Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.161
Filtrar
Más filtros

Intervalo de año de publicación
1.
Genes Dev ; 35(9-10): 619-634, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888561

RESUMEN

Development of the ovary or testis is required to establish reproductive competence. Gonad development relies on key cell fate decisions that occur early in embryonic development and are actively maintained. During gonad development, both germ cells and somatic cells proliferate extensively, a process facilitated by cell cycle regulation. This review focuses on the Cip/Kip family of cyclin-dependent kinase inhibitors (CKIs) in mouse gonad development. We particularly highlight recent single-cell RNA sequencing studies that show the heterogeneity of cyclin-dependent kinase inhibitors. This diversity highlights new roles for cell cycle inhibitors in controlling and maintaining female fertility.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Fertilidad/genética , Gónadas/crecimiento & desarrollo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Gónadas/metabolismo , Ratones , Procesos de Determinación del Sexo/genética , Análisis de la Célula Individual
2.
Development ; 151(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39382030

RESUMEN

The morphology of cells in vivo can arise from a variety of mechanisms. In the Caenorhabditis elegans hermaphrodite gonad, the distal tip cell (DTC) elaborates into a complex plexus over a relatively short developmental time period, but the mechanisms underlying this change in cell morphology are not well defined. We correlated the time of DTC elaboration with the L4-to-adult molt, but ruled out a relevant heterochronic pathway as a cue for DTC elaboration. Instead, we found that the timing of gonad elongation and aspects of underlying germline flux influence DTC elaboration. We propose a 'hitch and tow' aspect of organ-level dynamics that contributes to cellular morphogenesis, whereby germline flux drags the flexible DTC cell cortex away from its stationary cell body. More broadly, we speculate that this mechanism may contribute to cell shape changes in other contexts with implications for development and disease.


Asunto(s)
Caenorhabditis elegans , Gónadas , Morfogénesis , Animales , Caenorhabditis elegans/embriología , Gónadas/citología , Gónadas/crecimiento & desarrollo , Células Germinativas/citología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Forma de la Célula , Organismos Hermafroditas/fisiología
3.
Annu Rev Genet ; 52: 131-157, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30476449

RESUMEN

PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.


Asunto(s)
Proteínas Argonautas/genética , Elementos Transponibles de ADN/genética , ARN Interferente Pequeño/genética , Transcripción Genética , Animales , Drosophila melanogaster/genética , Silenciador del Gen , Gónadas/crecimiento & desarrollo , ARN Interferente Pequeño/biosíntesis
4.
J Evol Biol ; 37(7): 779-794, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38699972

RESUMEN

Molluscs have undergone many transitions between separate sexes and hermaphroditism, which is of interest in studying the evolution of sex determination and differentiation. Here, we combined multi-locus genotypes obtained from restriction site-associated DNA (RAD) sequencing with anatomical observations of the gonads of three deep-sea hydrothermal vent gastropods of the genus Alviniconcha living in the southwest Pacific. We found that all three species (Alviniconcha boucheti, Alviniconcha strummeri, and Alviniconcha kojimai) share the same male-heterogametic XY sex-determination system but that the gonads of XX A. kojimai individuals are invaded by a variable proportion of male reproductive tissue. The identification of Y-specific RAD loci (found only in A. boucheti) and the phylogenetic analysis of three sex-linked loci shared by all species suggested that X-Y recombination has evolved differently within each species. This situation of three species showing variation in gonadal development around a common sex-determination system provides new insights into the reproductive mode of poorly known deep-sea species and opens up an opportunity to study the evolution of recombination suppression on sex chromosomes and its association with mixed or transitory sexual systems.


Asunto(s)
Gastrópodos , Respiraderos Hidrotermales , Filogenia , Procesos de Determinación del Sexo , Animales , Masculino , Gastrópodos/genética , Gastrópodos/anatomía & histología , Gastrópodos/clasificación , Femenino , Trastornos del Desarrollo Sexual/genética , Gónadas/anatomía & histología , Gónadas/crecimiento & desarrollo
5.
Gen Comp Endocrinol ; 353: 114512, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582176

RESUMEN

Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17ß (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.


Asunto(s)
Aromatasa , Encéfalo , Hipófisis , Diferenciación Sexual , Animales , Diferenciación Sexual/genética , Diferenciación Sexual/fisiología , Masculino , Aromatasa/genética , Aromatasa/metabolismo , Femenino , Encéfalo/metabolismo , Hipófisis/metabolismo , Anguilla/genética , Anguilla/metabolismo , Anguilla/crecimiento & desarrollo , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Testículo/metabolismo , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38878879

RESUMEN

Gonadotropin-releasing hormone (GnRH)-like peptides are multifunctional neuropeptides involved in cardiac control, early ontogenesis, and reproduction in cephalopods. However, the precise role of GnRH-like peptides in embryonic development and juvenile growth in cephalopods remains unknown. In this study, we showed that GnRH-like peptides are involved in the embryonic development of kisslip cuttlefish (Sepia lycidas). We confirmed that higher water temperatures induced early hatching. Simultaneously, we found that brain GnRH-like peptide gene expression gradually increased with increasing hatching speed. However, the rise in water temperature within a suitable range had no effect on the juvenile sex ratio or early gonadal development. Our results indicate that GnRH-like peptides may play an accelerating role in embryonic development; however, they are not involved in sex determination or early gonadal development in kisslip cuttlefish.


Asunto(s)
Desarrollo Embrionario , Hormona Liberadora de Gonadotropina , Temperatura , Animales , Hormona Liberadora de Gonadotropina/metabolismo , Femenino , Masculino , Regulación del Desarrollo de la Expresión Génica , Agua/metabolismo , Sepia/metabolismo , Sepia/embriología , Sepia/crecimiento & desarrollo , Embrión no Mamífero/metabolismo , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38797241

RESUMEN

Crassostrea angulata, a major shellfish cultivated in Southern China, has experienced a notable surge in commercial value in recent years. Understanding the molecular mechanisms governing their reproductive processes holds significant implications for advancing aquaculture practices. In this study, we cloned the orphan nuclear receptor gene, Fushi Tarazu transcription factor 1 (FTZ-F1), of C. angulata and investigated its functional role in the gonadal development. The full-length cDNA of FTZ-F1 spans 2357 bp and encodes a protein sequence of 530 amino acids. Notably, the amino acid sequence of FTZ-F1 in C. angulata shares remarkable similarity with its homologues in other species, particularly in the DNA-binding region (>90%) and ligand-binding region (>44%). In C. angulata, the highest expression level of FTZ-F1 was observed in the ovary, exhibiting more than a 200-fold increase during the maturation stage compared to the initiation stage (P < 0.001). Specifically, FTZ-F1 was mainly expressed in the follicular cells surrounding the oocytes of C. angulata. Upon inhibiting FTZ-F1 gene expression in C. angulata through RNA interference (RNAi), a substantial reduction in the expression of genes involved in the synthesis of sex steroids in the gonads, including 3ß-HSD, Cyp17, and follistatin, was observed. In addition, estradiol (E2) and testosterone (T) levels also showed a decrease upon FTZ-F1 silencing, resulting in a delayed gonadal development. These results indicate that FTZ-F1 acts as a steroidogenic factor, participating in the synthesis and regulation of steroid hormones and thus playing an important role in the reproductive and endocrine systems within oysters.


Asunto(s)
Crassostrea , Gónadas , Factores de Transcripción , Animales , Crassostrea/genética , Crassostrea/crecimiento & desarrollo , Crassostrea/metabolismo , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Femenino , Secuencia de Aminoácidos , Regulación del Desarrollo de la Expresión Génica , Filogenia , Clonación Molecular , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/biosíntesis , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Esteroides/metabolismo , Esteroides/biosíntesis
8.
Artículo en Inglés | MEDLINE | ID: mdl-39089445

RESUMEN

Temperature is a preeminent factor in the regulation of fish reproduction and hinders gonadal development beyond a specific threshold. To comprehend the molecular mechanism responsible for reproductive suppression at different temperature, expression of the genes encoding kisspeptin (kiss2), gonadotropin-releasing hormone (gnrh1) and their receptors (gpr54, gnrh1r) in the brain, and the gonadotropin (GTH) subunits (fshb and lhb) in the pituitary were studied in juvenile Nile tilapia (Oreochromis niloticus) along with gonadal histology. Fish were acclimatized to three distinct temperatures, including 31 °C, 34 °C and 37 °C for 14 days. The mRNA levels of kiss2, gpr54, gnrh1, and gnrh1r were significantly decreased at 37 °C compared to 31 °C and 34 °C in the both sexes. In parallel, the expression level of fshb in the both sexes and lhb in the female were significantly lower at 37 °C in the pituitary. Histologically, the gonads of both sexes had normal growth of gametes at control temperature (31 °C), whereas the spermatogenesis and oocyte maturation were slowed down and atretic oocytes were found in the ovary at 37 °C acclimation temperature. Taken together, the results imply that elevated temperature beyond the specific threshold may have a negative impact on reproduction by suppressing the gene expressions of kisspeptin/GnRH1/GTH system and eventually restrains normal growth and maturation of gametes in the both sexes of Nile tilapia.


Asunto(s)
Cíclidos , Hormona Liberadora de Gonadotropina , Gónadas , Kisspeptinas , Animales , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Cíclidos/genética , Cíclidos/crecimiento & desarrollo , Cíclidos/metabolismo , Femenino , Masculino , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Temperatura , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Hipófisis/metabolismo , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Gonadotropinas/metabolismo , Regulación del Desarrollo de la Expresión Génica
9.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809688

RESUMEN

Aspongopus chinensis Dallas, 1851 (Hemiptera: Dinidoridae), an edible and medicinal insect, usually found in China and Southeast Asia, offers substantial potential for various applications. The reproductive cycle of this particular insect occurs annually because of reproductive diapause, leading to inadequate utilization of available natural resources. Despite its considerable ecological importance, the precise mechanisms underlying diapause in A. chinensis are not yet well understood. In this study, we conducted an analysis of comparing the microRNA (miRNA) regulation in the diapause and non-diapause gonads of A. chinensis and identified 303 differentially expressed miRNAs, among which, compared with the diapause group, 76 miRNAs were upregulated and 227 miRNAs downregulated. The results, regarding the Enrichment analysis of miRNA-targeted genes, showed their involvement in several essential biological processes, such as lipid anabolism, energy metabolism, and gonadal growth. Interestingly, we observed that the ATP-binding cassette pathway is the only enriched pathway, demonstrating the capability of these targeted miRNAs to regulate the reproductive diapause of A. chinensis through the above essential pathway. The current study provided the role of gonadal miRNA expression in the control of reproductive diapause in A. chinensis, the specific regulatory mechanism behind this event remained unknown and needed more investigation.


Asunto(s)
Diapausa de Insecto , Hemípteros , MicroARNs , Animales , MicroARNs/metabolismo , MicroARNs/genética , Hemípteros/genética , Hemípteros/metabolismo , Hemípteros/crecimiento & desarrollo , Hemípteros/fisiología , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Femenino , Masculino , Reproducción
10.
J Fish Biol ; 105(4): 1178-1188, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39031973

RESUMEN

Forage species with high biomass, such as anchovies and sardines, play a key role in pelagic ecosystems and make up a significant proportion of the world's capture fisheries production. In recent years, condition indices have gained interest as significant indicators for assessing the effects of environmental and human pressures on these species and the quality of their habitats. In the present study, we examined, for the first time in the North Aegean Sea (eastern Mediterranean), the year-round variation in somatic and gonadal condition, energy density, and percentage of lipid content of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus). Energy density was measured with bomb calorimetry and percentage lipid content with the fatmeter, a portable electronic device. Finally, the monthly changes in gonadal and energetic condition were examined in relation to the annual cycle of temperature and mesozooplankton biomass, simulated by the implementation of a coupled hydrodynamic-biogeochemical model (POM-ERSEM). There was a strong relationship between fish energy density (kJ g-1) and percentage dry weight. Furthermore, the mean monthly energy density and fatmeter measurements were strongly correlated, especially in sardine. Overall, the monthly changes in energetic condition were indicative of the species' different strategies for energy acquisition and allocation to reproduction (capital vs. income breeding): sardine exhibited low energy density and percentage lipid content during the winter spawning period (November-March) and markedly higher energetic condition from spring to autumn (April-October). Anchovy spawning period, as inferred from gonadal condition, lasted from April to September, i.e., during the warm period of the year but its energy density and percentage lipid content did not exhibit any seasonal changes and were markedly lower than in sardine from April to October. Finally, the simulated mesozooplankton biomass was higher from January to July, which corresponded to the second half of the spawning season for sardine, but first half of the spawning season for anchovy.


Asunto(s)
Biomasa , Metabolismo Energético , Peces , Reproducción , Animales , Peces/fisiología , Mar Mediterráneo , Gónadas/crecimiento & desarrollo , Estaciones del Año , Temperatura
11.
J Fish Biol ; 104(5): 1433-1444, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38350664

RESUMEN

Gonad development stages (GDS) are a critical tool that can be easily applied in fisheries to visually discriminate mature from immature organisms and assess their reproductive condition. This study proposes a morphochromatic scale to define gonad development stages for razor surgeonfish (Prionurus laticlavius) based on morphological and structural assessments of the gonad, histologically validated using multivariate dummy matrices modeled through multiple linear regression analyses. Gonads of 271 specimens were photographed prior to preservation to describe their shape, size, color, and turgor for morphochromatic analysis. Later, gonads were processed using standard histological methods. An oocyte growth scale was designed based on oocyte diameter and follicular wall thickness for each stage. In addition, five morphochromatic gonad development stages were histologically validated: immature, developing, spawning capable, regressing, and regenerating. Morphochromatic variations were observed in the last three stages in both sexes. Results show that gonad morphology and structure of P. laticlavius are similar to those of other acanthurids, albeit with some asymmetric and morphological differences, as well as gonad morphochromatic in both sexes. These findings confirm that maturation is species-specific. Also, although not a critical character, gonad colouration was found to play a major role in distinguishing between gonad development stages along with shape, size, vascularity (females), and folds (males). Therefore, gonad colouration should not be entirely overlooked because doing so may lead to errors in determining sexual maturity stages.


Asunto(s)
Gónadas , Animales , Masculino , Femenino , Gónadas/crecimiento & desarrollo , Gónadas/anatomía & histología , Maduración Sexual , Ovario/crecimiento & desarrollo , Ovario/anatomía & histología
12.
J Fish Biol ; 104(6): 1960-1971, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553987

RESUMEN

The study investigated if gonad maturation in triploid brown trout, Salmo trutta, was entirely suppressed or only delayed, and if triploids could interbreed with diploid counterparts. Ten percent of the total number of 3-year-old triploid S. trutta, 15% of 4-year-old fish, and 17% of 5-year-old fish produced semen. Three and 4 years old triploid fish did not produce eggs, but 15% of the 5-year-old fish did so. The quantity and sperm motility of triploid semen did not differ from diploids, but the sperm concentration was significantly lower. When diploid eggs were fertilized with triploid semen (3n × 2n crosses), the percentage of eyed stage embryos, of hatched larvae, and of normal-shaped larvae did not differ from the diploid controls. Circa 90% of 3n × 2n crosses had a ploidy level of 2.4n. In the remaining percentage of 3n × 2n crosses, the ploidy level was ≥2n and <2.4n. In sperm competition experiments where diploid eggs were fertilized with a mixture of diploid and triploid semen, 52% of the originating larvae had a ploidy level of 2n, 43% of 2.4n, and 5% of the fish were not exactly classified. From the start of feeding to an age of 248 days, the mortality rate of 3n × 2n interploid crosses and of 2n × 2n controls was similar. The growth of interploid crosses was significantly higher than that of controls. In triploid mature females, the egg mass per kilogram of body weight was significantly lower than in diploids. The mass of the non-hardened eggs and the percentile weight increase during hardening did not differ from diploid eggs. When triploid eggs were fertilized with diploid semen (2n × 3n crosses), the development rate to normal hatched larvae was less than 10%. All originating larvae had a ploidy level of 3n. From the start of feeding to an age of 248 days, 2n × 3n crosses had a higher mortality rate (15%) than diploid controls (<5%). Growth of this type of interploid crosses was reduced in comparison to controls. Therefore, triploids introduced into natural waters for recreational fisheries or escaping from farms may interbreed with diploid counterparts. This not only alters the genotypes of local populations but also changes the ploidy levels.


Asunto(s)
Diploidia , Triploidía , Trucha , Animales , Trucha/genética , Trucha/crecimiento & desarrollo , Trucha/fisiología , Masculino , Femenino , Gónadas/crecimiento & desarrollo , Motilidad Espermática , Espermatozoides/fisiología
13.
J Fish Biol ; 104(6): 2022-2031, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566266

RESUMEN

This study aimed to understand the reproductive biology and migrative behavior of the largehead hairtail Trichiurus lepturus in a tropical area, specifically off Pernambuco coast, northeastern Brazil. Commercial catches from fish corrals provided samples for analysis, including measurements, weight recording, and examination of gonads to determine its maturation stage. Reproductive analyses were performed, such as sex ratio, gonado-somatic index, and sizes at first maturity. There was a slightly higher proportion of females among the 141 largehead hairtail specimens analysed. No significant differences were observed in length distributions between males and females. However, during the winter, significant differences were observed in length distributions for grouped sexes. The species exhibited a seasonal migratory pattern, with a higher presence on the continental shelf during the winter. The study identified strategic allocation of energy in feeding activities and temporal spacing of reproductive cycles, as indicated by the sex ratio and abundance of individuals during different seasons. Fish corrals probably do not harm largehead hairtail population off the southwestern Atlantic tropical coast, with minimal capture of individuals below the size of first maturity. The insights of the study into reproductive and migration patterns contribute to future assessments and management strategies for this species and corral fisheries.


Asunto(s)
Migración Animal , Reproducción , Estaciones del Año , Razón de Masculinidad , Animales , Masculino , Femenino , Brasil , Perciformes/fisiología , Perciformes/crecimiento & desarrollo , Clima Tropical , Tamaño Corporal , Maduración Sexual , Gónadas/crecimiento & desarrollo , Gónadas/fisiología
14.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000192

RESUMEN

In this study, we used full-sib families to investigate the association between growth and gonad development during first sexual maturation of M. nipponense. We found that male GSI was significantly negatively correlated with growth traits (p < 0.01) and there were no significant correlations between female GSI (Gonadosomatic index) and growth traits (p > 0.05). HSI (Hepatopancreas index) in both males and females showed no significant correlations with growth traits (p > 0.05). We furthermore investigated the association between the specific allele of Mn-CTS L1 polymorphism and gonad development and growth traits. In total, 35 mutation loci were screened and 16 high-quality single-nucleotide polymorphisms (SNPs) loci were obtained after validation. Four and two SNPs proved to be strongly associated with all growth traits in female and male M. nipponense separately, among which A+118T might be a candidate SNP positively associated with large growth traits. Two and one SNPs were screened, respectively, in males and females to associate with GSI, while three SNPs were detected to associate with female HSI, among which A+1379C may be applied as a potential molecular marker for gene-assisted selection to improve both reproduction speed and growth traits in M. nipponense.


Asunto(s)
Gónadas , Palaemonidae , Polimorfismo de Nucleótido Simple , Maduración Sexual , Masculino , Femenino , Animales , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Maduración Sexual/genética , Palaemonidae/genética , Palaemonidae/crecimiento & desarrollo , Alelos , Fenotipo
15.
J Fish Biol ; 105(1): 186-200, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684177

RESUMEN

The objective of this study is to provide information on the reproductive biology of tomato hind grouper, Cephalopholis sonnerati (Valenciennes, 1828) for conservation and management purposes. Fish caught by artisanal fishermen from September 2019 to August 2021 were analysed. A total of 280 females, 31 males, and 4 transitional and 178 sex-undetermined fish were analysed. The female to male sex proportion was 9:1, and the fish reached a maximum total body length of 38.5 and 54.5 cm for females and males, respectively. The following microscopic stages were identified: immature, developing, ripe, running ripe/releasing, and spent in both males and females. Several asynchronous development patterns were observed in the studied gonads, including multiple oocyte stages and early and advanced stages of sexual transition. High gonadosomatic index (GSI) for both males and females was recorded in March, May, and November. Running ripe and releasing stages in females were identified in the months from March to June, which indicates the spawning season. The absolute and relative fecundity of the species ranged from 162,723 ± 207,267 and 239 ± 285, respectively. An exponential relationship was found between fecundity and total body length (TL), fecundity and total body weight (TW), and fecundity and gonad weight (GW).


Asunto(s)
Reproducción , Animales , Femenino , Masculino , India , Fertilidad , Lubina/fisiología , Lubina/crecimiento & desarrollo , Gónadas/crecimiento & desarrollo , Gónadas/fisiología , Estaciones del Año , Razón de Masculinidad , Perciformes/fisiología
16.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891762

RESUMEN

The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.


Asunto(s)
Bivalvos , Espermatogénesis , Testículo , Factores de Transcripción , Animales , Espermatogénesis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Bivalvos/genética , Bivalvos/metabolismo , Bivalvos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Clonación Molecular , Filogenia , Secuencia de Aminoácidos
17.
Dev Biol ; 470: 10-20, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33160939

RESUMEN

VAMP/synaptobrevin-associated protein B (VAP-B) is a type II ER membrane protein, but its N-terminal MSP domain (MSPd) can be cleaved and secreted. Mutations preventing the cleavage and secretion of MSPd have been implicated in cases of human neurodegenerative diseases. The site of VAP cleavage and the tissues capable in releasing the processed MSPd are not understood. In this study, we analyze the C. elegans VAP-B homolog, VPR-1, for its processing and secretion from the intestine. We show that intestine-specific expression of an N-terminally FLAG-tagged VPR-1 rescues underdeveloped gonad and sterility defects in vpr-1 null hermaphrodites. Immunofluorescence studies reveal that the tagged intestinal expressed VPR-1 is present at the distal gonad. Mass spectrometry analysis of a smaller product of the N-terminally tagged VPR-1 identifies a specific cleavage site at Leu156. Mutation of the leucine results in loss of gonadal MSPd signal and reduced activity of the mutant VPR-1. Thus, we report for the first time the cleavage site of VPR-1 and provide direct evidence that intestinally expressed VPR-1 can be released and signal in the distal gonad. These results establish the foundation for further exploration of VAP cleavage, MSPd secretion, and non-cell-autonomous signaling in development and diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas del Helminto/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplásmico/metabolismo , Genes de Helminto , Gónadas/química , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Proteínas del Helminto/química , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Organismos Hermafroditas/fisiología , Infertilidad , Intestinos/citología , Intestinos/fisiología , Leucina/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Fenotipo , Mutación Puntual , Dominios Proteicos , Procesamiento Proteico-Postraduccional
18.
Hum Mol Genet ; 29(13): 2148-2161, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32452519

RESUMEN

In mice, male sex determination depends on FGF9 signalling via FGFR2c in the bipotential gonads to maintain the expression of the key testis gene SOX9. In humans, however, while FGFR2 mutations have been linked to 46,XY disorders of sex development (DSD), the role of FGF9 is unresolved. The only reported pathogenic mutations in human FGF9, FGF9S99N and FGF9R62G, are dominant and result in craniosynostosis (fusion of cranial sutures) or multiple synostoses (fusion of limb joints). Whether these synostosis-causing FGF9 mutations impact upon gonadal development and DSD etiology has not been explored. We therefore examined embryonic gonads in the well-characterized Fgf9 missense mouse mutants, Fgf9S99N and Fgf9N143T, which phenocopy the skeletal defects of FGF9S99N and FGF9R62G variants, respectively. XY Fgf9S99N/S99N and XY Fgf9N143T/N143T fetal mouse gonads showed severely disorganized testis cords and partial XY sex reversal at 12.5 days post coitum (dpc), suggesting loss of FGF9 function. By 15.5 dpc, testis development in both mutants had partly recovered. Mitotic analysis in vivo and in vitro suggested that the testicular phenotypes in these mutants arise in part through reduced proliferation of the gonadal supporting cells. These data raise the possibility that human FGF9 mutations causative for dominant skeletal conditions can also lead to loss of FGF9 function in the developing testis, at least in mice. Our data suggest that, in humans, testis development is largely tolerant of deleterious FGF9 mutations which lead to skeletal defects, thus offering an explanation as to why XY DSDs are rare in patients with pathogenic FGF9 variants.


Asunto(s)
Factor 9 de Crecimiento de Fibroblastos/genética , Trastornos Ovotesticulares del Desarrollo Sexual/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Sinostosis/genética , Animales , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Gónadas/crecimiento & desarrollo , Gónadas/patología , Humanos , Masculino , Ratones , Mutación Missense/genética , Trastornos Ovotesticulares del Desarrollo Sexual/patología , Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/genética , Desarrollo Sexual/genética
19.
Biol Reprod ; 107(1): 269-274, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35244683

RESUMEN

Wilms' tumor 1 (Wt1) encodes a zinc finger nuclear transcription factor which is mutated in 15-20% of Wilms' tumor, a pediatric kidney tumor. Wt1 has been found to be involved in the development of many organs. In gonads, Wt1 is expressed in genital ridge somatic cells before sex determination, and its expression is maintained in Sertoli cells and granulosa cells after sex determination. It has been demonstrated that Wt1 is required for the survival of the genital ridge cells. Homozygous mutation of Wt1 causes gonad agenesis. Recent studies find that Wt1 plays important roles in lineage specification and maintenance of gonad somatic cells. In this review, we will summarize the recent research works about Wt1 in gonadal somatic cell differentiation.


Asunto(s)
Diferenciación Celular , Gónadas , Proteínas WT1 , Animales , Femenino , Genes del Tumor de Wilms , Gónadas/crecimiento & desarrollo , Humanos , Masculino , Ratones , Proteínas WT1/genética , Proteínas WT1/fisiología
20.
Genomics ; 113(1 Pt 2): 967-978, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33144216

RESUMEN

The sea cucumber Apostichopus japonicus is dioecious, with seasonal reproduction. G protein-coupled receptor (GPCR)-mediated signaling systems might play critical roles in the reproductive control of A. japonicus. Here, we classified GPCR from the genome in silico and used transcriptomic analyses to further mine those that function in gonadal-development control. Totally, 487 GPCRs were predicted from A. japonicus, and 183 of these were further annotated to molecular pathways. Transcriptome analysis revealed 327 GPCRs expressed in gonads, and these were classified into four families and 19 subfamilies. Three pathways were apparently associated with reproduction, including neuroactive ligand-receptor interaction, the mTOR and Wnt signaling pathways. Seven and eight ovary- and testis-specific GPCRs were filtered, and the gene expression profiles were determined in multiple tissues and gonads at different developmental stages by qPCR. These results provide new insights into the discovery of GPCR-mediated signaling control in sea cucumber reproduction, especially in gonadal development control.


Asunto(s)
Gónadas/metabolismo , Receptores Acoplados a Proteínas G/genética , Stichopus/genética , Transcriptoma , Animales , Gónadas/crecimiento & desarrollo , Receptores Acoplados a Proteínas G/metabolismo , Stichopus/crecimiento & desarrollo , Stichopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA