(1): 78-83, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24491569

RESUMEN

A phosphate group at the C1-atom of inositol-monophosphate (IMP) and fructose-1,6-bisphosphate (FBP) is hydrolyzed by a phosphatase IMPase and FBPase in a metal-dependent way, respectively. The two enzymes are almost indiscernible from each other because of their highly similar sequences and structures. Metal ions are bound to residues on the ß1- and ß2-strands and one mobile loop. However, FBP has another phosphate and FBPases exist as a higher oligomeric state, which may discriminate FBPases from IMPases. There are three genes annotated as FBPases in Zymomonas mobilis, termed also cbbF (ZmcbbF). The revealed crystal structure of one ZmcbbF shows a globular structure formed by five stacked layers. Twenty-five residues in the middle of the sequence form an α-helix and a ß-strand, which occupy one side of the catalytic site. A non-polar Leu residue among them is protruded to the active site, pointing out unfavorable access of a bulky charged group to this side. In vitro assays have shown its dimeric form in solution. Interestingly, two ß-strands of ß1 and ß2 are disordered in the ZmcbbF structure. These data indicate that ZmcbbF might structurally belong to IMPase, and imply that its active site would be reorganized in a yet unreported way.


Asunto(s)
Proteínas Bacterianas/química , Fructosa-Bifosfatasa/química , Monoéster Fosfórico Hidrolasas/química , Zymomonas/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Luz , Metales/química , Metales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión de Radiación , Homología de Secuencia de Aminoácido , Zymomonas/genética
15.
Biochemistry ; 52(31): 5206-16, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23844654

RESUMEN

AMP triggers a 15° subunit-pair rotation in fructose-1,6-bisphosphatase (FBPase) from its active R state to its inactive T state. During this transition, a catalytically essential loop (residues 50-72) leaves its active (engaged) conformation. Here, the structures of Ile(10) → Asp FBPase and molecular dynamic simulations reveal factors responsible for loop displacement. The AMP/Mg(2+) and AMP/Zn(2+) complexes of Asp(10) FBPase are in intermediate quaternary conformations (completing 12° of the subunit-pair rotation), but the complex with Zn(2+) provides the first instance of an engaged loop in a near-T quaternary state. The 12° subunit-pair rotation generates close contacts involving the hinges (residues 50-57) and hairpin turns (residues 58-72) of the engaged loops. Additional subunit-pair rotation toward the T state would make such contacts unfavorable, presumably causing displacement of the loop. Targeted molecular dynamics simulations reveal no steric barriers to subunit-pair rotations of up to 14° followed by the displacement of the loop from the active site. Principal component analysis reveals high-amplitude motions that exacerbate steric clashes of engaged loops in the near-T state. The results of the simulations and crystal structures are in agreement: subunit-pair rotations just short of the canonical T state coupled with high-amplitude modes sterically displace the dynamic loop from the active site.


Asunto(s)
Fructosa-Bifosfatasa/química , Sus scrofa/genética , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Animales , Sitios de Unión , Catálisis , Dominio Catalítico , Activación Enzimática , Fructosa-Bifosfatasa/metabolismo , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Sus scrofa/metabolismo
16.
PLoS Comput Biol ; 8(7): e1002612, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22807670

RESUMEN

Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux.


Asunto(s)
Evolución Molecular , Fructosa-Bifosfatasa/química , Ingeniería de Proteínas/métodos , Análisis de Secuencia de Proteína/métodos , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Dominio Catalítico , Biología Computacional , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Glucosa-6-Fosfato/química , Glucosa-6-Fosfato/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación
17.
Bioorg Med Chem ; 21(11): 2826-31, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23623712

RESUMEN

Cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphoshatase (Cy-FBP/SBPase) is an important target enzyme for finding inhibitors to solve harmful algal bloom (HAB). In this study, as potential inhibitors of Cy-FBP/SBPase, a series of novel chromone-connecting benzohydrazone compounds (Novel N'-((4-oxo-4H-chromen-3-yl)methylene)benzohydrazide) were designed and synthesized. Their inhibitory activities against Cy-FBP/SBPase were further examined in vitro. Some of these compounds, such as f6-f8, f11, f12 and f16, exhibit higher inhibitory activities (IC50=11.2-16.1 µM), especially, the compound f7 was identified as the most potent inhibitor with IC50 value of 11.2 µM. The probable binding-mode of compound f7 was further analyzed carefully by molecular docking methods. These results indicate that compound f7 could be used as a lead compound for further optimization and might have potential to be developed as a new algicide.


Asunto(s)
Antibacterianos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , Cromonas/síntesis química , Cianobacterias/química , Fructosa-Bifosfatasa/antagonistas & inhibidores , Hidrazonas/síntesis química , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Antibacterianos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cromonas/química , Cianobacterias/enzimología , Diseño de Fármacos , Escherichia coli/genética , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Hidrazonas/química , Simulación del Acoplamiento Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
Biochem Biophys Res Commun ; 426(3): 390-4, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22960180

RESUMEN

Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO(2) assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO(2) assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.


Asunto(s)
Brasinoesteroides/biosíntesis , Dióxido de Carbono/metabolismo , Cloroplastos/enzimología , Cucumis sativus/enzimología , Ácido Ascórbico/biosíntesis , Transporte de Electrón , Estabilidad de Enzimas , Fructosa-Bifosfatasa/biosíntesis , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Regulación Enzimológica de la Expresión Génica , Glutatión/biosíntesis , Disulfuro de Glutatión/metabolismo , Oxidación-Reducción , Fotosíntesis , Complejo de Proteína del Fotosistema II/biosíntesis , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Procesamiento Proteico-Postraduccional , Proteolisis
19.
Int J Mol Sci ; 13(6): 7015-7037, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22837677

RESUMEN

Currently, Chemoinformatic methods are used to perform the prediction for FBPase inhibitory activity. A genetic algorithm-random forest coupled method (GA-RF) was proposed to predict fructose 1,6-bisphosphatase (FBPase) inhibitors to treat type 2 diabetes mellitus using the Mold(2) molecular descriptors. A data set of 126 oxazole and thiazole analogs was used to derive the GA-RF model, yielding the significant non-cross-validated correlation coefficient r(2) (ncv) and cross-validated r(2) (cv) values of 0.96 and 0.67 for the training set, respectively. The statistically significant model was validated by a test set of 64 compounds, producing the prediction correlation coefficient r(2) (pred) of 0.90. More importantly, the building GA-RF model also passed through various criteria suggested by Tropsha and Roy with r(2) (o) and r(2) (m) values of 0.90 and 0.83, respectively. In order to compare with the GA-RF model, a pure RF model developed based on the full descriptors was performed as well for the same data set. The resulting GA-RF model with significantly internal and external prediction capacities is beneficial to the prediction of potential oxazole and thiazole series of FBPase inhibitors prior to chemical synthesis in drug discovery programs.


Asunto(s)
Biología Computacional/métodos , Fructosa-Bifosfatasa/antagonistas & inhibidores , Algoritmos , Simulación por Computador , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Descubrimiento de Drogas , Fructosa-Bifosfatasa/química , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Modelos Estadísticos , Oxazoles/química , Relación Estructura-Actividad Cuantitativa , Análisis de Regresión
20.
J Biol Chem ; 285(27): 21049-59, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20427268

RESUMEN

Fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis and photosynthetic CO(2) fixation, catalyzes the hydrolysis of fructose 1,6-bisphosphate (FBP) to produce fructose 6-phosphate, an important precursor in various biosynthetic pathways. All known FBPases are metal-dependent enzymes, which are classified into five different classes based on their amino acid sequences. Eukaryotes are known to contain only the type-I FBPases, whereas all five types exist in various combinations in prokaryotes. Here we demonstrate that the uncharacterized protein YK23 from Saccharomyces cerevisiae efficiently hydrolyzes FBP in a metal-independent reaction. YK23 is a member of the histidine phosphatase (phosphoglyceromutase) superfamily with homologues found in all organisms. The crystal structure of the YK23 apo-form was solved at 1.75-A resolution and revealed the core domain with the alpha/beta/alpha-fold covered by two small cap domains. Two liganded structures of this protein show the presence of two phosphate molecules (an inhibitor) or FBP (a substrate) bound to the active site. FBP is bound in its linear, open conformation with the cleavable C1-phosphate positioned deep in the active site. Alanine replacement mutagenesis of YK23 identified six conserved residues absolutely required for activity and suggested that His(13) and Glu(99) are the primary catalytic residues. Thus, YK23 represents the first family of metal-independent FBPases and a second FBPase family in eukaryotes.


Asunto(s)
Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Clonación Molecular , Cristalografía por Rayos X , Fructosa-Bifosfatasa/genética , Fructosadifosfatos/metabolismo , Amplificación de Genes , Regulación de la Expresión Génica , Hidrólisis , Cinética , Magnesio/farmacología , Manganeso/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA