Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
1.
Glia ; 72(4): 748-758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200694

RESUMEN

Implantable neural probes have been extensively utilized in the fields of neurocircuitry, systems neuroscience, and brain-computer interface. However, the long-term functionality of these devices is hampered by the formation of glial scar and astrogliosis at the surface of electrodes. In this study, we administered KDS2010, a recently developed reversible MAO-B inhibitor, to mice through ad libitum drinking in order to prevent glial scar formation and astrogliosis. The administration of KDS2010 allowed long-term recordings of neural signals with implantable devices, which remained stable over a period of 6 months and even restored diminished neural signals after probe implantation. KDS2010 effectively prevented the formation of glial scar, which consists of reactive astrocytes and activated microglia around the implant. Furthermore, it restored neural activity by disinhibiting astrocytic MAO-B dependent tonic GABA inhibition induced by astrogliosis. We suggest that the use of KDS2010 is a promising approach to prevent glial scar formation around the implant, thereby enabling long-term functionality of neural devices.


Asunto(s)
Astrocitos , Gliosis , Ratones , Animales , Gliosis/tratamiento farmacológico , Gliosis/prevención & control , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/farmacología , Macrófagos
2.
J Pharmacol Exp Ther ; 388(3): 813-826, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336379

RESUMEN

Systemic and cerebral inflammatory responses are implicated in the pathogenesis of obesity and associated metabolic impairment. While the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to obesity-associated inflammation, whether it contributes to the development or maintenance of obesity is unknown. We provide support for a direct role of saturated fatty acids, such as palmitic acid, as NLRP3 activating stimuli in obese states. To investigate whether NLRP3 activation contributes to the pathogenesis of diet-induced obesity (DIO) in mice, we tested two different clinical-stage NLRP3 inflammasome inhibitors. We demonstrate a contributory role of this key inflammasome to established obesity and associated systemic and cerebral inflammation. By comparing their effects to calorie restriction, we aimed to identify specific NLRP3-sensitive mechanisms contributing to obesity-induced inflammation (as opposed to be those regulated by weight loss per se). In addition, a direct comparison of an NLRP3 inhibitor to a glucagon like peptide-1 receptor agonist, semaglutide (Wegovy), in the DIO model allowed an appreciation of the relative efficacy of these two therapeutic strategies on obesity, its associated systemic inflammatory response, and cerebral gliosis. We show that two structurally distinct, NLRP3 inhibitors, NT-0249 and NT-0796, reverse obesity in the DIO mouse model and that brain exposure appears necessary for efficacy. In support of this, we show that DIO-driven hypothalamic glial fibrillary acidic protein expression is blocked by dosing with NT-0249/NT-0796. While matching weight loss driven by semaglutide or calorie restriction, remarkably, NLRP3 inhibition provided enhanced improvements in disease-relevant biomarkers of acute phase response, cardiovascular inflammation, and lipid metabolism. SIGNIFICANCE STATEMENT: Obesity is a global health concern that predisposes individuals to chronic disease such as diabetes and cardiovascular disease at least in part by promoting systemic inflammation. We report that in mice fed a high-fat, obesogenic diet, obesity is reversed by either of two inhibitors of the intracellular inflammatory mediator NLRP3. Furthermore, NLRP3 inhibition reduces both hypothalamic gliosis and circulating biomarkers of cardiovascular disease risk beyond what can be achieved by either the glucagon like peptide-1 agonist semaglutide or calorie restriction alone.


Asunto(s)
Enfermedades Cardiovasculares , Inflamasomas , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Gliosis/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos NOD , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Obesidad/metabolismo , Pérdida de Peso , Biomarcadores , Péptidos Similares al Glucagón , Ratones Endogámicos C57BL
3.
FASEB J ; 37(6): e22939, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37130013

RESUMEN

Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1ß, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1ß-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.


Asunto(s)
Remielinización , Traumatismos de la Médula Espinal , Ratones , Animales , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Cicatriz/tratamiento farmacológico , Cicatriz/prevención & control , Mastocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Ratones Noqueados , Recuperación de la Función , Modelos Animales de Enfermedad , Mamíferos
4.
J Physiol ; 601(10): 1999-2016, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36999348

RESUMEN

Maternal magnesium sulphate (MgSO4 ) treatment is widely recommended before preterm birth for neuroprotection. However, this is controversial because there is limited evidence that MgSO4 provides long-term neuroprotection. Preterm fetal sheep (104 days gestation; term is 147 days) were assigned randomly to receive sham occlusion with saline infusion (n = 6) or i.v. infusion with MgSO4 (n = 7) or vehicle (saline, n = 6) from 24 h before hypoxia-ischaemia induced by umbilical cord occlusion until 24 h after occlusion. Sheep were killed after 21 days of recovery, for fetal brain histology. Functionally, MgSO4 did not improve long-term EEG recovery. Histologically, in the premotor cortex and striatum, MgSO4 infusion attenuated post-occlusion astrocytosis (GFAP+ ) and microgliosis but did not affect numbers of amoeboid microglia or improve neuronal survival. In the periventricular and intragyral white matter, MgSO4 was associated with fewer total (Olig-2+ ) oligodendrocytes compared with vehicle + occlusion. Numbers of mature (CC1+ ) oligodendrocytes were reduced to a similar extent in both occlusion groups compared with sham occlusion. In contrast, MgSO4 was associated with an intermediate improvement in myelin density in the intragyral and periventricular white matter tracts. In conclusion, a clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival. KEY POINTS: Magnesium sulphate is widely recommended before preterm birth for neuroprotection; however, there is limited evidence that magnesium sulphate provides long-term neuroprotection. In preterm fetal sheep exposed to hypoxia-ischaemia (HI), MgSO4 was associated with attenuated astrocytosis and microgliosis in the premotor cortex and striatum but did not improve neuronal survival after recovery to term-equivalent age, 21 days after HI. Magnesium sulphate was associated with loss of total oligodendrocytes in the periventricular and intragyral white matter tracts, whereas mature, myelinating oligodendrocytes were reduced to a similar extent in both occlusion groups. In the same regions, MgSO4 was associated with an intermediate improvement in myelin density. Functionally, MgSO4 did not improve long-term recovery of EEG power, frequency or sleep stage cycling. A clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival.


Asunto(s)
Nacimiento Prematuro , Sustancia Blanca , Recién Nacido , Humanos , Femenino , Ovinos , Animales , Sustancia Gris , Asfixia/tratamiento farmacológico , Sulfato de Magnesio/farmacología , Sulfato de Magnesio/uso terapéutico , Gliosis/tratamiento farmacológico , Supervivencia Celular , Electroencefalografía , Isquemia/tratamiento farmacológico , Hipoxia
5.
J Neuroinflammation ; 20(1): 149, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355700

RESUMEN

BACKGROUND: Chemotherapy-induced neuropathic pain (CIPN) describes a pathological pain state that occurs dose-dependently as a side effect and can limit or even impede an effective cancer therapy. Unfortunately, current treatment possibilities for CIPN are remarkably confined and mostly inadequate as CIPN therapeutics themselves consist of low effectiveness and may induce severe side effects, pointing out CIPN as pathological entity with an emerging need for novel treatment targets. Here, we investigated whether the novel and highly specific FKBP51 inhibitor SAFit2 reduces paclitaxel-induced neuropathic pain. METHODS: In this study, we used a well-established multiple low-dose paclitaxel model to investigate analgesic and anti-inflammatory properties of SAFit2. For this purpose, the behavior of the mice was recorded over 14 days and the mouse tissue was then analyzed using biochemical methods. RESULTS: Here, we show that SAFit2 is capable to reduce paclitaxel-induced mechanical hypersensitivity in mice. In addition, we detected that SAFit2 shifts lipid levels in nervous tissue toward an anti-inflammatory and pro-resolving lipid profile that counteracts peripheral sensitization after paclitaxel treatment. Furthermore, SAFit2 reduced the activation of astrocytes and microglia in the spinal cord as well as the levels of pain-mediating chemokines. Its treatment also increased anti-inflammatory cytokines levels in neuronal tissues, ultimately leading to a resolution of neuroinflammation. CONCLUSIONS: In summary, SAFit2 shows antihyperalgesic properties as it ameliorates paclitaxel-induced neuropathic pain by reducing peripheral sensitization and resolving neuroinflammation. Therefore, we consider SAFit2 as a potential novel drug candidate for the treatment of paclitaxel-induced neuropathic pain.


Asunto(s)
Neuralgia , Paclitaxel , Ratones , Animales , Paclitaxel/toxicidad , Enfermedades Neuroinflamatorias , Gliosis/inducido químicamente , Gliosis/tratamiento farmacológico , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Lípidos/efectos adversos
6.
FASEB J ; 36(3): e22186, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120261

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder, and there is a pressing need to identify disease-modifying factors and devise interventional strategies. The circadian clock, our intrinsic biological timer, orchestrates various cellular and physiological processes including gene expression, sleep, and neuroinflammation; conversely, circadian dysfunctions are closely associated with and/or contribute to AD hallmarks. We previously reported that the natural compound Nobiletin (NOB) is a clock-enhancing modulator that promotes physiological health and healthy aging. In the current study, we treated the double transgenic AD model mice, APP/PS1, with NOB-containing diets. NOB significantly alleviated ß-amyloid burden in both the hippocampus and the cortex, and exhibited a trend to improve cognitive function in these mice. While several systemic parameters for circadian wheel-running activity, sleep, and metabolism were unchanged, NOB treatment showed a marked effect on the expression of clock and clock-controlled AD gene expression in the cortex. In accordance, cortical proteomic profiling demonstrated circadian time-dependent restoration of the protein landscape in APP/PS1 mice treated with NOB. More importantly, we found a potent efficacy of NOB to inhibit proinflammatory cytokine gene expression and inflammasome formation in the cortex, and immunostaining further revealed a specific effect to diminish astrogliosis, but not microgliosis, by NOB in APP/PS1 mice. Together, these results underscore beneficial effects of a clock modulator to mitigate pathological and cognitive hallmarks of AD, and suggest a possible mechanism via suppressing astrogliosis-associated neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios/farmacología , Flavonas/farmacología , Gliosis/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Citocinas/genética , Citocinas/metabolismo , Flavonas/uso terapéutico , Gliosis/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Fármacos Neuroprotectores/uso terapéutico
7.
Toxicol Pathol ; 51(1-2): 68-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37057409

RESUMEN

Gliosis, defined as a nonneoplastic reaction (hypertrophy and/or proliferation) of astrocytes and/or microglial cells, is a frequent finding in the central nervous system (CNS [brain and/or spinal cord]) in nonclinical safety studies. Gliosis in rodents and nonrodents occurs at low incidence as a spontaneous finding and is induced by various test articles (e.g., biomolecules, cell and gene therapies, small molecules) delivered centrally (i.e., by injection or infusion into cerebrospinal fluid or neural tissue) or systemically. Several CNS gliosis patterns occur in nonclinical species. First, gliosis may accompany degeneration and/or necrosis of cells (mainly neurons) or neural parenchyma (neuron processes and myelin). Second, gliosis often follows inflammation (i.e., leukocyte accumulation causing parenchymal damage) or neoplasm formation. Third, gliosis may appear as variably sized, randomly scattered foci of reactive glial cells in the absence of visible parenchymal damage or inflammation. In interpreting test article-related CNS gliosis, adversity is indicated by parenchymal injury (e.g., degeneration, necrosis, or inflammation) and not the mere existence of a glial reaction. In the absence of clear structural damage to the parenchyma, gliosis as a standalone CNS finding should be interpreted as a nonadverse reaction to regional alterations in microenvironmental conditions rather than as evidence of a glial reaction associated with neurotoxicity.


Asunto(s)
Gliosis , Médula Espinal , Humanos , Gliosis/tratamiento farmacológico , Gliosis/etiología , Gliosis/patología , Médula Espinal/patología , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Inflamación/patología , Necrosis/complicaciones , Necrosis/patología , Proteína Ácida Fibrilar de la Glía/metabolismo
8.
Nano Lett ; 22(6): 2381-2390, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35266400

RESUMEN

More than 15 million out of 70 million patients worldwide do not respond to available antiepilepticus drugs (AEDs). With the emergence of nanomedicine, nanomaterials are increasingly being used to treat many diseases. Here, we report that tetrahedral framework nucleic acid (tFNA), an assembled nucleic acid nanoparticle, showed an excellent ability to the cross blood-brain barrier (BBB) to inhibit M1 microglial activation and A1 reactive astrogliosis in the hippocampus of mice after status epilepticus. Furthermore, tFNA inhibited the downregulation of glutamine synthetase by alleviating oxidative stress in reactive astrocytes and subsequently reduced glutamate accumulation and glutamate-mediated neuronal hyperexcitability. Meanwhile, tFNA promotes α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization in the postsynaptic membrane by regulating AMPAR endocytosis, which contributed to reduced calcium influx and ultimately reduced hyperexcitability and spontaneous epilepticus spike frequencies. These findings demonstrated tFNA as a potential AED and that nucleic acid material may be a new direction for the treatment of epilepsy.


Asunto(s)
Gliosis , Ácidos Nucleicos , Animales , Regulación hacia Abajo , Gliosis/tratamiento farmacológico , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico , Humanos , Ratones , Ácidos Nucleicos/farmacología
9.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37628913

RESUMEN

Oxidative stress with a depletion of glutathione is a key factor in the initiation and progression of Alzheimer's disease (AD). N-Acetylcysteine (NAC), a glutathione precursor, provides neuroprotective effects in AD animal models. Its amide form, N-Acetylcysteine amide (NACA), has an extended bioavailability compared to NAC. This study evaluates the neuroprotective effects of NACA against Aß1-42 peptide-induced AD-like pathology in rats. Male Wistar rats (2.5 months old) were divided into five groups: Normal Control (NC), Sham (SH), Aß, Aß + NACA and NACA + Aß + NACA (n = 8 in all groups). AD-like pathology was induced by the intracerebroventricular infusion of Aß1-42 peptide into the lateral ventricle. NACA (75 mg/kg) was administered either as a restorative (i.e., injection of NACA for 7 consecutive days after inducing AD-like pathology (Aß + N group)), or as prophylactic (for 7 days before and 7 days after inducing the pathology (N + Aß + N group)). Learning and memory, neurogenesis, expression of AD pathology markers, antioxidant parameters, neuroprotection, astrogliosis and microgliosis were studied in the hippocampus and the prefrontal cortex. All data were analyzed with a one-way ANOVA test followed by Bonferroni's multiple comparison test. NACA treatment reversed the cognitive deficits and reduced oxidative stress in the hippocampus and prefrontal cortex. Western blot analysis for Tau, Synaptophysin and Aß, as well as a histopathological evaluation through immunostaining for neurogenesis, the expression of neurofibrillary tangles, ß-amyloid peptide, synaptophysin, neuronal morphology and gliosis, showed a neuroprotective effect of NACA. In conclusion, this study demonstrates the neuroprotective effects of NACA against ß-amyloid induced AD-like pathology.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Masculino , Ratas , Animales , Acetilcisteína/farmacología , Ratas Wistar , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Sinaptofisina , Fármacos Neuroprotectores/farmacología , Péptidos beta-Amiloides , Gliosis/inducido químicamente , Gliosis/tratamiento farmacológico , Glutatión
10.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982363

RESUMEN

The progress in Alzheimer's disease (AD) treatment suggests a combined therapeutic approach targeting the two lesional processes of AD, which include amyloid plaques made of toxic Aß species and neurofibrillary tangles formed of aggregates of abnormally modified Tau proteins. A pharmacophoric design, novel drug synthesis, and structure-activity relationship enabled the selection of a polyamino biaryl PEL24-199 compound. The pharmacologic activity consists of a non-competitive ß-secretase (BACE1) modulatory activity in cells. Curative treatment of the Thy-Tau22 model of Tau pathology restores short-term spatial memory, decreases neurofibrillary degeneration, and alleviates astrogliosis and neuroinflammatory reactions. Modulatory effects of PEL24-199 towards APP catalytic byproducts are described in vitro, but whether PEL24-199 can alleviate the Aß plaque load and associated inflammatory counterparts in vivo remains to be elucidated. We investigated short- and long-term spatial memory, Aß plaque load, and inflammatory processes in APPSwe/PSEN1ΔE9 PEL24-199 treated transgenic model of amyloid pathology to achieve this objective. PEL24-199 curative treatment induced the recovery of spatial memory and decreased the amyloid plaque load in association with decreased astrogliosis and neuroinflammation. The present results underline the synthesis and selection of a promising polyaminobiaryl-based drug that modulates both Tau and, in this case, APP pathology in vivo via a neuroinflammatory-dependent process.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Amiloide , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas Amiloidogénicas , Ácido Aspártico Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Gliosis/tratamiento farmacológico , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/metabolismo
11.
J Cell Physiol ; 237(3): 1818-1832, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34825376

RESUMEN

Even though astrocytes have been widely reported to support several brain functions, studies have emerged that they exert deleterious effects on the brain after ischemia and reperfusion (I/R) injury. The present study investigated the neuroprotective effects of melatonin on the processes of reactive astrogliosis and glial scar formation, as well as axonal regeneration after transient middle cerebral artery occlusion. Male Wistar rats were randomly divided into four groups: sham-operated, I/R, I/R treated with melatonin, and I/R treated with edaravone. All drugs were administered via intraperitoneal injection at the onset of reperfusion and were continued until the rats were sacrificed on Day 7 or 14 after the surgery. Melatonin presented long-term benefits on cerebral damage after I/R injury, as demonstrated by a decreased infarct volume, histopathological changes, and reduced neuronal cell death. We also found that melatonin attenuated reactive astrogliosis and glial scar formation and, consequently, enhanced axonal regeneration and promoted neurobehavioral recovery. Furthermore, glycogen synthase kinase-3 beta (GSK-3ß) and receptor-interacting serine/threonine-protein 1 kinase (RIP1K), which had previously been revealed as proteins involved in astrocyte responses, were significantly reduced after melatonin administration. Taken together, melatonin effectively counteracted the deleterious effects due to astrocyte responses and improved axonal regeneration to promote functional recovery during the chronic phase of cerebral I/R injury by inhibiting GSK-3ß and RIP1K activities.


Asunto(s)
Isquemia Encefálica , Melatonina , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Isquemia Encefálica/metabolismo , Gliosis/tratamiento farmacológico , Gliosis/patología , Glucógeno Sintasa Quinasa 3 beta , Inflamación , Masculino , Melatonina/farmacología , Melatonina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Wistar , Daño por Reperfusión/patología
12.
FASEB J ; 35(2): e21216, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33230896

RESUMEN

Obesity has emerged as a major risk factor for insulin resistance leading to the development of type 2 diabetes (T2D). The condition is characterized by high circulating levels of the adipose-derived hormone leptin and a state of chronic low-grade inflammation. Pro-inflammatory signaling in the hypothalamus is associated with a decrease of central leptin- and insulin action leading to impaired systemic glucose tolerance. Intriguingly, leptin not only regulates body weight and glucose homeostasis but also acts as a pro-inflammatory cytokine. Here we demonstrate that increasing leptin levels (62,5 µg/kg/d, PEGylated leptin) in mice fed a high-fat diet (HFD) exacerbated body weight gain and aggravated hypothalamic micro- as well as astrogliosis. In contrast, administration of a predetermined dose of a long-acting leptin antagonist (100 µg/kg/d, PESLAN) chosen to block excessive leptin signaling during diet-induced obesity (DIO) showed the opposite effect and significantly improved glucose tolerance as well as decreased the total number of microglia and astrocytes in the hypothalamus of mice fed HFD. These results suggest that high levels of leptin, such as in obesity, worsen HFD-induced micro-and astrogliosis, whereas the partial reduction of hyperleptinemia in DIO mice may have beneficial metabolic effects and improves hypothalamic gliosis.


Asunto(s)
Intolerancia a la Glucosa/metabolismo , Leptina/metabolismo , Obesidad/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Intolerancia a la Glucosa/tratamiento farmacológico , Hipotálamo/metabolismo , Hipotálamo/patología , Leptina/análogos & derivados , Leptina/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Polietilenglicoles/química
13.
Exp Brain Res ; 240(4): 1191-1203, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35171306

RESUMEN

Status epilepticus (SE) can result in an overproduction of hydrogen peroxide (H2O2), which contributes to oxidative stress and brain injury during different phases of epileptogenesis and seizures. The purpose of this study was to evaluate the effects of ellagic acid and allopurinol administered after SE on H2O2 concentrations, electrical activity and GFAP immunoreactivity in the hippocampus of rats evaluated on Day 18 after SE. H2O2 levels were measured using an online technique with high temporal resolution and simultaneous electrical activity recording. For this purpose, the lateral ventricles of male Wistar rats (200-250 g) were injected with pilocarpine (2.4 mg/2 µl) to induce SE. After SE, rats were injected with ellagic acid (50 mg/kg i.p., and two additional doses at 24 and 48 h) or allopurinol (50 mg/kg i.p., single dose). Administration of ellagic acid or allopurinol after SE significantly reduced the H2O2 concentrations and decreased the presence of epileptiform activity and GFAP immunoreactivity in the hippocampus 18 days after SE. In conclusion, the administration of antioxidants potentially reduces oxidative stress, which indicates the possible attenuation of the neurobiological consequences after SE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Alopurinol/farmacología , Animales , Modelos Animales de Enfermedad , Ácido Elágico/farmacología , Gliosis/tratamiento farmacológico , Hipocampo , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Pilocarpina/farmacología , Ratas , Ratas Wistar , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico
14.
Pharmacology ; 107(5-6): 263-280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35316816

RESUMEN

INTRODUCTION: Cerebral ischemia induces reactive proliferation of astrocytes (astrogliosis) and glial scar formation. As a physical and biochemical barrier, the glial scar not only hinders spontaneous axonal regeneration and neuronal repair but also deteriorates the neuroinflammation in the recovery phase of ischemic stroke. OBJECTIVES: Previous studies have shown the neuroprotective effects of the valproic acid (2-n-propylpentanoic acid, VPA) against ischemic stroke, but its effects on the ischemia-induced formation of astrogliosis and glial scar are still unknown. As targeting astrogliosis has become a therapeutic strategy for ischemic stroke, this study was designed to determine whether VPA can inhibit the ischemic stroke-induced glial scar formation and to explore its molecular mechanisms. METHODS: Glial scar formation was induced by an ischemia-reperfusion (I/R) model in vivo and an oxygen and glucose deprivation (OGD)-reoxygenation (OGD/Re) model in vitro. Animals were treated with an intraperitoneal injection of VPA (250 mg/kg/day) for 28 days, and the ischemic stroke-related behaviors were assessed. RESULTS: Four weeks of VPA treatment could markedly reduce the brain atrophy volume and improve the behavioral deficits in rats' I/R injury model. The results showed that VPA administrated upon reperfusion or 1 day post-reperfusion could also decrease the expression of the glial scar makers such as glial fibrillary acidic protein, neurocan, and phosphacan in the peri-infarct region after I/R. Consistent with the in vivo data, VPA treatment showed a protective effect against OGD/Re-induced astrocytic cell death in the in vitro model and also decreased the expression of GFAP, neurocan, and phosphacan. Further studies revealed that VPA significantly upregulated the expression of acetylated histone 3, acetylated histone 4, and heat-shock protein 70.1B in the OGD/Re-induced glial scar formation model. CONCLUSION: VPA produces neuroprotective effects and inhibits the glial scar formation during the recovery period of ischemic stroke via inhibition of histone deacetylase and induction of Hsp70.1B.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Astrocitos/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Histonas/metabolismo , Histonas/farmacología , Histonas/uso terapéutico , Neurocano/metabolismo , Neurocano/farmacología , Neurocano/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico
15.
Metab Brain Dis ; 37(6): 2077-2088, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35048325

RESUMEN

Taurine as an essential amino acid in the brain could play an important role in protecting the fetal brain of intrauterine growth restriction (IUGR). The hippocampus with IUGR showed neural metabolic disorder and structure changed that affected memory and learning ability. This study was aimed to identify the effect of taurine supplementation on the metabolism alterations and cellular composition changes of the hippocampus in IUGR immature rats. Metabolite concentrations were determined by magnetic resonance spectroscopy (MRS) in the hippocampus of juvenile rats with IUGR following taurine supplementation with antenatal or postnatal supply. The composition of neural cells in the hippocampus was observed by immunohistochemical staining (IHC) and western blotting (WB). Antenatal taurine supplementation increased the ratios of N-acetylaspartate (NAA) /creatine (Cr) and glutamate (Glu) /Cr of the hippocampus in the IUGR immature rats, but reduced the ratios of choline (Cho) /Cr and myoinositol (mI) /Cr. At the same time, the protein expression of NeuN in the IUGR rats was increased through intrauterine taurine supplementation, and the GFAP expression was reduced. Especially the effect of antenatal taurine was better than postpartum. Furthermore, there existed a positive correlation between the NAA/Cr ratio and the NeuN protein expression (R = 0.496 p < 0.001 IHC; R = 0.568 p < 0.001 WB), the same results existed in the relationship between the mI/Cr ratio and the GFAP protein expression (R = 0.338 p = 0.019 IHC; R = 0.440 p = 0.002 WB). Prenatal taurine supplementation can better improve hippocampal neuronal metabolism by increasing NAA / Cr ratio related to the number of neurons and reducing Cho / Cr ratio related to the number of glial cells.


Asunto(s)
Retardo del Crecimiento Fetal , Taurina , Animales , Ácido Aspártico , Colina , Creatina/farmacología , Suplementos Dietéticos , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Gliosis/tratamiento farmacológico , Gliosis/patología , Hipocampo/metabolismo , Humanos , Neuronas/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Taurina/farmacología , Taurina/uso terapéutico
16.
Molecules ; 27(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458704

RESUMEN

Curcumin is an anti-inflammatory and neuroprotective compound in turmeric. It is a potential ligand of the aryl hydrocarbon receptor (AhR) that mediates anti-inflammatory signaling. However, the AhR-mediated anti-inflammatory effect of curcumin within the brain remains unclear. We investigated the role of AhR on the curcumin effect in inflammatory astrogliosis. Curcumin attenuated lipopolysaccharide (LPS)-induced proinflammatory IL-6 and TNF-α gene expression in primary cultured rat astrocytes. When AhR was knocked down, LPS-induced IL-6 and TNF-α were increased and curcumin-decreased activation of the inflammation mediator NF-κB p65 by LPS was abolished. Although LPS increased AhR and its target gene CYP1B1, curcumin further enhanced LPS-induced CYP1B1 and indoleamine 2,3-dioxygenase (IDO), which metabolizes tryptophan to AhR ligands kynurenine (KYN) and kynurenic acid (KYNA). Potential interactions between curcumin and human AhR analyzed by molecular modeling of ligand-receptor docking. We identified a new ligand binding site on AhR different from the classical 2,3,7,8-tetrachlorodibenzo-p-dioxin site. Curcumin docked onto the classical binding site, whereas KYN and KYNA occupied the novel one. Moreover, curcumin and KYNA collaboratively bound onto AhR during molecular docking, potentially resulting in synergistic effects influencing AhR activation. Curcumin may enhance the inflammation-induced IDO/KYN axis and allosterically regulate endogenous ligand binding to AhR, facilitating AhR activation to regulate inflammatory astrogliosis.


Asunto(s)
Curcumina , Gliosis , Receptores de Hidrocarburo de Aril , Animales , Curcumina/farmacología , Gliosis/tratamiento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interleucina-6 , Ácido Quinurénico/metabolismo , Quinurenina/metabolismo , Ligandos , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Ratas , Receptores de Hidrocarburo de Aril/metabolismo , Factor de Necrosis Tumoral alfa/genética
17.
J Neuroinflammation ; 18(1): 157, 2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34273979

RESUMEN

BACKGROUND: Repetitive mild traumatic brain injury (mTBI) can result in chronic visual dysfunction. G-protein receptor 110 (GPR110, ADGRF1) is the target receptor of N-docosahexaenoylethanolamine (synaptamide) mediating the anti-neuroinflammatory function of synaptamide. In this study, we evaluated the effect of an endogenous and a synthetic ligand of GPR110, synaptamide and (4Z,7Z,10Z,13Z,16Z,19Z)-N-(2-hydroxy-2-methylpropyl) docosa-4,7,10,13,16,19-hexaenamide (dimethylsynaptamide, A8), on the mTBI-induced long-term optic tract histopathology and visual dysfunction using Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), a clinically relevant model of mTBI. METHODS: The brain injury in wild-type (WT) and GPR110 knockout (KO) mice was induced by CHIMERA applied daily for 3 days, and GPR110 ligands were intraperitoneally injected immediately following each impact. The expression of GPR110 and proinflammatory mediator tumor necrosis factor (TNF) in the brain was measured by using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in an acute phase. Chronic inflammatory responses in the optic tract and visual dysfunction were assessed by immunostaining for Iba-1 and GFAP and visual evoked potential (VEP), respectively. The effect of GPR110 ligands in vitro was evaluated by the cyclic adenosine monophosphate (cAMP) production in primary microglia isolated from adult WT or KO mouse brains. RESULTS: CHIMERA injury acutely upregulated the GPR110 and TNF gene level in mouse brain. Repetitive CHIMERA (rCHIMERA) increased the GFAP and Iba-1 immunostaining of glia cells and silver staining of degenerating axons in the optic tract with significant reduction of N1 amplitude of visual evoked potential at up to 3.5 months after injury. Both GPR110 ligands dose- and GPR110-dependently increased cAMP in cultured primary microglia with A8, a ligand with improved stability, being more effective than synaptamide. Intraperitoneal injection of A8 at 1 mg/kg or synaptamide at 5 mg/kg significantly reduced the acute expression of TNF mRNA in the brain and ameliorated chronic optic tract microgliosis, astrogliosis, and axonal degeneration as well as visual deficit caused by injury in WT but not in GPR110 KO mice. CONCLUSION: Our data demonstrate that ligand-induced activation of the GPR110/cAMP system upregulated after injury ameliorates the long-term optic tract histopathology and visual impairment caused by rCHIMERA. Based on the anti-inflammatory nature of GPR110 activation, we suggest that GPR110 ligands may have therapeutic potential for chronic visual dysfunction associated with mTBI.


Asunto(s)
Conmoción Encefálica/complicaciones , Etanolaminas/metabolismo , Etanolaminas/farmacología , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Tracto Óptico/efectos de los fármacos , Tracto Óptico/patología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Conmoción Encefálica/patología , Técnicas de Cultivo de Célula , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Potenciales Evocados Visuales , Gliosis/complicaciones , Inflamación , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Tracto Óptico/lesiones , Factor de Necrosis Tumoral alfa/metabolismo , Visión Ocular
18.
J Neuroinflammation ; 18(1): 187, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454529

RESUMEN

BACKGROUND: Chronic cerebral hypoperfusion (CCH) causes white matter damage and cognitive impairment, in which astrogliosis is the major pathology. However, underlying cellular mechanisms are not well defined. Activation of Na+/H+ exchanger-1 (NHE1) in reactive astrocytes causes astrocytic hypertrophy and swelling. In this study, we examined the role of NHE1 protein in astrogliosis, white matter demyelination, and cognitive function in a murine CCH model with bilateral carotid artery stenosis (BCAS). METHODS: Sham, BCAS, or BCAS mice receiving vehicle or a selective NHE1 inhibitor HOE642 were monitored for changes of the regional cerebral blood flow and behavioral performance for 28 days. Ex vivo MRI-DTI was subsequently conducted to detect brain injury and demyelination. Astrogliosis and demyelination were further examined by immunofluorescence staining. Astrocytic transcriptional profiles were analyzed with bulk RNA-sequencing and RT-qPCR. RESULTS: Chronic cerebral blood flow reduction and spatial working memory deficits were detected in the BCAS mice, along with significantly reduced mean fractional anisotropy (FA) values in the corpus callosum, external capsule, and hippocampus in MRI DTI analysis. Compared with the sham control mice, the BCAS mice displayed demyelination and axonal damage and increased GFAP+ astrocytes and Iba1+ microglia. Pharmacological inhibition of NHE1 protein with its inhibitor HOE642 prevented the BCAS-induced gliosis, damage of white matter tracts and hippocampus, and significantly improved cognitive performance. Transcriptome and immunostaining analysis further revealed that NHE1 inhibition specifically attenuated pro-inflammatory pathways and NADPH oxidase activation. CONCLUSION: Our study demonstrates that NHE1 protein is involved in astrogliosis with pro-inflammatory transformation induced by CCH, and its blockade has potentials for reducing astrogliosis, demyelination, and cognitive impairment.


Asunto(s)
Astrocitos/efectos de los fármacos , Estenosis Carotídea/tratamiento farmacológico , Cognición/efectos de los fármacos , Gliosis/tratamiento farmacológico , Guanidinas/uso terapéutico , Sulfonas/uso terapéutico , Sustancia Blanca/efectos de los fármacos , Animales , Astrocitos/patología , Estenosis Carotídea/patología , Circulación Cerebrovascular/efectos de los fármacos , Disfunción Cognitiva/patología , Gliosis/patología , Guanidinas/farmacología , Inflamación/patología , Ratones , Microglía/efectos de los fármacos , Microglía/patología , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Sulfonas/farmacología , Sustancia Blanca/patología
19.
Cell Tissue Res ; 383(2): 677-692, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32960358

RESUMEN

Peripheral nerve injury is associated with spinal microgliosis which plays a pivotal role in the development of neuropathic pain behavior. Several agents of primary afferent origin causing the microglial reaction have been identified, but the type(s) of primary afferents that release these mediators are still unclear. In this study, specific labeling of C-fiber spinal afferents by lectin histochemistry and selective chemodenervation by capsaicin were applied to identify the type(s) of primary afferents involved in the microglial response. Comparative quantitative morphometric evaluation of the microglial reaction in central projection territories of intact and injured peripheral nerves in the superficial (laminae I and II) and deep (laminae III and IV) spinal dorsal horn revealed a significant, about three-fold increase in microglial density after transection of the sciatic or the saphenous nerve. Prior perineural treatment of these nerves with capsaicin, resulting in a selective defunctionalization of C-fiber afferent fibers failed to affect spinal microgliosis. Similarly, peripheral nerve injury-induced increase in microglial density was unaffected in rats treated neonatally with capsaicin known to result in a near-total loss of C-fiber dorsal root fibers. Perineural treatment with capsaicin per se did not evoke a significant increase in microglial density. These observations indicate that injury-induced spinal microgliosis may be attributed to phenotypic changes in injured myelinated primary afferent neurons, whereas the contribution of C-fiber primary sensory neurons to this neuroimmune response is negligible. Spinal myelinated primary afferents may play a hitherto unrecognized role in regulation of neuroimmune and perisynaptic microenvironments of the spinal dorsal horn.


Asunto(s)
Capsaicina/uso terapéutico , Gliosis/tratamiento farmacológico , Gliosis/etiología , Traumatismos de los Nervios Periféricos/complicaciones , Médula Espinal/patología , Animales , Animales Recién Nacidos , Capsaicina/farmacología , Recuento de Células , Gliosis/patología , Masculino , Traumatismos de los Nervios Periféricos/patología , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/patología , Ratas Wistar , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/patología
20.
Horm Behav ; 136: 105085, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34749277

RESUMEN

Silent infarcts (SI) are a cerebral small vessel disease characterized by small subcortical infarcts. These occur in the absence of typical ischemia symptoms but are linked to cognitive decline and dementia. While there are no approved treatments for SI, recent results from our laboratory suggest that tamoxifen, a selective estrogen receptor modulator, is a viable candidate. In the present study, we induced SI in the dorsal hippocampal CA1 region of rats and assessed the effects of systemic administration of tamoxifen (5 mg/kg, twice) 21 days after injury on cognitive and pathophysiological measures, including cell loss, apoptosis, gliosis and estrogen receptors (ERs). We found that tamoxifen protected against the SI-induced cognitive dysfunction on the hippocampal-dependent, place recognition task, cell and ER loss, and increased apoptosis and gliosis in the CA1. Exploratory data analyses using a scatterplot matrix and principal component analysis indicated that SI-tamoxifen rats were indistinguishable from sham controls while they differed from SI rats, who were characterized by enhanced cell loss, apoptosis and gliosis, lower ERs, and recognition memory deficit. Supervised machine learning using support vector machine (SVM) determined predictors of progression from the early ischemic state to the dementia-like state. It showed that caspase-3 and ERα in the CA1 and exploration proportion were reliable and accurate predictors of this progression. Importantly, tamoxifen ameliorated SI-induced effects on all three of these variables, providing further evidence for its viability as a candidate treatment for SI and prevention of associated dementia.


Asunto(s)
Demencia , Tamoxifeno , Animales , Región CA1 Hipocampal , Gliosis/tratamiento farmacológico , Hipocampo , Infarto , Masculino , Neuroprotección , Ratas , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA