Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Ultrastruct Pathol ; 48(5): 323-337, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38916264

RESUMEN

Glioblastoma tumors are the most aggressive primary brain tumors that develop resistance to temozolomide (TMZ). Eribulin (ERB) exhibits a unique mechanism of action by inhibiting microtubule dynamics during the G2/M cell cycle phase. We utilized the T98G human glioma cell line to investigate the effects of ERB and TMZ, both individually and in combination. The experimental groups were established as follows: control, E5 (5 nM ERB), T0.75 (0.75 mM TMZ), T1 (1.0 mM TMZ), and combination groups (E5+T0.75 and E5+T1). All groups showed a significant decrease in cell proliferation. Apoptotic markers revealed a time-dependent increase in annexin-V expression, across all treatment groups at the 48-hour time point. Caspase-3, exhibited an increase in the combination treatment groups at the 48-hour mark. Transmission electron microscopy (TEM) revealed normal ultrastructural features in the glioma cells of the control group. However, treatments induced ultrastructural changes within the spheroid glioblastoma model, particularly in the combination groups. These changes included a dose-dependent increase in autophagic vacuoles and apoptotic morphology of the cells. In conclusion, the similarity in the mechanism of action between ERB and TMZ suggests the potential for synergistic effects when combined. Our results highlight that this combination induced severe damage and autophagy in glioma spheroids after 48 hours.


Asunto(s)
Apoptosis , Neoplasias Encefálicas , Proliferación Celular , Furanos , Glioblastoma , Cetonas , Temozolomida , Humanos , Temozolomida/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/ultraestructura , Furanos/farmacología , Cetonas/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/ultraestructura , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Microscopía Electrónica de Transmisión , Autofagia/efectos de los fármacos , Policétidos Poliéteres
2.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669859

RESUMEN

Titanium dioxide and zinc oxide are two of the most widely used nanomaterials. We assessed the effects of noncytotoxic doses of both nanomaterials on T98G human glioblastoma cells by omic approaches. Surprisingly, no effects on the transcriptome of T98G cells was detected after exposure to 5 µg/mL of zinc oxide nanoparticles during 72 h. Conversely, the transcriptome of the cells exposed to 20 µg/mL of titanium dioxide nanoparticles during 72 h revealed alterations in lots of biological processes and molecular pathways. Alterations to the transcriptome suggests that exposure to titanium dioxide nanoparticles might, potentially, compromise the integrity of the blood brain barrier integrity and cause neuroinflammation. The latter issue was further confirmed phenotypically with a proteomic analysis and by recording the release of interleukin 8. Titanium dioxide also caused autophagy, which was demonstrated through the increase in the expression of the autophagy-related 3 and microtubule associated protein 1 light chain 3 alpha genes. The proteomic analysis revealed that titanium dioxide nanoparticles might have anticancerigen properties by downregulating genes involved in the detoxication of anthracyclines. A risk assessment resulting from titanium dioxide exposure, focusing on the central nervous system as a potential target of toxicity, is necessary.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Nanopartículas/toxicidad , Titanio/toxicidad , Transcriptoma/genética , Óxido de Zinc/toxicidad , Autofagia/efectos de los fármacos , Autofagia/genética , Neoplasias Encefálicas/ultraestructura , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Glioblastoma/ultraestructura , Humanos , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Proteómica , Transcriptoma/efectos de los fármacos , Agua/química
3.
J Cell Mol Med ; 24(6): 3724-3738, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32065471

RESUMEN

In solid tumours, elevated interstitial fluid pressure (osmotic and hydrostatic pressure) is a barrier to drug delivery and correlates with poor prognosis. Glioblastoma (GBM) further experience compressive force when growing within a space limited by the skull. Caveolae are proposed to play mechanosensing roles, and caveola-forming proteins are overexpressed in GBM. We asked whether caveolae mediate the GBM response to osmotic pressure. We evaluated in vitro the influence of spontaneous or experimental down-regulation of caveola-forming proteins (caveolin-1, CAVIN1) on the proteolytic profile and invasiveness of GBM cells in response to osmotic pressure. In response to osmotic pressure, GBM cell lines expressing caveola-forming proteins up-regulated plasminogen activator (uPA) and/or matrix metalloproteinases (MMPs), some EMT markers and increased their in vitro invasion potential. Down-regulation of caveola-forming proteins impaired this response and prevented hyperosmolarity-induced mRNA expression of the water channel aquaporin 1. CRISPR ablation of caveola-forming proteins further lowered expression of matrix proteases and EMT markers in response to hydrostatic pressure, as a model of mechanical force. GBM respond to pressure by increasing matrix-degrading enzyme production, mesenchymal phenotype and invasion. Caveola-forming proteins mediate, at least in part, the pro-invasive response of GBM to pressure. This may represent a novel target in GBM treatment.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Caveolas/metabolismo , Caveolina 1/metabolismo , Glioblastoma/metabolismo , Presión Hidrostática , Ósmosis , Acuaporina 1/genética , Acuaporina 1/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/ultraestructura , Caveolas/ultraestructura , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Glioblastoma/ultraestructura , Humanos , Invasividad Neoplásica
4.
J Cell Mol Med ; 24(5): 2847-2856, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31778016

RESUMEN

Proteolipid protein 2 (PLP2) is an integral ion channel membrane protein of the endoplasmic reticulum. The protein has been shown to be highly expressed in many cancer types, but its importance in glioma progression is poorly understood. Using publicly available datasets (Rembrandt, TCGA and CGGA), we found that the expression of PLP2 was significantly higher in high-grade gliomas than in low-grade gliomas. We confirmed these results at the protein level through IHC staining of high-grade (n = 56) and low-grade glioma biopsies (n = 16). Kaplan-Meier analysis demonstrated that increased PLP2 expression was associated with poorer patient survival. In functional experiments, siRNA and shRNA PLP2 knockdown induced ER stress and increased apoptosis and autophagy in U87 and U251 glioma cell lines. Inhibition of autophagy with chloroquine augmented apoptotic cell death in U87- and U251-siPLP2 cells. Finally, intracranial xenografts derived from U87- and U251-shPLP2 cells revealed that loss of PLP2 reduced glioma growth in vivo. Our results therefore indicate that increased PLP2 expression promotes GBM growth and that PLP2 represents a potential future therapeutic target.


Asunto(s)
Apoptosis/genética , Autofagia/genética , Neoplasias Encefálicas/genética , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Proteínas con Dominio MARVEL/genética , Proteolípidos/genética , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/ultraestructura , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Técnicas de Silenciamiento del Gen , Glioblastoma/ultraestructura , Humanos , Proteínas con Dominio MARVEL/metabolismo , Masculino , Ratones , Pronóstico , Proteolípidos/metabolismo , Factor de Transcripción CHOP/metabolismo
5.
Cell Commun Signal ; 18(1): 21, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32033611

RESUMEN

BACKGROUND: Glioblastoma multiforme is an aggressive primary brain tumor that is characterized by local invasive growth and resistance to therapy. The role of the microenvironment in glioblastoma invasiveness remains unclear. While carcinomas release CD147, a protein that signals for increased matrix metalloproteinase (MMP) release by fibroblasts, glioblastoma does not have a significant fibroblast component. We hypothesized that astrocytes release MMPs in response to CD147 contained in glioblastoma-derived extracellular vesicles (EVs) and that ionizing radiation, part of the standard treatment for glioblastoma, enhances this release. METHODS: Astrocytes were incubated with EVs released by irradiated or non-irradiated human glioblastoma cells wild-type, knockdown, or knockout for CD147. Levels of CD147 in glioblastoma EVs and MMPs secreted by astrocytes were quantified. Levels of proteins in the mitogen activated protein kinase (MAPK) pathway, which can be regulated by CD147, were measured in astrocytes incubated with EVs from glioblastoma cells wild-type or knockdown for CD147. Immunofluorescence was performed on the glioblastoma cells to identify changes in CD147 localization in response to irradiation, and to confirm uptake of the EVs by astrocytes. RESULTS: Immunoblotting and mass spectrometry analyses showed that CD147 levels in EVs were transiently increased when the EVs were from glioblastoma cells that were irradiated with γ rays. Specifically, the highly-glycosylated 45 kDa form of CD147 was preferentially present in the EVs relative to the cells themselves. Immunofluorescence demonstrated that astrocytes incorporate glioblastoma EVs and subsequently increase their secretion of active MMP9. The increase was greater if the EVs were from irradiated glioblastoma cells. Testing MAPK pathway activation, which also regulates MMP expression, showed that JNK signaling, but not ERK1/2 or p38, was increased in astrocytes incubated with EVs from irradiated compared to non-irradiated glioblastoma cells. Knockout of CD147 in glioblastoma cells blocked the increased JNK signaling and the rise in secreted active MMP9 levels. CONCLUSIONS: The results support a tumor microenvironment-mediated role of CD147 in glioblastoma invasiveness, and reveal a prominent role for ionizing radiation in enhancing the effect. They provide an improved understanding of glioblastoma intercellular signaling in the context of radiotherapy, and identify pathways that can be targeted to reduce tumor invasiveness. Video abstract.


Asunto(s)
Astrocitos/metabolismo , Basigina/metabolismo , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Radiación Ionizante , Astrocitos/patología , Astrocitos/ultraestructura , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/ultraestructura , Línea Celular Tumoral , Vesículas Extracelulares/efectos de la radiación , Vesículas Extracelulares/ultraestructura , Glioblastoma/patología , Glioblastoma/ultraestructura , Humanos , Invasividad Neoplásica , Proteómica , Transducción de Señal , Regulación hacia Arriba
6.
Med Sci Monit ; 26: e925754, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33077704

RESUMEN

BACKGROUND With infiltration, high-grade glioma easily causes the boundary between tumor tissue and adjacent tissue to become unclear and results in tumor recurrence at or near the resection margin according to the incomplete surgical resection. Fourier transform infrared spectroscopy (FTIR) technique has been demonstrated to be a useful tool that yields a molecular fingerprint and provides rapid, nondestructive, high-throughput and clinically relevant diagnostic information. MATERIAL AND METHODS FTIR was used to investigate the morphological and biochemical properties of human astrocytes (HA), microglia (HM1900), glioma cells (U87), and glioblastoma cells (BT325) cultured in vitro to simulate the infiltration area, with the use of multi-peak fitting and principal component analysis (PCA) of amide I of FTIR spectra and the use of hierarchical cluster analysis (HCA). RESULTS We found that the secondary structures of the 4 types of cells were significantly different. The contents of a-helix structure in glial cells was significantly higher than in the glioma cells, but the levels of ß-sheet, ß-turn, and random coil structures were lower. The 4 types of cells could be clearly separated with 85% for PC1 and 12.2% for PC2. CONCLUSIONS FTIR can be used to distinguish between human astrocytes, microglia, glioma, and glioblastoma cells in vitro. The protein secondary structure can be used as an indicator to distinguish tumor cells from glial cells. Further tissue-based and in vivo studies are needed to determine whether FTIR can identify cerebral glioma.


Asunto(s)
Astrocitos/ultraestructura , Glioblastoma/ultraestructura , Microglía/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Astrocitos/citología , Línea Celular Tumoral , Glioblastoma/patología , Humanos , Microglía/citología
7.
J Cell Mol Med ; 23(11): 7859-7872, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31532058

RESUMEN

Glioblastoma (GBM) is the most frequent and inevitably lethal primary brain cancer in adults. It is recognized that the overexpression of the endosomal Na+ /H+ exchanger NHE9 is a potent driver of GBM progression. Patients with NHE9 overexpression have a threefold lower median survival relative to GBM patients with normal NHE9 expression, using available treatment options. New treatment strategies tailored for this GBM subset are much needed. According to the prevailing model, NHE9 overexpression leads to an increase in plasma membrane density of epidermal growth factor receptors (EGFRs) which consequently enhances GBM cell proliferation and migration. However, this increase is not specific to EGFRs. In fact, the hallmark of NHE9 overexpression is a pan-specific increase in plasma membrane receptors. Paradoxically, we report that this gain of function in NHE9 can be exploited to effectively target GBM cells for destruction. When exposed to gold nanoparticles, NHE9 overexpressing GBM cells accumulated drastically high amounts of gold via receptor-mediated endocytosis, relative to control. Irradiation of these cells with near-infrared light led to apoptotic tumour cell death. A major limitation for delivering therapeutics to GBM cells is the blood-brain barrier (BBB). Here, we demonstrate that macrophages loaded with gold nanoparticles can cross the BBB, deliver the gold nanoparticles and effect the demise of GBM cells. In combination with receptor tyrosine kinase inhibition, we show this approach holds great promise for a new GBM-targeted therapy.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Mutación con Ganancia de Función/genética , Glioblastoma/tratamiento farmacológico , Terapia Molecular Dirigida , Intercambiadores de Sodio-Hidrógeno/genética , Animales , Apoptosis , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/ultraestructura , Línea Celular Tumoral , Clatrina/metabolismo , Endocitosis , Endosomas/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Glioblastoma/patología , Glioblastoma/ultraestructura , Oro , Humanos , Concentración de Iones de Hidrógeno , Hipertermia Inducida , Macrófagos/metabolismo , Nanopartículas del Metal/ultraestructura , Ratones , Fototerapia , Células RAW 264.7 , Intercambiadores de Sodio-Hidrógeno/metabolismo
8.
Nanomedicine ; 20: 101986, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31059794

RESUMEN

The potential biomedical applications of the MNPs nanohybrids coated with m-carboranylphosphinate (1-MNPs) as a theranostic biomaterial for cancer therapy were tested. The cellular uptake and toxicity profile of 1-MNPs from culture media by human brain endothelial cells (hCMEC/D3) and glioblastoma multiform A172 cell line were demonstrated. Prior to testing 1-MNPs' in vitro toxicity, studies of colloidal stability of the 1-MNPs' suspension in different culture media and temperatures were carried out. TEM images and chemical titration confirmed that 1-MNPs penetrate into cells. Additionally, to explore 1-MNPs' potential use in Boron Neutron Capture Therapy (BNCT) for treating cancer locally, the presence of the m-carboranyl coordinated with the MNPs core after uptake was proven by XPS and EELS. Importantly, thermal neutrons irradiation in BNCT reduced by 2.5 the number of cultured glioblastoma cells after 1-MNP treatment, and the systemic administration of 1-MNPs in mice was well tolerated with no major signs of toxicity.


Asunto(s)
Materiales Biocompatibles/química , Boro/química , Nanopartículas de Magnetita , Neoplasias/terapia , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Coloides/química , Difusión , Células Endoteliales/metabolismo , Glioblastoma/metabolismo , Glioblastoma/ultraestructura , Humanos , Hidrodinámica , Ligandos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Ratones , Neutrones , Suspensiones
9.
Int J Mol Sci ; 20(1)2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30621053

RESUMEN

Glioblastoma multiforme (GBM) is the commonest primary brain malignancy with extremely poor prognosis. Resveratrol posseses anti-cancer effects, while GBM cells respond differently to it due to certain unknown reason(s). Because the tumor-derived exosomes are supposed to influence chemosensitivity, the exosomic proteins released from resveratrol-sensitive U251 and resveratrol-resistant glioblastoma LN428 cells are profiled before (N/Exo) and after drug treatment (Res/Exo) by label-free liquid chromatography-mass spectrometry (LC-MS). The therapeutic implications of the proteomic findings are estimated by gene ontology enrichment analysis (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)-based bioinformatic analyses and further elucidated by exosome co-incubating. The results reveal that U251/N/Exo but not U251/Res/Exo enhances resveratrol sensitivity of resveratrol-resistant LN428 cells. The resveratrol sensitive properties of U251 cells are not altered by either LN428/N/Exo or LN428/Res/Exo. U251/N/Exo contains higher levels of chromatin silencing and epidermis development proteins, while U251/Res/Exo has more oxygen transport and G protein-coupled receptor. Both of LN428/N/Exo and LN428/Res/Exo are rich in the proteins related with nucleosome assembly, microtubule-based process and chromatin silencing. In conclusion, U251/N/Exo sensitizes LN428 cells to resveratrol via delivering drug sensitizing signals, suggesting the presence of additional factor(s) that may determine the resveratrol sensitivities of glioblastoma cells.


Asunto(s)
Exosomas/metabolismo , Glioblastoma/metabolismo , Proteómica/métodos , Resveratrol/farmacología , Línea Celular Tumoral , Exosomas/efectos de los fármacos , Exosomas/ultraestructura , Ontología de Genes , Glioblastoma/patología , Glioblastoma/ultraestructura , Humanos , Proteínas de Neoplasias/metabolismo
10.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717385

RESUMEN

Due to the development of nanotechnologies, graphene and graphene-based nanomaterials have attracted immense scientific interest owing to their extraordinary properties. Graphene can be used in many fields, including biomedicine. To date, little is known about the impact graphene may have on human health in the case of intentional exposure. The present study was carried out on U87 glioma cells and non-cancer HS-5 cell lines as in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane as in vivo model, on which the effects of pristine graphene platelets (GPs) were evaluated. The investigation consisted of structural analysis of GPs using transmission electron microscopy, Fourier transmission infrared measurements, zeta potential measurements, evaluation of cell morphology, assessment of cell viability, investigation of reactive oxygen species production, and investigation of mitochondrial membrane potential. The toxicity of U87 glioma tumors was evaluated by calculating the weight and volume of tumors and performing analyses of the ultrastructure, histology, and protein expression. The in vitro results indicate that GPs have dose-dependent cytotoxicity via ROS overproduction and depletion of the mitochondrial membrane potential. The mass and volume of tumors were reduced in vivo after injection of GPs. Additionally, the level of apoptotic and necrotic markers increased in GPs-treated tumors.


Asunto(s)
Fulerenos/farmacología , Grafito/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Biomarcadores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fulerenos/química , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/ultraestructura , Grafito/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
11.
Small ; 14(23): e1800740, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29726109

RESUMEN

Difficulty in visualizing glioma margins intraoperatively remains a major issue in the achievement of gross total tumor resection and, thus, better clinical outcome of glioblastoma (GBM) patients. Here, the potential of a new combined optical + optoacoustic imaging method for intraoperative brain tumor delineation is investigated. A strategy using a newly developed gold nanostar synthesis method, Raman reporter chemistry, and silication method to produce dual-modality contrast agents for combined surface-enhanced resonance Raman scattering (SERRS) and multispectral optoacoustic tomography (MSOT) imaging is devised. Following intravenous injection of the SERRS-MSOT-nanostars in brain tumor bearing mice, sequential MSOT imaging is performed in vivo and followed by Raman imaging. MSOT is able to accurately depict GBMs three-dimensionally with high specificity. The MSOT signal is found to correlate well with the SERRS images. Because SERRS enables uniquely sensitive high-resolution surface detection, it could represent an ideal complementary imaging modality to MSOT, which enables real-time, deep tissue imaging in 3D. This dual-modality SERRS-MSOT-nanostar contrast agent reported here is shown to enable high precision depiction of the extent of infiltrating GBMs by Raman- and MSOT imaging in a clinically relevant murine GBM model and could pave new ways for improved image-guided resection of brain tumors.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Nanopartículas/química , Técnicas Fotoacústicas/métodos , Espectrometría Raman/métodos , Tomografía/métodos , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/ultraestructura , Glioblastoma/diagnóstico , Glioblastoma/patología , Glioblastoma/ultraestructura , Humanos , Ratones
12.
J Bioenerg Biomembr ; 50(1): 33-52, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29209894

RESUMEN

Glioblastomas epidemiology and aggressiveness demand for a well characterization of biochemical mechanisms of the cells. The discovery of oxidative tumours related to chemoresistance is changing the prevalent view of dysfunctional mitochondria in cancer cells. Thus, glioblastomas metabolism is now an area of intense research, wherein was documented a high heterogeneity in energy metabolism and in particular in mitochondrial OxPhos. We report results gained by investigating mitochondrial OxPhos and bioenergetics, in a model of three human glioblastoma cell lines characterized by a different PTEN gene status. Functional data are analysed in relation to the expression levels of some main transcription factors and signalling proteins, which can be involved in the regulation of mitochondrial biogenesis and activity. Collectively, our observations indicate for the three cell lines a similar bioenergetic phenotype maintaining a certain degree of mitochondrial oxidative activity, with some difference for PTEN-wild type SF767 cells respect to PTEN-deleted A172 and U87MG characterized by a loss-of-function point mutation of PTEN. SF767 has lower ATP content and higher ADP/ATP ratio, higher AMPK activating-phosphorylation evoking energy impairment, higher OxPhos complexes and PGC1α-Sirt3-p53 protein abundance, in line with a higher respiration. Finally, SF767 shows a similar mitochondrial energy supply, but higher non-phosphorylating respiration linked to dissipation of protonmotive force. Intriguingly, it is now widely accepted that a regulated mitochondrial proton leak attenuate ROS generation and in tumours may be at the base of pro-survival advantage and chemoresistance.


Asunto(s)
Metabolismo Energético , Glioblastoma/patología , Mitocondrias/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de Señal , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/ultraestructura , Humanos , Mutación , Fosforilación Oxidativa , Fuerza Protón-Motriz , Especies Reactivas de Oxígeno/metabolismo
13.
Mol Cell ; 39(4): 560-9, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20797628

RESUMEN

Structural studies have provided detailed insights into different functional states of the ribosome and its interaction with factors involved in nascent peptide folding, processing, and targeting. However, how the translational machinery is organized spatially in native cellular environments is not yet well understood. Here we have mapped individual ribosomes in electron tomograms of intact human cells by template matching and determined the average structure of the ribosome in situ. Characteristic features of active ribosomes in the cellular environment were assigned to the tRNA channel, elongation factors, and additional densities near the peptide tunnel. Importantly, the relative spatial configuration of neighboring ribosomes in the cell is clearly nonrandom. The preferred configurations are specific for active polysomes and were largely abrogated in puromycin-treated control cells. The distinct neighbor orientations found in situ resemble configurations of bacterial polysomes in vitro, indicating a conserved supramolecular organization with implications for nascent polypeptide folding.


Asunto(s)
Neoplasias Encefálicas/ultraestructura , Glioblastoma/ultraestructura , Polirribosomas/ultraestructura , Sitios de Unión , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Tomografía con Microscopio Electrónico , Glioblastoma/metabolismo , Humanos , Imagenología Tridimensional , Modelos Moleculares , Polirribosomas/efectos de los fármacos , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , Inhibidores de la Síntesis de la Proteína/farmacología , Puromicina/farmacología , Relación Estructura-Actividad
14.
Analyst ; 142(2): 356-365, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27981320

RESUMEN

The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different sample preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. Each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.


Asunto(s)
Glioblastoma/patología , Actinas/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/ultraestructura , Humanos , Metales Pesados/metabolismo , Microscopía , Espectrometría por Rayos X , Tomografía por Rayos X
15.
Arkh Patol ; 79(1): 3-11, 2017.
Artículo en Ruso | MEDLINE | ID: mdl-28295002

RESUMEN

AIM: to conduct an electron microscopic study of intercellular communication in the samples of gemistocytic astrocytoma, oligodendroglioma, and glioblastoma. MATERIAL AND METHODS: Surgically resected tumor tissue fragments were fixed in 2.5% glutaraldehyde solution, afterfixed in 1% OsO4 solution, dehydrated, and embedded in epoxy resin. Ultrathin sections were examined using a Jem 1011 electron microscope (Jeol, Japan). RESULTS: Solitary and closely spaced gap junctions (GJs) formed by the thin processes that have the ultrastructure of an astroglial processes were identified in the astrocytoma samples. In this case, chemical synapses were noted to be completely absent in gemistocytic astrocytoma and glioblastoma. The identified GJs had a small length and deformed nexuses. The oligodendroglioma samples exhibited intact astroglial processes around the chemical synapses; however, interglial GJs were not found. CONCLUSION: The investigation showed the presence of intercellular GJs with some ultrastructural differences in the samples of low- and high-grade astroglial tumors. According to current data, astrocytomic GJs are able to create a stable self-sustaining network that promotes tumor progression and provides resistance to a therapeutic intervention. At the same time, the noticeable reduction in the number of GJs, which is most pronounced in the oligodendroglioma sample, can accelerate tumor cell migration into the surrounding parenchyma. The investigation of GJs should be, of course, continued using a group of a larger number of glial tumors to confirm the intercellular communication features revealed in this study.


Asunto(s)
Astrocitoma/ultraestructura , Uniones Comunicantes/ultraestructura , Glioblastoma/ultraestructura , Oligodendroglioma/ultraestructura , Astrocitoma/cirugía , Glioblastoma/cirugía , Humanos , Microscopía Electrónica , Neuroglía/ultraestructura , Oligodendroglioma/cirugía
16.
BMC Cancer ; 16: 72, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26856327

RESUMEN

BACKGROUND: Glioblastoma multiforme is the most aggressive brain tumor. Microglia are prominent cells within glioma tissue and play important roles in tumor biology. This work presents an animal model designed for the study of microglial cell morphology in situ during gliomagenesis. It also allows a quantitative morphometrical analysis of microglial cells during their activation by glioma cells. METHODS: The animal model associates the following cell types: 1- mCherry red fluorescent GL261 glioma cells and; 2- EGFP fluorescent microglia, present in the TgH(CX3CR1-EGFP) mouse line. First, mCherry-GL261 glioma cells were implanted in the brain cortex of TgH(CX3CR1-EGFP) mice. Epifluorescence - and confocal laser-scanning microscopy were employed for analysis of fixed tissue sections, whereas two-photon laser-scanning microscopy (2P-LSM) was used to track tumor cells and microglia in the brain of living animals. RESULTS: Implanted mCherry-GL261 cells successfully developed brain tumors. They mimic the aggressive behavior found in human disease, with a rapid increase in size and the presence of secondary tumors apart from the injection site. As tumor grows, mCherry-GL261 cells progressively lost their original shape, adopting a heterogeneous and diffuse morphology at 14-18 d. Soma size increased from 10-52 µm. At this point, we focused on the kinetics of microglial access to glioma tissues. 2P-LSM revealed an intense microgliosis in brain areas already shortly after tumor implantation, i.e. at 30 min. By confocal microscopy, we found clusters of microglial cells around the tumor mass in the first 3 days. Then cells infiltrated the tumor area, where they remained during all the time points studied, from 6-18 days. Microglia in contact with glioma cells also present changes in cell morphology, from a ramified to an amoeboid shape. Cell bodies enlarged from 366 ± 0.0 µm(2), in quiescent microglia, to 1310 ± 146.0 µm(2), and the cell processes became shortened. CONCLUSIONS: The GL261/CX3CR1 mouse model reported here is a valuable tool for imaging of microglial cells during glioma growth, either in fixed tissue sections or living animals. Remarkable advantages are the use of immunocompetent animals and the simplified imaging method without the need of immunohistochemical procedures.


Asunto(s)
Corteza Cerebral/ultraestructura , Glioblastoma/ultraestructura , Glioma/ultraestructura , Animales , Receptor 1 de Quimiocinas CX3C , Línea Celular Tumoral , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patología , Glioma/genética , Glioma/patología , Humanos , Ratones , Microglía/metabolismo , Microglía/patología , Microglía/ultraestructura , Microscopía Confocal , Receptores de Quimiocina/genética
17.
Nano Lett ; 15(4): 2329-35, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25734907

RESUMEN

Nanoparticle-based therapy represents a novel and promising approach to treat glioblastoma, the most common and lethal malignant brain cancer. Although similar therapies have achieved significant cytotoxicity in cultured glioblastoma or glioblastoma stem cells (GSCs), the lack of an appropriate approach to monitor interactions between cells and nanoparticle-based therapies impedes their further clinical application in human patients. To address this critical issue, we first obtained NOTCH1 positive GSCs from patient-derived primary cultures. We then developed a new imaging approach to directly observe the dynamic nature of nanoparticles at the molecular level using in situ transmission electron microscopy (TEM). Utilizing these tools we were able to visualize real-time movements of nanoparticles interacting with GSCs for the first time. Overall, we show strong proof-of-concept results that real-time visualization of nanoparticles in single cells can be achieved at the nanoscale using TEM, thereby providing a powerful platform for the development of nanotherapeutics.


Asunto(s)
Glioblastoma/ultraestructura , Dispositivos Laboratorio en un Chip , Microscopía Electrónica de Transmisión/instrumentación , Imagen Molecular/instrumentación , Nanopartículas/ultraestructura , Células Madre Neoplásicas/química , Línea Celular Tumoral , Sistemas de Computación , Diseño de Equipo , Análisis de Falla de Equipo , Glioblastoma/química , Humanos , Aumento de la Imagen/instrumentación , Nanopartículas/química , Células Madre Neoplásicas/ultraestructura
18.
Cell Mol Neurobiol ; 34(7): 1059-69, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25056450

RESUMEN

Glioblastoma Multiforme (GBM) is an aggressive form of brain Tumor that has few cures. In this study, we analyze the anti-proliferative effects of a new molecule JQ1 against GBMs induced in Wistar Rats. JQ1 is essentially a Myc inhibitor. c-Myc is also known for altering the biochemistry of a tumor cell. Therefore, the study is intended to analyze certain other oncogenes associated with c-Myc and also the change in cellular biochemistry upon c-Myc inhibition. The quantitative analysis of gene expression gave a co-expressive pattern for all the three genes involved namely; c-Myc, Bcl-2, and Akt. The cellular biochemistry analysis by transmission electron microscopy revealed high glycogen and lipid aggregation in Myc inhibited cells and excessive autophagy. The study demonstrates the role of c-Myc as a central metabolic regulator and Bcl-2 and Akt assisting in extending c-Myc half-life as well as in regulation of autophagy, so as to regulate cell survival on the whole. The study also demonstrates that transient treatment by JQ1 leads to aggressive development of tumor and therefore, accelerating death, emphasizing the importance of dosage fixation, and duration for clinical use in future.


Asunto(s)
Neoplasias Encefálicas/patología , Silenciador del Gen , Glioblastoma/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Azepinas/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/ultraestructura , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/ultraestructura , Glucógeno/metabolismo , Inmunohistoquímica , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratas Wistar , Análisis de Supervivencia , Triazoles/farmacología
19.
J Neurooncol ; 117(1): 15-24, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24510433

RESUMEN

Glioblastoma (GBM) is the most common malignant adult brain tumor and carries a poor prognosis due to primary and acquired resistance. While many cellular features of GBM have been documented, it is unclear if cells within these tumors extend a primary cilium, an organelle whose associated signaling pathways may regulate proliferation, migration, and survival of neural precursor and tumor cells. Using immunohistochemical and electron microscopy (EM) techniques, we screened human GBM tumor biopsies and primary cell lines for cilia. Immunocytochemical staining of five primary GBM cell lines revealed that between 8 and 25 % of the cells in each line possessed gamma tubulin-positive basal bodies from which extended acetylated, alpha-tubulin-positive axonemes. EM analyses confirmed the presence of cilia at the cell surface and revealed that their axonemes contained organized networks of microtubules, a structural feature consistent with our detection of IFT88 and Arl13b, two trafficked cilia proteins, along the lengths of the axonemes. Notably, cilia were detected in each of 23 tumor biopsies (22 primary and 1 recurrent) examined. These cilia were distributed across the tumor landscape including regions proximal to the vasculature and within necrotic areas. Moreover, ciliated cells within these tumors co-stained with Ki67, a marker for actively dividing cells, and ZEB1, a transcription factor that is upregulated in GBM and linked to tumor initiation, invasion, and chemoresistance. Collectively, our data show that subpopulations of cells within human GBM tumors are ciliated. In view of mounting evidence supporting roles of primary cilia in tumor initiation and propagation, it is likely that further study of the effects of cilia on GBM tumor cell function will improve our understanding of GBM pathogenesis and may provide new directions for GBM treatment strategies.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/ultraestructura , Cilios/ultraestructura , Glioblastoma/metabolismo , Glioblastoma/ultraestructura , Factores de Ribosilacion-ADP/metabolismo , Anciano de 80 o más Años , Axonema/metabolismo , Axonema/ultraestructura , Cuerpos Basales/metabolismo , Cuerpos Basales/ultraestructura , Línea Celular Tumoral , Cilios/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
20.
J Neurooncol ; 118(2): 247-256, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24728830

RESUMEN

Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change ≥ 2) and significantly altered in GBM (p ≤ 0.05). Proteins associated with oxidative damage (including catalase, superoxide dismutase 2, peroxiredoxin 1 and peroxiredoxin 4) were increased in GBM. Protein-protein interaction analysis highlighted a reduction in multiple proteins coupled to energy metabolism (in particular respiratory chain proteins, including 23 complex-I proteins). Qualitative ultrastructural analysis in GBM with electron microscopy showed a notably higher prevalence of mitochondria with cristolysis in GBM. This study highlights the complex mitochondrial proteomic adjustments which occur in GBM pathophysiology.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas Mitocondriales/metabolismo , Adulto , Anciano , Encéfalo/metabolismo , Encéfalo/cirugía , Encéfalo/ultraestructura , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/ultraestructura , Estudios de Cohortes , Femenino , Glioblastoma/cirugía , Glioblastoma/ultraestructura , Humanos , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteómica , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA