Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Med Res Rev ; 44(6): 2707-2729, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38842004

RESUMEN

For the last two decades, the aromatic aldehyde 5-hydroxymethyl-furfural (5-HMF) has been the subject of several investigations for its pharmacologic potential. In 2004, the Safo group reported that 5-HMF has potent antisickling activity by targeting and ameliorating the primary pathophysiology of hypoxia-induced sickling of erythrocytes (red blood cells [RBC]). Following the encouraging outcome of the preclinical and phase I/II clinical studies of 5-HMF for the treatment of sickle cell disease (SCD), there have been multiple studies suggesting 5-HMF has several other biological or pharmacologic activities, including anti-allergic, antioxidant, anti-hypoxic, anti-ischemic, cognitive improvement, anti-tyrosinase, anti-proliferation, cytoprotective, and anti-inflammatory activities. The wide range of its effects makes 5-HMF a potential candidate for treating a variety of diseases including cognitive disorders, gout, allergic disorders, anemia, hypoxia, cancers, ischemia, hemorrhagic shock, liver fibrosis, and oxidative injury. Several of these therapeutic claims are currently under investigation and, while promising, vary in terms of the strength of their evidence. This review presents the research regarding the therapeutic potential of 5-HMF in addition to its sources, physicochemical properties, safety, absorption, distribution, metabolism, and excretion (ADME) profiles.


Asunto(s)
Antidrepanocíticos , Furaldehído , Humanos , Furaldehído/análogos & derivados , Furaldehído/farmacología , Furaldehído/química , Animales , Antidrepanocíticos/farmacología , Antidrepanocíticos/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/química , Anemia de Células Falciformes/tratamiento farmacológico
2.
Fungal Genet Biol ; 174: 103914, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032808

RESUMEN

Lignocellulosic material is a leading carbon source for economically viable biotechnological processes; however, compounds such furfural and acetic acid exhibit toxicity to yeasts. Nonetheless, research about the molecular mechanism of furfural and acetic acid toxicity is still scarce in yeasts like Scheffersomyces stipitis. Thus, this study aims to elucidate the impact of furfural and acetic acid on S. stipitis regarding bioenergetic and fermentation parameters. Here, we provide evidence that furfural and acetic acid induce a delay in cell growth and extend the lag phase. The mitochondrial membrane potential decreased in all treatments with no significant differences between inhibitors or concentrations. Interestingly, reactive oxygen species increased when the inhibitor concentrations were from 0.1 to 0.3 % (v/v). The glycolytic flux was not significantly (p > 0.05) altered by acetic acid, but furfural caused different effects. Ethanol production decreased significantly (4.32 g·L-1 in furfural and 5.06 g·L-1 in acetic acid) compared to the control (26.3 g·L-1). In contrast, biomass levels were not significantly different in most treatments compared to the control. This study enhances our understanding of the effects of furfural and acetic acid at the mitochondrial level in a pentose-fermenting yeast like S. stipitis.


Asunto(s)
Ácido Acético , Metabolismo Energético , Fermentación , Furaldehído , Saccharomycetales , Furaldehído/farmacología , Furaldehído/metabolismo , Ácido Acético/farmacología , Ácido Acético/metabolismo , Metabolismo Energético/efectos de los fármacos , Saccharomycetales/metabolismo , Saccharomycetales/efectos de los fármacos , Saccharomycetales/crecimiento & desarrollo , Etanol/metabolismo , Etanol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Lignina/metabolismo , Biomasa , Glucólisis/efectos de los fármacos
3.
Chem Res Toxicol ; 37(5): 675-684, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38598786

RESUMEN

Air pollution consists of complex mixtures of chemicals with serious deleterious health effects from acute and chronic exposure. To help understand the mechanisms by which adverse effects occur, the present work examines the responses of cultured human epidermal keratinocytes to specific chemicals commonly found in woodsmoke. Our earlier findings with liquid smoke flavoring (aqueous extract of charred wood) revealed that such extracts stimulated the expression of genes associated with oxidative stress and proinflammatory response, activated the aryl hydrocarbon receptor, thereby inducing cytochrome P4501A1 activity, and induced cross-linked envelope formation, a lethal event ordinarily occurring during terminal differentiation. The present results showed that furfural produced transcriptional responses resembling those of liquid smoke, cyclohexanedione activated the aryl hydrocarbon receptor, and several chemicals induced envelope formation. Of these, syringol permeabilized the cells to the egress of lactate dehydrogenase at a concentration close to that yielding envelope formation, while furfural induced envelope formation without permeabilization detectable in this way. Furfural (but not syringol) stimulated the incorporation of amines into cell proteins in extracts in the absence of transglutaminase activity. Nevertheless, both chemicals substantially increased the amount of cellular protein incorporated into envelopes and greatly altered the envelope protein profile. Moreover, the proportion of keratin in the envelopes was dramatically increased. These findings are consistent with the chemically induced protein cross-linking in the cells. Elucidating mechanisms by which this phenomenon occurs may help understand how smoke chemicals interact with proteins to elicit cellular responses, interpret bioassays of complex pollutant mixtures, and suggest additional sensitive ways to monitor exposures.


Asunto(s)
Queratinocitos , Madera , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Madera/química , Humo/efectos adversos , Furaldehído/análogos & derivados , Furaldehído/farmacología , Células Cultivadas , Receptores de Hidrocarburo de Aril/metabolismo
4.
PLoS Genet ; 17(10): e1009826, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34624020

RESUMEN

Development of cell factories for conversion of lignocellulosic biomass hydrolysates into biofuels or bio-based chemicals faces major challenges, including the presence of inhibitory chemicals derived from biomass hydrolysis or pretreatment. Extensive screening of 2526 Saccharomyces cerevisiae strains and 17 non-conventional yeast species identified a Candida glabrata strain as the most 5-hydroxymethylfurfural (HMF) tolerant. Whole-genome (WG) transformation of the second-generation industrial S. cerevisiae strain MD4 with genomic DNA from C. glabrata, but not from non-tolerant strains, allowed selection of stable transformants in the presence of HMF. Transformant GVM0 showed the highest HMF tolerance for growth on plates and in small-scale fermentations. Comparison of the WG sequence of MD4 and GVM1, a diploid segregant of GVM0 with similarly high HMF tolerance, surprisingly revealed only nine non-synonymous SNPs, of which none were present in the C. glabrata genome. Reciprocal hemizygosity analysis in diploid strain GVM1 revealed AST2N406I as the only causative mutation. This novel SNP improved tolerance to HMF, furfural and other inhibitors, when introduced in different yeast genetic backgrounds and both in synthetic media and lignocellulose hydrolysates. It stimulated disappearance of HMF and furfural from the medium and enhanced in vitro furfural NADH-dependent reducing activity. The corresponding mutation present in AST1 (i.e. AST1D405I) the paralog gene of AST2, also improved inhibitor tolerance but only in combination with AST2N406I and in presence of high inhibitor concentrations. Our work provides a powerful genetic tool to improve yeast inhibitor tolerance in lignocellulosic biomass hydrolysates and other inhibitor-rich industrial media, and it has revealed for the first time a clear function for Ast2 and Ast1 in inhibitor tolerance.


Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Tolerancia a Medicamentos/genética , Furaldehído/análogos & derivados , Mutación/genética , Saccharomyces cerevisiae/genética , Transformación Genética/genética , Biomasa , Fermentación/genética , Furaldehído/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética
5.
Microb Cell Fact ; 22(1): 221, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37891678

RESUMEN

Lignocellulosic biomass represents a carbon neutral cheap and versatile source of carbon which can be converted to biofuels. A pretreatment step is frequently used to make the lignocellulosic carbon bioavailable for microbial metabolism. Dilute acid pretreatment at high temperature and pressure is commonly utilized to efficiently solubilize the pentose fraction by hydrolyzing the hemicellulose fibers and the process results in formation of furans-furfural and 5-hydroxymethyl furfural-and other inhibitors which are detrimental to metabolism. The presence of inhibitors in the medium reduce productivity of microbial biocatalysts and result in increased production costs. Furfural is the key furan inhibitor which acts synergistically along with other inhibitors present in the hydrolysate. In this review, the mode of furfural toxicity on microbial metabolism and metabolic strategies to increase tolerance is discussed. Shared cellular targets between furfural and acetic acid are compared followed by discussing further strategies to engineer tolerance. Finally, the possibility to use furfural as a model inhibitor of dilute acid pretreated lignocellulosic hydrolysate is discussed. The furfural tolerant strains will harbor an efficient lignocellulosic carbon to pyruvate conversion mechanism in presence of stressors in the medium. The pyruvate can be channeled to any metabolite of interest by appropriate modulation of downstream pathway of interest. The aim of this review is to emphasize the use of hydrolysate as a carbon source for bioproduction of biofuels and other compounds of industrial importance.


Asunto(s)
Furaldehído , Lignina , Furaldehído/farmacología , Furaldehído/metabolismo , Lignina/metabolismo , Fermentación , Biocombustibles , Carbono , Piruvatos
6.
Biochem J ; 479(10): 1045-1058, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35502833

RESUMEN

While lignocellulose is a promising source of renewable sugars for microbial fermentations, the presence of inhibitory compounds in typical lignocellulosic feedstocks, such as furfural, has hindered their utilisation. In Escherichia coli, a major route of furfural toxicity is the depletion of NADPH pools due to its use as a substrate by the YqhD enzyme that reduces furfural to its less toxic alcohol form. Here, we examine the potential of exploiting benzyl alcohol dehydrogenases as an alternative means to provide this same catalytic function but using the more abundant reductant NADH, as a strategy to increase the capacity for furfural removal. We determine the biochemical properties of three of these enzymes, from Pseudomonas putida, Acinetobacter calcoaceticus, and Burkholderia ambifaria, which all demonstrate furfural reductase activity. Furthermore, we show that the P. putida and B. ambifaria enzymes are able to provide substantial increases in furfural tolerance in vivo, by allowing more rapid conversion to furfuryl alcohol and resumption of growth. The study demonstrates that methods to seek alternative cofactor dependent enzymes can improve the intrinsic robustness of microbial chassis to feedstock inhibitors.


Asunto(s)
Escherichia coli , Furaldehído , Alcoholes Bencílicos/metabolismo , Escherichia coli/metabolismo , Etanol/metabolismo , Furaldehído/metabolismo , Furaldehído/farmacología , NAD/metabolismo
7.
Ecotoxicol Environ Saf ; 257: 114951, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116454

RESUMEN

Modern agriculture has many environmental consequences, such as soil contamination, accumulation of toxic compounds in the environment or risk of adverse effects on nontarget organisms and for these reasons, scientists are seeking a more environmentally friendly alternative to synthetic insecticides. This study investigated the effects of four plant secondary metabolites classified as volatile organic compounds (VOCs), which have potential as bioinsecticides, (E)-2-decenal, furfural, 2-undecanone and (E,E)-2-4-decadienal, in concentrations 10-5 and 10-7 M, on female reproductive processes and larval hatchability of the Tenebrio molitor beetle. Our study indicates proper development of ovaries after application of compounds however the volume of terminal oocytes was significantly reduced, with the strongest effect of (E)- 2-decenal which reduced the volume approximately three times. The relative vitellogenin expression level was reduced, with the strongest effect observed after application of furfural, (E,E)- 2-4-decadienal and (E)- 2-decenal in concentration 10-7 M, at the same time patency index was significantly reduced up to 2-times after application of furfural at 10-7 M. What is more important morphological changes translated into physiological ones. The number of laid eggs was affected, with the strongest inhibition after application of furfural (∼43% reduction), (E,E)- 2-4-decadienal (∼33%) and (E)- 2-decenal at concentration 10-7 M (∼33%). Moreover, we observed up to 13% (in case of 2-undecanone) decrease in larval hatchability. Tested compounds exhibited a repellent effect and caused 60% reduction of insect survivability after (E)- 2-decenal at concentration 10-5 M. Altogether, VOCs seems like potential bioactive compounds in plant protection.


Asunto(s)
Escarabajos , Tenebrio , Compuestos Orgánicos Volátiles , Animales , Escarabajos/metabolismo , Compuestos Orgánicos Volátiles/toxicidad , Compuestos Orgánicos Volátiles/metabolismo , Furaldehído/metabolismo , Furaldehído/farmacología , Larva , Reproducción
8.
Curr Microbiol ; 79(7): 196, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595863

RESUMEN

Cellulose is one of the main raw materials for production of green ethanol, but the presence of the growth inhibitor furfural in non-detoxified lignocellulosic hydrolysates often seriously affects their utilization. In a previous study, we obtained strains of Candida glycerinogenes that were tolerant to furfural, but at concentrations above 2.5 g L-1 there was a significant increase in the growth lag phase. In this work, transcription factor genes (SEF1, STB5, CAS5, and ETP1) associated with furfural tolerance were identified and employed to obtain modified strains permitting ethanol fermentation of concentrated and non-detoxified cellulose hydrolysates containing more than 2.5 g L-1 furfural. Tolerance to furfural could be increased to 4.5 g L-1 by overexpression of either STB5 or ETP1, which have different regulation patterns. Moreover, in non-detoxified and concentrated cellulose hydrolysate, overexpression of ETP1 significantly shortened the growth lag phase and ethanol fermentation time was reduced by 17-20%. In batch fermentations fed with concentrated non-detoxified lignocellulose hydrolysate, ethanol productivity and maximum ethanol concentration reached 2.4 g L-1 h-1 and 72.5 g L-1, increases of 26.1% and 6.6%, respectively. The results provided a route for the economic use of lignocellulose for chemical production.


Asunto(s)
Celulosa , Furaldehído , Celulosa/metabolismo , Etanol , Fermentación , Furaldehído/farmacología , Hidrólisis , Pichia , Factores de Transcripción/genética
9.
Biotechnol Lett ; 44(12): 1431-1445, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36316512

RESUMEN

PURPOSE: Second generation (2G) ethanol is produced using lignocellulosic biomass. However, the pre-treatment processes generate a variety of molecules (furanic compounds, phenolic compounds, and organic acids) that act as inhibitors of microbial metabolism, and thus, reduce the efficiency of the fermentation step in this process. In this context, the present study aimed to investigate the effect of furanic compounds on the physiology of lactic acid bacteria (LAB) strains that are potential contaminants in ethanol production. METHODOLOGY: Homofermentative and heterofermentative strains of laboratory LAB, and isolated from first generation ethanol fermentation, were used. LAB strains were challenged to grow in the presence of furfural and 5-hydroxymethyl furfural (HMF). RESULTS: We determined that the effect of HMF and furfural on the growth rate of LAB is dependent on the metabolic type, and the growth kinetics in the presence of these compounds is enhanced for heterofermentative LAB, whereas they are inhibitory to homofermentative LAB. Sugar consumption and product formation were also enhanced in the presence of furanic compounds for heterofermentative LAB, who displayed effective depletion kinetics when compared to the homofermentative LAB. CONCLUSION: Homo- and heterofermentative LAB are affected differently by furanic compounds, in a way that the latter type is more resistant to the toxic effects of these inhibitors. This knowledge is important to understand the potential effects of bacterial contamination in 2G bioprocesses.


Asunto(s)
Furaldehído , Lactobacillus , Fermentación , Lactobacillus/metabolismo , Furaldehído/farmacología , Furaldehído/metabolismo , Biomasa , Etanol/metabolismo
10.
Bioprocess Biosyst Eng ; 45(12): 1919-1926, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36264370

RESUMEN

Direct reutilization of condensate can inhibit ethanol fermentation, 2-phenylethyl alcohol and furfural existed in the condensate are considered to be inhibitors. To achieve the reutilization of the condensate, the ozonation combined with ion-exchange method was used. The results showed that the elimination rates of 2-phenylethyl alcohol and furfural reached 98.0% and 100.0%, respectively after ozonation, while the concentrations of acetic acid, propionic acid, butyric acid and valeric acid increased by 14.9%, 7.7%, 35.3% and 25.5%, respectively. The fermentation results showed that the inhibition of the condensate after ozonation was alleviated but was not completely eliminated. When the effluent volume treated by the ion-exchange method reached 80 BV, the concentrations of acetic acid, propionic acid, butyric acid and valeric acid decreased by 25.8%, 8.6%, 6.5% and 34.4%, respectively. The fermentation results showed that the inhibition of the condensate was completely eliminated after ozonation combined with ion-exchange treatment.


Asunto(s)
Ozono , Alcohol Feniletílico , Fermentación , Furaldehído/farmacología , Ácido Butírico , Etanol , Ácido Acético , Tecnología
11.
Bioprocess Biosyst Eng ; 45(10): 1719-1729, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36121506

RESUMEN

Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and biocompatible plastic that has the potential to replace petroleum-based plastics. Lignocellulosic biomass is a promising feedstock for industrial fermentation to produce bioproducts such as polyhydroxybutyrate (PHB). However, the pretreatment processes of lignocellulosic biomass lead to the generation of toxic byproducts, such as furfural, 5-HMF, vanillin, and acetate, which affect microbial growth and productivity. In this study, to reduce furfural toxicity during PHB production from lignocellulosic hydrolysates, we genetically engineered Cupriavidus necator NCIMB 11599, by inserting the nicotine amide salvage pathway genes pncB and nadE to increase the NAD(P)H pool. We found that the expression of pncB was the most effective in improving tolerance to inhibitors, cell growth, PHB production and sugar consumption rate. In addition, the engineered strain harboring pncB showed higher PHB production using lignocellulosic hydrolysates than the wild-type strain. Therefore, the application of NAD salvage pathway genes improves the tolerance of Cupriavidus necator to lignocellulosic-derived inhibitors and should be used to optimize PHB production.


Asunto(s)
Cupriavidus necator , Petróleo , Amidas/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Azúcares de la Dieta/metabolismo , Azúcares de la Dieta/farmacología , Furaldehído/farmacología , Inhibidores de Crecimiento/metabolismo , Inhibidores de Crecimiento/farmacología , Hidroxibutiratos/metabolismo , Lignina , NAD/metabolismo , NAD/farmacología , Nicotina/metabolismo , Nicotina/farmacología , Nitrobencenos , Petróleo/metabolismo , Plásticos
12.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563152

RESUMEN

Yarrowia lipolytica, the non-conventional yeast capable of high lipogenesis, is a microbial chassis for producing lipid-based biofuels and chemicals from renewable resources such as lignocellulosic biomass. However, the low tolerance of Y. lipolytica against furfural, a major inhibitory furan aldehyde derived from the pretreatment processes of lignocellulosic biomass, has restricted the efficient conversion of lignocellulosic hydrolysates. In this study, the furfural tolerance of Y. lipolytica has been improved by supporting its endogenous detoxification mechanism. Specifically, the endogenous genes encoding the aldehyde dehydrogenase family proteins were overexpressed in Y. lipolytica to support the conversion of furfural to furoic acid. Among them, YALI0E15400p (FALDH2) has shown the highest conversion rate of furfural to furoic acid and resulted in two-fold increased cell growth and lipid production in the presence of 0.4 g/L of furfural. To our knowledge, this is the first report to identify the native furfural detoxification mechanism and increase furfural resistance through rational engineering in Y. lipolytica. Overall, these results will improve the potential of Y. lipolytica to produce lipids and other value-added chemicals from a carbon-neutral feedstock of lignocellulosic biomass.


Asunto(s)
Yarrowia , Ácidos/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Biocombustibles , Furaldehído/farmacología , Lípidos , Yarrowia/metabolismo
13.
Appl Environ Microbiol ; 87(23): e0185521, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34586907

RESUMEN

Furfural is a common furan inhibitor formed due to dehydration of pentose sugars, like xylose, and acts as an inhibitor of microbial metabolism. Overexpression of NADH-specific FucO and deletion of NADPH-specific YqhD had been a successful strategy in the past in conferring tolerance against furfural in Escherichia coli, which highlights the importance of oxidoreductases in conferring tolerance against furfural. In a screen consisting of various oxidoreductases, dehydrogenases, and reductases, we identified the yghA gene as an overexpression target to confer tolerance against furfural. YghA preferably used NADH as a cofactor and had an apparent Km value of 0.03 mM against furfural. In the presence of 1 g liter-1 furfural and 10% xylose (wt/vol), yghA overexpression in an ethanologenic E. coli strain SSK42 resulted in an ethanol efficiency of ∼97%, with a 5.3-fold increase in ethanol titers compared to the control. YghA also exhibited activity against the less toxic inhibitor 5-hydroxymethyl furfural, which is formed due to dehydration of hexose sugars, and thus is a formidable target for overexpression in ethanologenic strain for fermentation of sugars in biomass hydrolysate. IMPORTANCE Lignocellulosic biomass represents an inexhaustible source of carbon for second-generation biofuels. Thermo-acidic pretreatment of biomass is performed to loosen the lignocellulosic fibers and make the carbon bioavailable for microbial metabolism. The pretreatment process also results in the formation of inhibitors that inhibit microbial metabolism and increase production costs. Furfural is a potent furan inhibitor that increases the toxicity of other inhibitors present in the hydrolysate. Thus, it is desirable to engineer furfural tolerance in E. coli for efficient fermentation of hydrolysate sugars.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli , Furaldehído , Oxidorreductasas/genética , Carbono , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Etanol , Furaldehído/farmacología , NAD , Xilosa
14.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33712428

RESUMEN

Acetic acid and furfural are the two prevalent inhibitors coexisting with glucose and xylose in lignocellulosic hydrolysate. The transcriptional regulations of Saccharomyces cerevisiae in response to acetic acid (Aa), furfural (Fur), and the mixture of acetic acid and furfural (Aa_Fur) were revealed during mixed glucose and xylose fermentation. Carbohydrate metabolism pathways were significantly enriched in response to Aa, while pathways of xenobiotic biodegradation and metabolism were significantly enriched in response to Fur. In addition to these pathways, other pathways were activated in response to Aa_Fur, i.e., cofactor and vitamin metabolism and lipid metabolism. Overexpression of Haa1p or Tye7p improved xylose consumption rates by nearly 50%, while the ethanol yield was enhanced by nearly 8% under acetic acid and furfural stress conditions. Co-overexpression of Haa1p and Tye7p resulted in a 59% increase in xylose consumption rate and a 12% increase in ethanol yield, revealing the beneficial effects of Haa1p and Tye7p on improving the tolerance of yeast to mixed acetic acid and furfural.IMPORTANCE Inhibitor tolerance is essential for S. cerevisiae when fermenting lignocellulosic hydrolysate with various inhibitors, including weak acids, furans, and phenols. The details regarding how xylose-fermenting S. cerevisiae strains respond to multiple inhibitors during fermenting mixed glucose and xylose are still unknown. This study revealed the transcriptional regulation mechanism of an industrial xylose-fermenting S. cerevisiae strain in response to acetic acid and furfural. The transcription factor Haa1p was found to be involved in both acetic acid and furfural tolerance. In addition to Haa1p, four other transcription factors, Hap4p, Yox1p, Tye7p, and Mga1p, were identified as able to improve the resistance of yeast to these two inhibitors. This study underscores the feasibility of uncovering effective transcription factors for constructing robust strains for lignocellulosic bioethanol production.


Asunto(s)
Ácido Acético/farmacología , Fermentación/efectos de los fármacos , Furaldehído/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/genética , Resistencia a Medicamentos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma/efectos de los fármacos , Xilosa/metabolismo
15.
BMC Microbiol ; 21(1): 77, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33685391

RESUMEN

BACKGROUND: Lignocellulosic material is a suitable renewable carbon and energy source for microbial cell factories, such as Yarrowia lipolytica. To be accessible for microorganisms, the constituent sugars need to be released in a hydrolysis step, which as a side effect leads to the formation of various inhibitory compounds. However, the effects of these inhibitory compounds on the growth of Y. lipolytica have not been thoroughly investigated. RESULTS: Here we show the individual and combined effect of six inhibitors from three major inhibitor groups on the growth of Y. lipolytica. We engineered a xylose consuming strain by overexpressing the three native genes XR, XDH, and XK and found that the inhibitor tolerance of Y. lipolytica is similar in glucose and in xylose. Aromatic compounds could be tolerated at high concentrations, while furfural linearly increased the lag phase of the cultivation, and hydroxymethylfurfural only inhibited growth partially. The furfural induced increase in lag phase can be overcome by an increased volume of inoculum. Formic acid only affected growth at concentrations above 25 mM. In a synthetic hydrolysate, formic acid, furfural, and coniferyl aldehyde were identified as the major growth inhibitors. CONCLUSION: We showed the individual and combined effect of inhibitors found in hydrolysate on the growth of Y. lipolytica. Our study improves understanding of the growth limiting inhibitors found in hydrolysate and enables a more targeted engineering approach to increase the inhibitor tolerance of Y. lipolytica. This will help to improve the usage of Y. lipolytica as a sustainable microbial cell factory.


Asunto(s)
Inhibidores de Crecimiento/farmacología , Microbiología Industrial , Yarrowia/efectos de los fármacos , Acroleína/análogos & derivados , Acroleína/farmacología , Formiatos/farmacología , Furaldehído/farmacología , Hidrólisis , Lignina/química , Lignina/metabolismo , Yarrowia/metabolismo
16.
Arch Microbiol ; 203(2): 673-682, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33037454

RESUMEN

The present study was aimed to investigate the antibiofilm activity of 5-hydroxymethylfurfural against Acinetobacter baumanni and Vellar estuary isolates v3 (Acinetobacter nosocomialis). The biofilm inhibitory concentration (BIC) of 5HMF against A. baumannii and v3 (A. nosocomialis) was found to be 100 µg/ml) exhibited non-bactericidal concentration-dependent antibiofilm activities against Acinetobacter species. The present study found that 5HMF treatment is very effective in the initial stage of A. baumannii biofilms and it significantly disrupted the mature biofilms. Moreover, 5HMF treatment inhibited the extracellular polymeric substances (EPS), including polysaccharides and proteins production. Results from gene expression and in vitro assays further demonstrated the 5HMF treatment downregulated the expression of bfmR, bap, csuA/B, ompA and katE virulence genes, which consistently affects biofilm formation and its mediated virulence property. The present study suggests that 5HMF unveil its antibiofilm activity by interfering initial biofilm formation and suppressing the virulence regulator genes in A. baumannii. Further studies are required to explore the 5HMF mode of action responsible for the antibiofilm activity.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter/efectos de los fármacos , Biopelículas/efectos de los fármacos , Furaldehído/análogos & derivados , Acinetobacter/genética , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Furaldehído/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Factores de Virulencia/genética
17.
Biotechnol Lett ; 43(5): 1043-1050, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33590377

RESUMEN

OBJECTIVES: To determine furfural biotransformation capabilities of Acinetobacter baylyi ADP1 and Acinetobacter schindleri ACE. RESULTS: Acinetobacter baylyi ADP1 and A. schindleri ACE could not use furfural as sole carbon source but when acetate was used as substrate, ADP1 and ACE biotransformed 1 g furfural/l in 5 and 9 h, respectively. In both cases, the product of this biotransformation was difurfuryl-ether as shown by FT-IR and 1H and 13C NMR spectroscopy. The presence of furfural decreased the specific growth rate in acetate by 27% in ADP1 and 53% in ACE. For both strains, the MIC of furfural was 1.25 g/l. Nonetheless, ADP1 biotransformed 2 g furfural/l at a rate of 1 g/l/h in the stationary phase of growth. A transcriptional analysis of possible dehydrogenases involved in this biotransformation, identified that the areB and frmA genes were highly overexpressed after the exposure of ADP1 to furfural. The products of these genes are a benzyl-alcohol dehydrogenase and an alcohol dehydrogenase. CONCLUSIONS: Acinetobacter baylyi ADP1 is a candidate for the biological detoxification of furfural, a fermentation inhibitor present in lignocellulosic hydrolysates, with the possible direct involvement of the AreB and FrmA enzymes in the process.


Asunto(s)
Acinetobacter/metabolismo , Furaldehído/metabolismo , Acetatos/metabolismo , Acinetobacter/efectos de los fármacos , Acinetobacter/genética , Acinetobacter/crecimiento & desarrollo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biotransformación , Furaldehído/farmacología , Furanos/metabolismo , Furanos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
18.
Mol Pharmacol ; 98(1): 38-48, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32434851

RESUMEN

Aquaporin-1 (AQP1) dual water and ion channels enhance migration and invasion when upregulated in leading edges of certain classes of cancer cells. Work here identifies structurally related furan compounds as novel inhibitors of AQP1 ion channels. 5-Hydroxymethyl-2-furfural (5HMF), a component of natural medicinal honeys, and three structurally related compounds, 5-nitro-2-furoic acid (5NFA), 5-acetoxymethyl-2-furaldehyde (5AMF), and methyl-5-nitro-2-furoate (M5NF), were analyzed for effects on water and ion channel activities of human AQP1 channels expressed in Xenopus oocytes. Two-electrode voltage clamp showed dose-dependent block of the AQP1 ion current by 5HMF (IC50 0.43 mM), 5NFA (IC50 1.2 mM), and 5AMF (IC50 ∼3 mM) but no inhibition by M5NF. In silico docking predicted the active ligands interacted with glycine 165, located in loop D gating domains surrounding the intracellular vestibule of the tetrameric central pore. Water fluxes through separate intrasubunit pores were unaltered by the furan compounds (at concentrations up to 5 mM). Effects on cell migration, invasion, and cytoskeletal organization in vitro were tested in high-AQP1-expressing cancer lines, colon cancer (HT29) and AQP1-expressing breast cancer (MDA), and low-AQP1-expressing SW480. 5HMF, 5NFA, and 5AMF selectively impaired cell motility in the AQP1-enriched cell lines. In contrast, M5NF immobilized all the cancer lines by disrupting actin cytoskeleton. No reduction in cell viability was observed at doses that were effective in blocking motility. These results define furans as a new class of AQP1 ion channel inhibitors for basic research and potential lead compounds for development of therapeutic agents targeting aquaporin channel activity. SIGNIFICANCE STATEMENT: 5-Hydroxymethyl-2-furfural (5HMF), a component of natural medicinal honeys, blocks the ion conductance but not the water flux through human Aquaporin-1 (AQP1) channels and impairs AQP1-dependent cell migration and invasiveness in cancer cell lines. Analyses of 5HMT and structural analogs demonstrate a structure-activity relationship for furan compounds, supported by in silico docking modeling. This work identifies new low-cost pharmacological antagonists for AQP1 available to researchers internationally. Furans merit consideration as a new class of therapeutic agents for controlling cancer metastasis.


Asunto(s)
Acuaporina 1/genética , Acuaporina 1/metabolismo , Furaldehído/análogos & derivados , Furaldehído/farmacología , Neoplasias/metabolismo , Animales , Acuaporina 1/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo , Femenino , Furaldehído/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Simulación del Acoplamiento Molecular , Invasividad Neoplásica , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Xenopus laevis
19.
Br J Haematol ; 188(6): 985-993, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31889311

RESUMEN

Sickle cell trait (SCT) is the benign heterozygous carrier state for the sickle variant of the HBB gene. Most of the ~300 million people with SCT worldwide will not experience any significant complications. However, accumulating evidence finds SCT associated with increased risk for the common conditions of chronic kidney disease and venous thromboembolism, and severe but rare renal medullary carcinoma and exercise-induced rhabdomyolysis. The mechanism is uncertain, but probably involves pathological rheology of SCT blood in regions of low oxygen tension, resulting from sickle haemoglobin polymerization in SCT red cells and leading to reduced blood flow and further tissue hypoxia and damage. Here, we used an in vitro microfluidic flow system to study the oxygen-dependent rheology of SCT blood and show that 5-(hydroxymethyl)furfural, a natural breakdown product of glucose and fructose-containing foods, such as fruit juices, can reduce the effects of hypoxia on SCT blood rheology in vitro, restoring near-normal flow velocities at very low oxygen. While opinions regarding the clinical significance of the risks associated with SCT are still evolving, these results suggest that a compound present in some food may provide a potential approach for managing risks that may be associated with SCT.


Asunto(s)
Furaldehído/análogos & derivados , Oxígeno/sangre , Rasgo Drepanocítico/tratamiento farmacológico , Viscosidad Sanguínea , Furaldehído/farmacología , Furaldehído/uso terapéutico , Humanos , Reología , Rasgo Drepanocítico/sangre
20.
Biochem Biophys Res Commun ; 533(4): 651-656, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33008603

RESUMEN

Electrogenic bacteria can mediate electron transfer to conserve energy and promote growth. To examine bacterial electrogenicity, an L. mesenteroides EH-1 strain was cultured in rich media in the presence and absence of 2% glucose. After 12 h incubation, glucose triggered fermentation of L. mesenteroides EH-1 to produce >10 mmol/l acetate and elicit electricity measured by voltage changes. The electricity production was mediated by glucose fermentation since pre-treatment of L. mesenteroides EH-1 with furfural, a fermentation inhibitor, completely diminished the voltage increases. The deficiency of furfural pre-treated L. mesenteroides EH-1 in electricity production can be restored by the external addition of acetate into the bacterial culture, suggesting the function of acetate as an electron donor. Oral administration of HFD-fed mice with L. mesenteroides EH-1 in the presence or absence of glucose significantly attenuated the high level of pro-inflammatory IL-6 cytokine in blood. Bacterial electricity can be elicited by fermentation. Supplementation of fermenting and electrogenic L. mesenteroides EH-1 may provide a novel approach for the reduction of pro-inflammatory IL-6 cytokine that increased in chronic inflammation, autoimmune diseases, cancers, and infections.


Asunto(s)
Electricidad , Fermentación/fisiología , Microbiología de Alimentos/métodos , Glucosa/metabolismo , Interleucina-6/sangre , Leuconostoc mesenteroides/metabolismo , Leuconostoc mesenteroides/fisiología , Acetatos/farmacología , Administración Oral , Animales , Dieta Alta en Grasa , Femenino , Furaldehído/farmacología , Leuconostoc mesenteroides/efectos de los fármacos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA