Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
BMC Plant Biol ; 24(1): 44, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200455

RESUMEN

BACKGROUND: Hemerocallis citrina Baroni (Huang hua cai in Chinese) is a perennial herbaceous plant grown for its flower buds that are eaten fresh or dried and is known as the vegetarian three treasures. The nuclear genome of H. citrina has been reported, but the intraspecific variation of the plastome (plastid genome) has not yet been studied. Therefore, the panplastome of this species collected from diverse locations is reported here for the first time. RESULTS: In this study, 65 H. citrina samples were resequenced, de novo assembled, and aligned with the published plastome of H. citrina to resolve the H. citrina panplastome. The sizes of the 65 newly assembled complete plastomes of H. citrina ranged from 156,048 bp to 156,263 bp, and the total GC content ranged from 37.31 to 37.34%. The structure of the complete plastomes showed a typical tetrameric structure, including a large single copy (LSC), a small single copy (SSC), and a pair of inverted repeat regions (IRA and IRB). Many nucleotide variants were identified between plastomes, among which the variants in the intergenic spacer region were the most abundant, with the highest number of variants concentrated in the LSC region. Based on the phylogenetic tree constructed using the ML method, population structure analysis, and principal component analysis (PCA), the panplastome data were subdivided into five genetic clusters. The C5 genetic cluster was mostly represented by samples from Qidong, Hunan Province, while samples from Shanxi and Shaanxi Provinces were classified into the C4 genetic cluster. The greatest genetic diversity was found in the C1 genetic cluster, and the greatest genetic distance between any two clusters was found between the C4 and C5 clusters. CONCLUSION: The resolution of the panplastome and the analysis of the population structure of H. citrina plastomes provide important data for future breeding projects and germplasm preservation.


Asunto(s)
Hemerocallis , Filogenia , Fitomejoramiento , ADN Intergénico , Variación Genética , Plantas Comestibles
2.
Chem Biodivers ; 21(2): e202301672, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38116924

RESUMEN

Two rare jatropham lactam derivatives, named as fulvanines J-K (1-2), together with six known pyrrole alkaloids, 5,5'-oxydi(3-methyl-3-pyrrolin-2-one) (3), (-)-5-hydroxy-3-methyl-3-pyrrolin-2-one (jatropham) (4), (±)-5-O-methyljatropham (5), perlolyrine (6), butyl-2-formyl-5-(hydroxymethyl)-1H-pyrrole-1-butanoate (7), and hemerocallisamine II (8), were isolated from the flower of Hemerocallis fulva. Their structures were elucidated on the basis of spectroscopic methods and compared with the NMR spectra data in the literature. All compounds were evaluated for their anti-complementary activity in vitro, and compounds 1, 4, and 6 exhibited anti-complement effect with CH50 values from 0.61 to 1.42 mM.


Asunto(s)
Alcaloides , Hemerocallis , Hemerocallis/química , Estructura Molecular , Lactamas/farmacología , Lactamas/química , Alcaloides/farmacología , Alcaloides/química , Pirroles/farmacología , Pirroles/química
3.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203825

RESUMEN

Plant polysaccharides are important for anti-aging research. Polysaccharides from Hemerocallis citrina Baroni (H. citrina) have been reported to have antioxidant activity; however, their anti-aging roles and mechanisms are not clear. In this study, we extracted polysaccharides from H. citrina by an ultrasonic-assisted water extraction-alcohol precipitation method and chemically determined the physicochemical properties such as extraction yield, content, and in vitro antioxidant properties of H. citrina polysaccharide-rich extract (HCPRE). Using Caenorhabditis elegans (C. elegans) as a model animal, the anti-aging effect of HCPRE was investigated, and the mechanism of action of HCPRE was explored by the in vivo antioxidant level assay of C. elegans and the related gene expression assay. The extraction yield of HCPRE was 11.26%, the total polysaccharide content was 77.96%, and the main monosaccharide components were glucose and galactose. In addition, HCPRE exhibited good antioxidant activity both in vitro and in vivo. Under normal thermal stress and oxidative stress conditions, being fed 1200 µg/mL of HCPRE significantly prolonged the life span of C. elegans by 32.65%, 17.71%, and 32.59%, respectively. Our study showed that HCPRE exerted an anti-aging effect on C. elegans, and its mechanism involves increasing the activities of catalase (CAT) and superoxide dismutase (SOD), reducing the level of reactive oxygen species (ROS) and regulating the expression of related genes.


Asunto(s)
Caenorhabditis elegans , Hemerocallis , Animales , Antioxidantes/farmacología , Envejecimiento , Polisacáridos/farmacología , Extractos Vegetales/farmacología
4.
BMC Plant Biol ; 23(1): 50, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36683035

RESUMEN

BACKGROUND: Hemerocallis citrina Baroni (daylily) is a horticultural ornamental plant and vegetable with various applications as a raw material in traditional Chinese medicine and as a flavouring agent. Daylily contains many functional substances and is rich in lecithin, which is mostly composed of glycerophospholipids. To study the comprehensive dynamic changes in glycerophospholipid during daylily flowering and the underlying signalling mechanisms, we performed comprehensive, time-resolved lipidomic and transcriptomic analyses of 'Datong Huanghua 6' daylily. RESULTS: Labelling with PKH67 fluorescent antibodies clearly and effectively helped visualise lipid changes in daylily, while relative conductivity and malonaldehyde content detection revealed that the early stages of flowering were controllable processes; however, differences became non-significant after 18 h, indicating cellular damage. In addition, phospholipase D (PLD) and lipoxygenase (LOX) activities increased throughout the flowering process, suggesting that lipid hydrolysis and oxidation had intensified. Lipidomics identified 558 lipids that changed during flowering, with the most different lipids found 12 h before and 12 h after flowering. Transcriptome analysis identified 13 key functional genes and enzymes in the glycerophospholipid metabolic pathway. The two-way orthogonal partial least squares analysis showed that diacylglycerol diphosphate phosphatase correlated strongly and positively with phosphatidic acid (PA)(22:0/18:2), PA(34:2), PA(34:4), and diacylglycerol(18:2/21:0) but negatively with phospholipase C. In addition, ethanolamine phosphotransferase gene and phospholipid-N-methyltransferase gene correlated positively with phosphatidylethanolamine (PE)(16:0/18:2), PE(16:0/18:3), PE(33:2), and lysophosphatidylcholine (16:0) but negatively with PE(34:1). CONCLUSIONS: Overall, this study elucidated changes in the glycerophospholipid metabolism pathway during the daylily flowering process, as well as characteristic genes, thus providing a basis for future studies of glycerophospholipids and signal transduction in daylilies.


Asunto(s)
Hemerocallis , Hemerocallis/fisiología , Diglicéridos , Lipidómica , Transcriptoma , Ácidos Fosfatidicos , Glicerofosfolípidos
5.
BMC Plant Biol ; 23(1): 491, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37828495

RESUMEN

BACKGROUND: Hemerocallis citrina Baroni is a traditional medical and edible plant. It is rich in flavonoid compounds, which are a kind of important bioactive components with various health benefits and pharmaceutical value. However, the flavonoid metabolomics profile and the comparison of flavonoid compounds from different parts of H. citrina is scarce. RESULTS: In this study, flavonoid metabolites were investigated from roots, stems, leaves and flowers of H. citrina. A total of 364 flavonoid metabolites were identified by UPLC-MS/MS based widely targeted metabolomics, and the four plant parts showed huge differences at flavonoid metabolic level. Compared to roots, 185, 234, and 119 metabolites accounted for upregulated differential flavonoid metabolites (DFMs) in stems, leaves, and flowers, respectively. Compared to stems, 168 and 29 flavonoid metabolites accounted for upregulated DFMs in leaves and flowers, respectively. Compared to leaves, only 29 flavonoid metabolites accounted for upregulated DFMs in flowers. A number of 35 common flavonoid metabolites were observed among six comparison groups, and each comparison group had its unique differential metabolites. The most abundant flavonoid metabolites in the four parts are flavonols and flavones, followed by flavanones, chalcones, flavanols, flavanonols, anthocyanidins, tannin, and proanthocyanidins. 6,7,8-Tetrahydroxy-5-methoxyflavone, 7,8,3',4'-tetrahydroxyflavone, 1-Hydroxy-2,3,8-trimethoxyxanthone, Farrerol-7-O-glucoside, 3',7-dihydroxy-4'-methoxyflavone, 3,3'-O-Dimethylellagic Acid, 5-Hydroxy-6,7-dimethoxyflavone, Nepetin (5,7,3',4'-Tetrahydroxy-6-methoxyflavone), (2s)-4,8,10-trihydroxy-2-methoxy-1 h,2 h-furo[3,2-a]xanthen-11-one are dominant in roots. Isorhamnetin-3-O-(6''-malonyl)glucoside-7-O-rhamnoside, 7-Benzyloxy-5-hydroxy-3',4'-methylenedioxyflavonoid, 3-Hydroxyphloretin-4'-O-glucoside are dominant in stems. Chrysoeriol-7-O-glucoside, Epicatechin glucoside, Kaempferol-3-O-rhamnoside (Afzelin)(Kaempferin)*, Azaleatin (5-O-Methylquercetin), Chrysoeriol-5-O-glucoside, Nepetin-7-O-glucoside(Nepitrin), 3,5,7,2'-Tetrahydroxyflavone; Datiscetin, Procyanidin B2*, Procyanidin B3*, Procyanidin B1, Isorhamnetin-3-O-(6''-acetylglucoside) are dominant in leaves. kaempferol-3-p-coumaroyldiglucoside, Delphinidin-3-O-sophoroside-5-O-glucoside, Limocitrin-3-O-sophoroside, Kaempferol-3-O-rutinoside(Nicotiflorin), Luteolin-7-O-(6''-malonyl)glucoside-5-O-rhamnoside are dominant in flowers. CONCLUSION: There was significant difference in flavonoid metabolites among different parts of H. citrina. Leaves had relative higher metabolites contents than other parts. This study provided biological and chemical evidence for the different uses of various plant parts of H. citrina, and these informations are important theoretical basis for the food industry, and medical treatment.


Asunto(s)
Hemerocallis , Quempferoles , Cromatografía Liquida , Espectrometría de Masas en Tándem , Flavonoides/química , Glucósidos
6.
Nutr Cancer ; 75(8): 1658-1672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37317949

RESUMEN

Hemerocallis citrina Baroni is an edible plant with anti-inflammatory, antidepressant, and anticancer activities. However, studies on H. citrina polysaccharides are limited. In this study, a polysaccharide named HcBPS2 was isolated and purified from H. citrina. Monosaccharide component analysis showed that HcBPS2 was composed of rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid. Notably, HcBPS2 significantly inhibited human hepatoma cell proliferation, but had little effect on human normal liver cells (HL-7702). Mechanism investigations indicated HcBPS2 suppressed human hepatoma cell growth through the induction of G2/M phase arrest and mitochondria-dependent apoptosis in human hepatoma cells. In addition, the data revealed that HcBPS2 treatment led to the inactivation of Wnt/ß-catenin signaling, which then gave rise to cell cycle arrest and apoptosis in human hepatoma cancer cells. Collectively, these findings suggested that HcBPS2 may serve as a therapeutic agent against liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Hemerocallis , Neoplasias Hepáticas , Humanos , beta Catenina , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular , Neoplasias Hepáticas/tratamiento farmacológico , Polisacáridos/farmacología , Vía de Señalización Wnt/efectos de los fármacos
7.
Chin J Physiol ; 66(5): 313-325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929342

RESUMEN

The flowers of daylily (Hemerocallis fulva Linn.) have been used as vegetable and medicinal herb for thousands of years in Taiwan and eastern Asia. Daylily flowers have been demonstrated to exert several biomedical properties. In this study, we provided the evidences show that daylily flowers exert anti-inflammatory activity in vitro and improved the sleep quality in vivo. We demonstrated that adult volunteers received water extract of daylily flowers improved sleep quality, sleep efficiency and daytime functioning, while sleep latency was reduced, compared to the adult volunteers received water. In addition, we demonstrated that aqueous and ethanol extracts of daylily flowers inhibited nitric oxide and interleukin-6 production in lipopolysaccharide-activated macrophages. Furthermore, the quantitative high performance liquid chromatography-based analysis showed the rutin content of the aqueous extract, ethanolic extract, ethyl acetate fractions of ethanolic extract, and water fractions of ethanolic extract were 7.27, 23.30, 14.71, and 57.43 ppm, respectively. These results indicate that daylily flowers have the potential to be a nutraceutical for improving inflammatory-related diseases and sleep quality in the future.


Asunto(s)
Hemerocallis , Extractos Vegetales , Calidad del Sueño , Humanos , Flores/química , Hemerocallis/química , Interleucina-6 , Macrófagos , Óxido Nítrico , Extractos Vegetales/farmacología
8.
Sensors (Basel) ; 23(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37765935

RESUMEN

Timely detection and management of daylily diseases are crucial to prevent yield reduction. However, detection models often struggle with handling the interference of complex backgrounds, leading to low accuracy, especially in detecting small targets. To address this problem, we propose DaylilyNet, an object detection algorithm that uses multi-task learning to optimize the detection process. By incorporating a semantic segmentation loss function, the model focuses its attention on diseased leaf regions, while a spatial global feature extractor enhances interactions between leaf and background areas. Additionally, a feature alignment module improves localization accuracy by mitigating feature misalignment. To investigate the impact of information loss on model detection performance, we created two datasets. One dataset, referred to as the 'sliding window dataset', was obtained by splitting the original-resolution images using a sliding window. The other dataset, known as the 'non-sliding window dataset', was obtained by downsampling the images. Experimental results in the 'sliding window dataset' and the 'non-sliding window dataset' demonstrate that DaylilyNet outperforms YOLOv5-L in mAP@0.5 by 5.2% and 4.0%, while reducing parameters and time cost. Compared to other models, our model maintains an advantage even in scenarios where there is missing information in the training dataset.


Asunto(s)
Hemerocallis , Algoritmos , Aprendizaje , Mantenimiento , Hojas de la Planta
9.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902274

RESUMEN

Daylily (Hemerocallis citrina Baroni) is an edible plant widely distributed worldwide, especially in Asia. It has traditionally been considered a potential anti-constipation vegetable. This study aimed to investigate the anti-constipation effects of daylily from the perspective of gastro-intestinal transit, defecation parameters, short-chain organic acids, gut microbiome, transcriptomes and network pharmacology. The results show that dried daylily (DHC) intake accelerated the defecation frequency of mice, while it did not significantly alter the levels of short-chain organic acids in the cecum. The 16S rRNA sequencing showed that DHC elevated the abundance of Akkermansia, Bifidobacterium and Flavonifractor, while it reduced the level of pathogens (such as Helicobacter and Vibrio). Furthermore, a transcriptomics analysis revealed 736 differentially expressed genes (DEGs) after DHC treatment, which are mainly enriched in the olfactory transduction pathway. The integration of transcriptomes and network pharmacology revealed seven overlapping targets (Alb, Drd2, Igf2, Pon1, Tshr, Mc2r and Nalcn). A qPCR analysis further showed that DHC reduced the expression of Alb, Pon1 and Cnr1 in the colon of constipated mice. Our findings provide a novel insight into the anti-constipation effects of DHC.


Asunto(s)
Estreñimiento , Hemerocallis , Laxativos , Animales , Ratones , Estreñimiento/terapia , Microbioma Gastrointestinal , Hemerocallis/química , Farmacología en Red , ARN Ribosómico 16S , Laxativos/química , Laxativos/farmacología , Laxativos/uso terapéutico , Ciego/efectos de los fármacos
10.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108448

RESUMEN

MicroRNAs (miRNAs) belong to non-coding small RNAs which have been shown to take a regulatory function at the posttranscriptional level in plant growth development and response to abiotic stress. Hemerocallis fulva is an herbaceous perennial plant with fleshy roots, wide distribution, and strong adaptability. However, salt stress is one of the most serious abiotic stresses to limit the growth and production of Hemerocallis fulva. To identify the miRNAs and their targets involved in the salt stress resistance, the salt-tolerant H. fulva with and without NaCl treatment were used as materials, and the expression differences of miRNAs-mRNAs related to salt-tolerance were explored and the cleavage sites between miRNAs and targets were also identified by using degradome sequencing technology. In this study, twenty and three significantly differential expression miRNAs (p-value < 0.05) were identified in the roots and leaves of H. fulva separately. Additionally, 12,691 and 1538 differentially expressed genes (DEGs) were also obtained, respectively, in roots and leaves. Moreover, 222 target genes of 61 family miRNAs were validated by degradome sequencing. Among the DE miRNAs, 29 pairs of miRNA targets displayed negatively correlated expression profiles. The qRT-PCR results also showed that the trends of miRNA and DEG expression were consistent with those of RNA-seq. A gene ontology (GO) enrichment analysis of these targets revealed that the calcium ion pathway, oxidative defense response, microtubule cytoskeleton organization, and DNA binding transcription factor responded to NaCl stress. Five miRNAs, miR156, miR160, miR393, miR166, and miR396, and several hub genes, squamosa promoter-binding-like protein (SPL), auxin response factor 12 (ARF), transport inhibitor response 1-like protein (TIR1), calmodulin-like proteins (CML), and growth-regulating factor 4 (GRF4), might play central roles in the regulation of NaCl-responsive genes. These results indicate that non-coding small RNAs and their target genes that are related to phytohormone signaling, Ca2+ signaling, and oxidative defense signaling pathways are involved in H. fulva's response to NaCl stress.


Asunto(s)
Hemerocallis , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Hemerocallis/genética , Regulación de la Expresión Génica de las Plantas , ARN Mensajero , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento
11.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838695

RESUMEN

Sonchus arvensis Linn. and Hemerocallis citrina Baroni. have been reported to improve body resistance. However, the underlying mechanism is not clear. In this study, Sonchus arvensis Linn. phenolic compounds (SAP) and Hemerocallis citrina Baroni. phenolic compounds (HCP) were extracted and their protective effects in Caenorhabditis elegans evaluated. SAP and HCP showed considerably different phenolic compositions. In the normal C. elegans model, HCP exhibited better effects in promoting growth than SAP. In the sucrose-incubated C. elegans model, both SAP and HCP showed positive effects against the high-sucrose-induced damage. In the stearic acid-incubated C. elegans model, both SAP and HCP improved lifespan, reproductive ability and growth, while HCP had a more evident effect than SAP on reproductive ability. The TGF-ß signaling pathway was confirmed to be involved in the protective effects of SAP and HCP. The antioxidant ability of SAP was also found to be related to skn-1. Our study shows that both SAP and HCP have protective effects against high sucrose- or high stearic acid-induced damage.


Asunto(s)
Hemerocallis , Sonchus , Animales , Caenorhabditis elegans , Antioxidantes/farmacología , Fenoles
12.
BMC Plant Biol ; 22(1): 211, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468723

RESUMEN

BACKGROUND: The Sugars Will Eventually be Exported Transporters (SWEETs) are a newly discovered family of sugar transporters whose members exist in a variety of organisms and are highly conserved. SWEETs have been reported to be involved in the growth and development of many plants, but little is known about SWEETs in daylily (Hemerocallis fulva), an important perennial ornamental flower. RESULTS: In this study, 19 daylily SWEETs were identified and named based on their homologous genes in Arabidopsis and rice. Phylogenetic analysis classified these HfSWEETs into four clades (Clades I to IV). The conserved motifs and gene structures showed that the HfSWEETs were very conservative during evolution. Chromosomal localization and synteny analysis found that HfSWEETs were unevenly distributed on 11 chromosomes, and there were five pairs of segmentally duplicated events and one pair of tandem duplication events. The expression patterns of the 19 HfSWEETs showed that the expression patterns of most HfSWEETs in different tissues were related to corresponding clades, and most HfSWEETs were up-regulated under low temperatures. Furthermore, HfSWEET17 was overexpressed in tobacco, and the cold resistance of transgenic plants was much higher than that of wild-type tobacco. CONCLUSION: This study identified the SWEET gene family in daylily at the genome-wide level. Most of the 19 HfSWEETs were expressed differently in different tissues and under low temperatures. Overexpression further suggests that HfSWEET17 participates in daylily low-temperature response. The results of this study provide a basis for further functional analysis of the SWEET family in daylily.


Asunto(s)
Arabidopsis , Hemerocallis , Arabidopsis/genética , Respuesta al Choque por Frío/genética , Flores , Proteínas de Transporte de Membrana/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
13.
Ann Bot ; 129(4): 429-441, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35018412

RESUMEN

BACKGROUND AND AIMS: Many angiosperms can secrete both floral (FN) and extrafloral (EFN) nectar. However, much remains unclear about how EFN and FN differ in secretion, composition and ecological function, especially when both FN and EFN are secreted on flowers of the same species. METHODS: Hemerocallis citrina flowers secrete both FN and EFN. The FN and EFN traits including volume, presentation pattern and temporal rhythms of secretion were compared by field observation. Sugar and amino acid contents were analysed using regular biochemical methods, whereas the proteome was investigated by combined gel-based and gel-free approaches. Animal feeders on FN and EFN were investigated by field observation. Hemerocallis citrina plants were exposed by soil drenching to two systemic insecticides, acetamiprid and imidacloprid, and the concentration of these in FN and EFN was measured by ultra-high performance liquid chromatography coupled with mass spectrometry. KEY RESULTS: Hemerocallis citrina FN was concentrated and sucrose dominant, secreted in the mature flower tube and served as a reward for pollinators. Conversely, EFN was hexose rich, more dilute and less rich in sugar and amino acids. EFN was secreted on the outside of developing floral buds, and was likely to attract predatory animals for defence. EFN had fewer phenolics, but more pathogenesis-related components, such as chitinase and glucanase. A significantly different proteomic profile and enzymatic activities between FN and EFN suggest that they had different biosynthesis mechanisms. Both neonicotinoid insecticides examined became present in both nectar types soon after application, but in greater concentration within EFN; EFN also attracted a wider range of insect species than FN. CONCLUSIONS: Hemerocallis citrina FN and EFN differed in production, composition and ecological function. The EFN pathway could be a significant way for neonicotinoids to enter the wild food chain, and must be considered when evaluating the risks to the environment of other systemic insecticides.


Asunto(s)
Hormigas , Hemerocallis , Insecticidas , Animales , Carbohidratos , Flores/metabolismo , Hemerocallis/metabolismo , Neonicotinoides , Néctar de las Plantas/metabolismo , Proteómica , Azúcares
14.
Molecules ; 27(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35566266

RESUMEN

Hemerocallis fulva is a medical and edible plant. In this study, we optimized the ultrasound-assisted extraction (UAE) process of extracting flavonoids from Hemerocallis fulva leaves by single-factor experiments and response surface methodology (RSM). The optimum extraction conditions generating the maximal total flavonoids content was as follows: 70.6% ethanol concentration; 43.9:1 mL/g solvent to sample ratio; 61.7 °C extraction temperature. Under the optimized extraction conditions, the total flavonoid content (TFC) in eight Hemerocallis fulva varieties were determined, and H. fulva (L.) L. var. kwanso Regel had the highest TFC. The cytotoxicity of the extract was studied using the Cell Counting Kit-8 (CCK-8 assay). When the concentration was less than 1.25 mg/mL, the extract had no significant cytotoxicity to HaCaT cells. The antioxidant activity was measured via chemical antioxidant activity methods in vitro and via cellular antioxidant activity methods. The results indicated that the extract had a strong ABTS and •OH radical scavenging activity. Additionally, the extract had an excellent protective effect against H2O2-induced oxidative damage at a concentration of 1.25 mg/mL, which could effectively reduce the level of ROS to 106.681 ± 9.733% (p < 0.001), compared with the 163.995 ± 6.308% of the H2O2 group. We identified five flavonoids in the extracts using high-performance liquid chromatography (HPLC). Infrared spectroscopy indicated that the extract contained the structure of flavonoids. The results showed that the extract of Hemerocallis fulva leaves had excellent biocompatibility and antioxidant activity, and could be used as a cheap and potential source of antioxidants in the food, cosmetics, and medicine industries.


Asunto(s)
Hemerocallis , Antioxidantes/química , Flavonoides/química , Hemerocallis/química , Peróxido de Hidrógeno/análisis , Extractos Vegetales/química , Hojas de la Planta/química
15.
Molecules ; 27(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566310

RESUMEN

Daylily is a valuable plant resource with various health benefits. Its main bioactive components are phenolic compounds. In this work, four extraction methods, ultrasonic-assisted water extraction (UW), ultrasonic-assisted ethanol extraction (UE), enzymatic-assisted water extraction (EW), and enzymatic-assisted ethanol extraction (EE), were applied to extract phenolic compounds from daylily. Among the four extracts, the UE extract exhibited the highest total phenolic content (130.05 mg/100 g DW) and the best antioxidant activity. For the UE extract, the DPPH value was 7.75 mg Trolox/g DW, the FRAP value was 14.54 mg Trolox/g DW, and the ABTS value was 15.37 mg Trolox/g DW. A total of 26 phenolic compounds were identified from the four extracts, and the UE extract exhibited a higher abundance range of phenolic compounds than the other three extracts. After multivariate statistical analysis, six differential compounds were selected and quantified, and the UE extract exhibited the highest contents of all six differential compounds. The results provided theoretical support for the extraction of phenolic compounds from daylily and the application of daylily as a functional food.


Asunto(s)
Hemerocallis , Antioxidantes/química , Etanol , Hemerocallis/química , Fenoles/química , Extractos Vegetales/química , Agua
16.
Molecules ; 27(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144545

RESUMEN

The World Health Organization predicts that over the next several years, depression will become the most important mental health issue globally. Growing evidence shows that the flower buds of Hemerocallis citrina Baroni (H. citrina) possess antidepressant properties. In the search for new anti-depression drugs, a total of 15 phenylpropanoids and 22 flavonoids were isolated and identified based on spectral data (1D and 2D NMR, HR-ESI-MS, UV) from H. citrina. Among them, compound 8 was a novel compound, while compounds 1-4, 6, 9, 10, 15, 17, 24-26, 28, and 37 were isolated for the first time from Hemerocallis genus. To study the antidepressant activity of phenylpropanoids and flavonoids fractions from H. citrina, macroporous resin was used to enrich them under the guidance of UV characteristics. UHPLC-MS/MS was applied to identify the constituents of the enriched fractions. According to behavioral tests and biochemical analyses, it showed that phenylpropanoid and flavonoid fractions from H. citrina can improve the depressive-like mental state of chronic unpredictable mild stress (CUMS) rats. This might be accomplished by controlling the amounts of the inflammatory proteins IL-6, IL-1ß, and TNF-α in the hippocampus as well as corticosterone in the serum. Thus, the monomer compounds were tested for their anti-neuroinflammatory activity and their structure-activity relationship was discussed in further detail.


Asunto(s)
Hemerocallis , Animales , Antidepresivos/farmacología , Corticosterona , Flavonoides/farmacología , Hemerocallis/química , Interleucina-6 , Ratas , Estrés Psicológico/metabolismo , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa
17.
Mol Phylogenet Evol ; 164: 107264, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273506

RESUMEN

The perennial herb genus Hemerocallis (Asphodelaceae) shows four flowering types: diurnal half-day, diurnal one-day, nocturnal half-day, and nocturnal one-day flowering. These flowering types are corresponding to their main pollinators, and probably act as a primary mechanism of reproductive isolation. To examine how the four flowering types diverged, we reconstructed the phylogeny of the Japanese species of Hemerocallis using 1615 loci of nuclear genome-wide SNPs and 2078 bp sequences of four cpDNA regions. We also examined interspecific gene flows among taxa by an Isolation-with-Migration model and a population structure analysis. Our study revealed an inconsistency between chloroplast and nuclear genome phylogenies, which may have resulted from chloroplast capture. Each of the following five clusters is monophyletic and clearly separated on the nuclear genome-wide phylogenetic tree: (I) two nocturnal flowering species with lemon-yellow flowers, H. citrina (half-day flowering) and H. lilioasphodelus (one-day flowering); (II) a diurnal one-day flowering species with yellow-orange flowers, H. middendorffii; (III) a variety of a diurnal half-day flowering species with reddish orange flowers, H. fulva var. disticha; (IV) another variety of a diurnal half-day flowering species with reddish orange flowers, H. fulva var. aurantiaca, and a diurnal one-day flowering species with yellow-orange flowers, H. major; (V) a diurnal half-day flowering species with yellow-orange flowers, H. hakuunensis. The five clusters are consistent with traditional phenotype-based taxonomy (cluster I, cluster II, and clusters III-V correspond to Hemerocallis sect. Hemerocallis, Capitatae, and Fulvae, respectively). These findings could indicate that three flowering types (nocturnal flowering, diurnal one-day flowering, and diurnal half-day flowering) diverged in early evolutionary stages of Hemerocallis and subsequently a change from diurnal half-day flowering to diurnal one-day flowering occurred in a lineage of H. major. While genetic differentiation among the five clusters was well maintained, significant gene flow was detected between most pairs of taxa, suggesting that repeated hybridization played a role in the evolution of those taxa.


Asunto(s)
Hemerocallis , Cloroplastos , Flores/genética , Flujo Génico , Hemerocallis/genética , Japón , Filogenia
18.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34769440

RESUMEN

SHORT VEGETATIVE PHASE (SVP) genes are members of the well-known MADS-box gene family that play a key role in regulating vital developmental processes in plants. Hemerocallis are perennial herbs that exhibit continuous flowering development and have been extensively used in landscaping. However, there are few reports on the regulatory mechanism of flowering in Hemerocallis. To better understand the molecular basis of floral formation of Hemerocallis, we identified and characterized the SVP-like gene HkSVP from the Hemerocallis cultivar 'Kanai Sensei'. Quantitative RT-PCR (qRT-PCR) indicated that HkSVP transcript was mainly expressed in the vegetative growth stage and had the highest expression in leaves, low expression in petals, pedicels and fruits, and no expression in pistils. The HkSVP encoded protein was localized in the nucleus of Arabidopsis protoplasts and the nucleus of onion epidermal cells. Yeast two hybrid assay revealed that HKSVP interacted with Hemerocallis AP1 and TFL1. Moreover, overexpression of HkSVP in Arabidopsis resulted in delayed flowering and abnormal phenotypes, including enriched trichomes, increased basal inflorescence branches and inhibition of inflorescence formation. These observations suggest that the HkSVP gene may play an important role in maintaining vegetative growth by participating in the construction of inflorescence structure and the development of flower organs.


Asunto(s)
Flores/crecimiento & desarrollo , Hemerocallis/crecimiento & desarrollo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Flores/genética , Flores/metabolismo , Hemerocallis/genética , Hemerocallis/metabolismo , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Proteínas de Dominio MADS/genética , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
BMC Plant Biol ; 20(1): 31, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959097

RESUMEN

BACKGROUND: Daylilies are a lucrative crop used for its floral beauty, medicinal proprieties, landscaping, fire prevention, nutritional value, and research. Despite the importance, daylilies remain extremely challenging for multiplying in vitro. The response difficulty is exacerbated because a few good protocols for daylilies micropropagation are generally difficult to reproduce across genotypes. An efficient strategy, currently applied at Langston University, is to systematically explore individual tissues or organs for their potential to micropropagation. This article is a partial report of the investigation carried out under room environmental conditions and focuses on developing an efficient daylilies in vitro propagation protocol that uses the stem tissue as the principal explant. RESULTS: In less than three months, using thidiazuron, the use of the stem tissue as the in vitro experimental explant was successful in inducing multiple shoots several folds greater than current daylilies shoot organogenesis protocols. The study showed that tissue culture can be conducted successfully under unrestricted room environmental conditions as well as under the controlled environment of a growth chamber. It also showed that splitting lengthwise stem explants formed multiple shoots several folds greater than cross-sectioned and inverted explants. Shoot conversion rate was mostly independent of the number of shoots formed per explants. The overall response was explant and genotype-dependent. Efficient responses were observed in all thidiazuron treatments. CONCLUSION: An efficient protocol, which can be applied for mass multiple shoots formation using the daylilies stem tissue as the main explant, was successfully developed. This could lead to a broad and rapid propagation of the crop under an array of environmental conditions to meet the market demand and hasten exogenous gene transfer and breeding selection processes.


Asunto(s)
Hemerocallis/fisiología , Compuestos de Fenilurea/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/fisiología , Regeneración , Tiadiazoles/farmacología , Técnicas de Cultivo de Tejidos
20.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182911

RESUMEN

The global depression population is showing a significant increase. Hemerocallis fulva L. is a common Traditional Chinese Medicine (TCM). Its flower buds are known to have ability to clear away heat and dampness, detoxify, and relieve depression. Ancient TCM literature shows that its roots have a beneficial effect in calming the spirit and even the temper in order to reduce the feeling of melancholy. Therefore, it is inferred that the root of Hemerocallis fulva L. can be used as a therapeutic medicine for depression. This study aims to uncover the pharmacological mechanism of the antidepressant effect of Hemerocallis Radix (HR) through network pharmacology method. During the analysis, 11 active components were obtained and screened using ADME-absorption, distribution, metabolism, and excretion- method. Furthermore, 267 HR targets and 740 depressive disorder (DD) targets were gathered from various databases. Then protein-protein interaction (PPI) network of HR and DD targets were constructed and cluster analysis was applied to further explore the connection between the targets. In addition, gene ontology (GO) enrichment and pathway analysis was applied to further verify that the biological process related to the target protein is associated with the occurrence of depression disorder. In conclusion, the most important bioactive components-anthraquinone, kaempferol, and vanillic acid-can alleviate depression symptoms by regulating MAOA, MAOB, and ESR1. The proposed network pharmacology strategy provides an integrating method to explore the therapeutic mechanism of multi-component drugs on a systematic level.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Trastorno Depresivo/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Hemerocallis/química , Ontología de Genes , Humanos , Medicina Tradicional China/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA