Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.964
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 145(5): 720-31, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21620137

RESUMEN

Extracellular free heme can intercalate into membranes and promote damage to cellular macromolecules. Thus it is likely that specific intercellular pathways exist for the directed transport, trafficking, and delivery of heme to cellular destinations, although none have been found to date. Here we show that Caenorhabditis elegans HRG-3 is required for the delivery of maternal heme to developing embryos. HRG-3 binds heme and is exclusively secreted by maternal intestinal cells into the interstitial fluid for transport of heme to extraintestinal cells, including oocytes. HRG-3 deficiency results either in death during embryogenesis or in developmental arrest immediately post-hatching-phenotypes that are fully suppressed by maternal but not zygotic hrg-3 expression. Our results establish a role for HRG-3 as an intercellular heme-trafficking protein.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Hemo/metabolismo , Hemoproteínas/metabolismo , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Hemo/deficiencia , Hemoproteínas/química , Hemoproteínas/genética , Mucosa Intestinal/metabolismo , Mutación , Fenotipo , Transporte de Proteínas , Vías Secretoras
2.
Proc Natl Acad Sci U S A ; 120(31): e2306046120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487099

RESUMEN

The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.


Asunto(s)
Hemoproteínas , Biofisica , Microscopía por Crioelectrón , Electrones , Oxidación-Reducción
3.
Proc Natl Acad Sci U S A ; 120(26): e2306318120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37307435

RESUMEN

Histidine-rich protein II (HRPII) is secreted by Plasmodium falciparum during the blood stage of malaria infection. High plasma levels of HRPII are associated with cerebral malaria, a severe and highly fatal complication of malaria. HRPII has been shown to induce vascular leakage, the hallmark of cerebral malaria, in blood-brain barrier (BBB) and animal models. We have discovered an important mechanism for BBB disruption that is driven by unique features of HRPII. By characterizing serum from infected patients and HRPII produced by P. falciparum parasites in culture, we found that HRPII exists in large multimeric particles of 14 polypeptides that are richly laden with up to 700 hemes per particle. Heme loading of HRPII is required for efficient binding and internalization via caveolin-mediated endocytosis in hCMEC/D3 cerebral microvascular endothelial cells. Upon acidification of endolysosomes, two-thirds of the hemes are released from acid-labile binding sites and metabolized by heme oxygenase 1, generating ferric iron and reactive oxygen species. Subsequent activation of the NLRP3 inflammasome and IL-1ß secretion resulted in endothelial leakage. Inhibition of these pathways with heme sequestration, iron chelation, or anti-inflammatory drugs protected the integrity of the BBB culture model from HRPII:heme. Increased cerebral vascular permeability was seen after injection of young mice with heme-loaded HRPII (HRPII:heme) but not with heme-depleted HRPII. We propose that during severe malaria infection, HRPII:heme nanoparticles in the bloodstream deliver an overwhelming iron load to endothelial cells to cause vascular inflammation and edema. Disrupting this process is an opportunity for targeted adjunctive therapies to reduce the morbidity and mortality of cerebral malaria.


Asunto(s)
Hemoproteínas , Malaria Cerebral , Malaria Falciparum , Animales , Ratones , Histidina , Células Endoteliales , Inflamación , Hemo , Hierro
4.
J Biol Chem ; 300(5): 107250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569935

RESUMEN

The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.


Asunto(s)
Hemo , Unión Proteica , Humanos , Sitios de Unión , Biología Computacional/métodos , Simulación por Computador , Bases de Datos de Proteínas , Hemo/metabolismo , Hemo/química , Hemoproteínas/metabolismo , Hemoproteínas/química , Hemoproteínas/genética , Modelos Moleculares , Estructura Terciaria de Proteína
5.
J Biol Chem ; 300(4): 107132, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432636

RESUMEN

Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.


Asunto(s)
Fenómenos Fisiológicos Celulares , Hemo , Animales , Humanos , Ritmo Circadiano/fisiología , Hemo/metabolismo , Hemoproteínas/metabolismo , Oxidación-Reducción , Transducción de Señal , Espacio Intracelular/metabolismo , Fenómenos Fisiológicos Celulares/fisiología
6.
Mol Microbiol ; 122(1): 29-49, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38778742

RESUMEN

Nitric oxide (˙NO) is a free radical that induces nitrosative stress, which can jeopardize cell viability. Yeasts have evolved diverse detoxification mechanisms to effectively counteract ˙NO-mediated cytotoxicity. One mechanism relies on the flavohemoglobin Yhb1, whereas a second one requires the S-nitrosoglutathione reductase Fmd2. To investigate heme-dependent activation of Yhb1 in response to ˙NO, we use hem1Δ-derivative Schizosaccharomyces pombe strains lacking the initial enzyme in heme biosynthesis, forcing cells to assimilate heme from external sources. Under these conditions, yhb1+ mRNA levels are repressed in the presence of iron through a mechanism involving the GATA-type transcriptional repressor Fep1. In contrast, when iron levels are low, the transcription of yhb1+ is derepressed and further induced in the presence of the ˙NO donor DETANONOate. Cells lacking Yhb1 or expressing inactive forms of Yhb1 fail to grow in a hemin-dependent manner when exposed to DETANONOate. Similarly, the loss of function of the heme transporter Str3 phenocopies the effects of Yhb1 disruption by causing hypersensitivity to DETANONOate under hemin-dependent culture conditions. Coimmunoprecipitation and bimolecular fluorescence complementation assays demonstrate the interaction between Yhb1 and the heme transporter Str3. Collectively, our findings unveil a novel pathway for activating Yhb1, fortifying yeast cells against nitrosative stress.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Factores de Transcripción GATA , Regulación Fúngica de la Expresión Génica , Hemo/metabolismo , Hemoproteínas/metabolismo , Hemoproteínas/genética , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Óxido Nítrico/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
7.
Bioessays ; 45(8): e2300055, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37276366

RESUMEN

A natural heme deficiency that exists in cells outside of the circulation broadly compromises the heme contents and functions of heme proteins in cells and tissues. Recently, we found that the signaling molecule, nitric oxide (NO), can trigger or repress the deployment of intracellular heme in a concentration-dependent hormetic manner. This uncovers a new role for NO and sets the stage for it to shape numerous biological processes by controlling heme deployment and consequent heme protein functions in biology.


Asunto(s)
Hemoproteínas , Óxido Nítrico , Óxido Nítrico/metabolismo , Hemo/metabolismo , Transducción de Señal , Biología
8.
Mol Cell Proteomics ; 22(12): 100679, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979947

RESUMEN

The ability of an organism to respond to environmental changes is paramount to survival across a range of conditions. The bacterial heme nitric oxide/oxygen binding proteins (H-NOX) are a family of biofilm-regulating gas sensors that enable bacteria to respond accordingly to the cytotoxic molecule nitric oxide. By interacting with downstream signaling partners, H-NOX regulates the production of the bacterial secondary messenger cyclic diguanylate monophosphate (c-di-GMP) to influence biofilm formation. The aquatic organism Caulobacter crescentus has the propensity to attach to surfaces as part of its transition into the stalked S-phase of its life cycle. This behavior is heavily influenced by intracellular c-di-GMP and thus poses H-NOX as a potential influencer of C. crescentus surface attachment and cell cycle. By generating a strain of C. crescentus lacking hnox, our laboratory has demonstrated that this strain exhibits a considerable growth deficit, an increase in biofilm formation, and an elevation in c-di-GMP. Furthermore, in our comprehensive proteome study of 2779 proteins, 236 proteins were identified that exhibited differential expression in Δhnox C. crescentus, with 132 being downregulated and 104 being upregulated, as determined by a fold change of ≥1.5 or ≤0.66 and a p value ≤0.05. Our systematic analysis unveiled several regulated candidates including GcrA, PopA, RsaA, FtsL, DipM, FlgC, and CpaE that are associated with the regulation of the cellular division process, surface proteins, flagellum, and pili assembly. Further examination of Gene Ontology and pathways indicated that the key differences could be attributed to several metabolic processes. Taken together, our data indicate a role for the HNOX protein in C. crescentus cell cycle progression.


Asunto(s)
Caulobacter crescentus , Hemoproteínas , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Óxido Nítrico/metabolismo , GMP Cíclico/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Ciclo Celular , Hemo/metabolismo , Regulación Bacteriana de la Expresión Génica
9.
Proc Natl Acad Sci U S A ; 119(30): e2108245119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858410

RESUMEN

Heme is an oxygen carrier and a cofactor of both industrial enzymes and food additives. The intracellular level of free heme is low, which limits the synthesis of heme proteins. Therefore, increasing heme synthesis allows an increased production of heme proteins. Using the genome-scale metabolic model (GEM) Yeast8 for the yeast Saccharomyces cerevisiae, we identified fluxes potentially important to heme synthesis. With this model, in silico simulations highlighted 84 gene targets for balancing biomass and increasing heme production. Of those identified, 76 genes were individually deleted or overexpressed in experiments. Empirically, 40 genes individually increased heme production (up to threefold). Heme was increased by modifying target genes, which not only included the genes involved in heme biosynthesis, but also those involved in glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-coenzyme A (CoA) metabolism. Next, we developed an algorithmic method for predicting an optimal combination of these genes by using the enzyme-constrained extension of the Yeast8 model, ecYeast8. The computationally identified combination for enhanced heme production was evaluated using the heme ligand-binding biosensor (Heme-LBB). The positive targets were combined using CRISPR-Cas9 in the yeast strain (IMX581-HEM15-HEM14-HEM3-Δshm1-HEM2-Δhmx1-FET4-Δgcv2-HEM1-Δgcv1-HEM13), which produces 70-fold-higher levels of intracellular heme.


Asunto(s)
Hemo , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Simulación por Computador , Hemo/biosíntesis , Hemo/genética , Hemoproteínas/biosíntesis , Hemoproteínas/genética , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Bacteriol ; 206(6): e0044423, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506530

RESUMEN

Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.


Asunto(s)
Proteínas Bacterianas , Hemo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Hemo/metabolismo , Proteínas de Unión al Hemo/metabolismo , Hemoproteínas/metabolismo , Hemoproteínas/genética , Hemoproteínas/química , Unión Proteica , Proteobacteria/metabolismo , Proteobacteria/genética
11.
Biochemistry ; 63(1): 116-127, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38127721

RESUMEN

FixL is an oxygen-sensing heme-PAS protein that regulates nitrogen fixation in the root nodules of plants. In this paper, we present the first photothermal studies of the full-length wild-type FixL protein from Sinorhizobium meliloti and the first thermodynamic profile of a full-length heme-PAS protein. Photoacoustic calorimetry studies reveal a quadriphasic relaxation for SmFixL*WT and the five variant proteins (SmFixL*R200H, SmFixL*R200Q, SmFixL*R200E, SmFixL*R200A, and SmFixL*I209M) with four intermediates from <20 ns to ∼1.5 µs associated with the photodissociation of CO from the heme. The altered thermodynamic profiles of the full-length SmFixL* variant proteins confirm that the conserved heme domain residues R200 and I209 are important for signal transduction. In contrast, the truncated heme domain, SmFixLH128-264, shows only a single, fast monophasic relaxation at <50 ns associated with the fast disruption of a salt bridge and release of CO to the solvent, suggesting that the full-length protein is necessary to observe the conformational changes that propagate the signal from the heme domain to the kinase domain.


Asunto(s)
Hemoproteínas , Sinorhizobium meliloti , Proteínas Quinasas/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Sinorhizobium meliloti/química , Hemo/química , Ligandos , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Calorimetría , Proteínas Bacterianas/química
12.
J Biol Chem ; 299(6): 104742, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100286

RESUMEN

The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O2 is fundamental to enzymology, biotechnology, and human health. Cytochromes c' (cyts c') are a group of putative NO-binding heme proteins that fall into two families: the well-characterized four alpha helix bundle fold (cyts c'-α) and an unrelated family with a large beta-sheet fold (cyts c'-ß) resembling that of cytochromes P460. A recent structure of cyt c'-ß from Methylococcus capsulatus Bath revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas-binding site. This feature, dubbed the "Phe cap," is highly conserved within the sequences of other cyts c'-ß but is absent in their close homologs, the hydroxylamine-oxidizing cytochromes P460, although some do contain a single Phe residue. Here, we report an integrated structural, spectroscopic, and kinetic characterization of cyt c'-ß from Methylococcus capsulatus Bath complexes with diatomic gases, focusing on the interaction of the Phe cap with NO and CO. Significantly, crystallographic and resonance Raman data show that orientation of the electron-rich aromatic ring face of Phe 32 toward distally bound NO or CO is associated with weakened backbonding and higher off rates. Moreover, we propose that an aromatic quadrupole also contributes to the unusually weak backbonding reported for some heme-based gas sensors, including the mammalian NO sensor, soluble guanylate cyclase. Collectively, this study sheds light on the influence of highly conserved distal Phe residues on heme-gas complexes of cytochrome c'-ß, including the potential for aromatic quadrupoles to modulate NO and CO binding in other heme proteins.


Asunto(s)
Citocromos c' , Methylococcus capsulatus , Humanos , Citocromos c'/química , Gases , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Methylococcus capsulatus/química
13.
J Biol Chem ; 299(2): 102856, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596358

RESUMEN

Heat shock protein 90 (Hsp90) is known to mediate heme insertion and activation of heme-deficient neuronal nitric oxide (NO) synthase (apo-nNOS) in cells by a highly dynamic interaction that has been extremely difficult to study mechanistically with the use of subcellular systems. In that the heme content of many critical hemeproteins is regulated by Hsp90 and the heme chaperone GAPDH, the development of an in vitro system for the study of this chaperone-mediated heme regulation would be extremely useful. Here, we show that use of an antibody-immobilized apo-nNOS led not only to successful assembly of chaperone complexes but the ability to show a clear dependence on Hsp90 and GAPDH for heme-mediated activation of apo-nNOS. The kinetics of binding for Hsp70 and Hsp90, the ATP and K+ dependence, and the absolute requirement for Hsp70 in assembly of Hsp90•apo-nNOS heterocomplexes all point to a similar chaperone machinery to the well-established canonical machine regulating steroid hormone receptors. However, unlike steroid receptors, the use of a purified protein system containing Hsp90, Hsp70, Hsp40, Hop, and p23 is unable to activate apo-nNOS. Thus, heme insertion requires a unique Hsp90-chaperone complex. With this newly developed in vitro system, which recapitulates the cellular process requiring GAPDH as well as Hsp90, further mechanistic studies are now possible to better understand the components of the Hsp90-based chaperone system as well as how this heterocomplex works with GAPDH to regulate nNOS and possibly other hemeproteins.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Hemo , Hemoproteínas , Chaperonas Moleculares , Óxido Nítrico Sintasa , Hemo/química , Hemoproteínas/química , Hemoproteínas/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Unión Proteica , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Enzimas Inmovilizadas , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Activación Enzimática
14.
J Am Chem Soc ; 146(30): 20556-20562, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037870

RESUMEN

Engineered hemoproteins can selectively incorporate nitrogen from nitrene precursors like hydroxylamine, O-substituted hydroxylamines, and organic azides into organic molecules. Although iron-nitrenoids are often invoked as the reactive intermediates in these reactions, their innate reactivity and transient nature have made their characterization challenging. Here we characterize an iron-nitrosyl intermediate generated from NH2OH within a protoglobin active site that can undergo nitrogen-group transfer catalysis, using UV-vis, electron paramagnetic resonance (EPR) spectroscopy, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) techniques. The mechanistic insights gained led to the discovery of aminating reagents─nitrite (NO2-), nitric oxide (NO), and nitroxyl (HNO)─that are new to both nature and synthetic chemistry. Based on the findings, we propose a catalytic cycle for C-H amination inspired by the nitrite reductase pathway. This study highlights the potential of engineered hemoproteins to access natural nitrogen sources for sustainable chemical synthesis and offers a new perspective on the use of biological nitrogen cycle intermediates in biocatalysis.


Asunto(s)
Hemoproteínas , Aminación , Hemoproteínas/química , Espectroscopía de Resonancia por Spin del Electrón , Óxido Nítrico/química , Espectrometría de Masa por Ionización de Electrospray , Biocatálisis
15.
Anal Chem ; 96(8): 3345-3353, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38301154

RESUMEN

Malaria is a severe disease caused by cytozoic parasites of the genus Plasmodium, which infiltrate and infect red blood cells. Several drugs have been developed to combat the devastating effects of malaria. Antimalarials based on quinolines inhibit the crystallization of hematin into hemozoin within the parasite, ultimately leading to its demise. Despite the frequent use of these agents, there are unanswered questions about their mechanisms of action. In the present study, the quinoline chloroquine and its interaction with the target structure hematin was investigated using an advanced, highly parallelized Raman difference spectroscopy (RDS) setup. Simultaneous recording of the spectra of hematin and chloroquine mixtures with varying compositions enabled the observation of changes in peak heights and positions based on the altered molecular structure resulting from their interaction. A shift of (-1.12 ± 0.05) cm-1 was observed in the core-size marker band ν(CαCm)asym peak position of the 1:1 chloroquine-hematin mixture compared to pure hematin. The oxidation-state marker band ν(pyrrole half-ring)sym exhibited a shift by (+0.93 ± 0.13) cm-1. These results were supported by density functional theory (DFT) calculations, indicating a hydrogen bond between the quinolinyl moiety of chloroquine and the oxygen atom of ferric protoporphyrin IX hydroxide (Fe(III)PPIX-OH). The consequence is a reduced electron density within the porphyrin moiety and an increase in its core size. This hypothesis provided further insights into the mechanism of hemozoin inhibition, suggesting chloroquine binding to the monomeric form of hematin, thereby preventing its further crystallization to hemozoin.


Asunto(s)
Antimaláricos , Hemoproteínas , Malaria , Humanos , Antimaláricos/farmacología , Cloroquina/farmacología , Cloroquina/química , Hemina/química , Hemoproteínas/química , Análisis Espectral , Plasmodium falciparum
16.
Metab Eng ; 84: 59-68, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839038

RESUMEN

The development of a heme-responsive biosensor for dynamic pathway regulation in eukaryotes has never been reported, posing a challenge for achieving the efficient synthesis of multifunctional hemoproteins and maintaining intracellular heme homeostasis. Herein, a biosensor containing a newly identified heme-responsive promoter, CRISPR/dCas9, and a degradation tag N-degron was designed and optimized to fine-tune heme biosynthesis in the efficient heme-supplying Pichia pastoris P1H9 chassis. After identifying literature-reported promoters insensitive to heme, the endogenous heme-responsive promoters were mined by transcriptomics, and an optimal biosensor was screened from different combinations of regulatory elements. The dynamic regulation pattern of the biosensor was validated by the transcriptional fluctuations of the HEM2 gene involved in heme biosynthesis and the subsequent responsive changes in intracellular heme titers. We demonstrate the efficiency of this regulatory system by improving the production of high-active porcine myoglobin and soy hemoglobin, which can be used to develop artificial meat and artificial metalloenzymes. Moreover, these findings can offer valuable strategies for the synthesis of other hemoproteins.


Asunto(s)
Técnicas Biosensibles , Hemo , Hemoproteínas , Hemo/biosíntesis , Hemo/genética , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Hemoproteínas/biosíntesis , Transcriptoma/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Animales , Sistemas CRISPR-Cas , Ingeniería Metabólica , Regiones Promotoras Genéticas
17.
Soft Matter ; 20(7): 1475-1485, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38263875

RESUMEN

Proteins are of great importance for medicine and the pharmaceutical and food industries. However, proteins need to be purified prior to their application. This work investigated the application of a hydrogel bionanocomposite based on agar and graphene oxide (GO) for capturing cytochrome C (Cyto C) heme protein by adsorption from aqueous solutions with other proteins. Although applications of GO-based materials in adsorption are widely studied, the focus on semi-continuous processes remains limited. Adsorption experiments were carried out in batch and fixed bed columns. The effect of pH and ionic strength on adsorption was investigated, and there is evidence that electrostatic interactions between Cyto C and the nanocomposite were favoured at pH = 7; the adsorption capacity decreased as NaCl and KCl concentrations increased, ascribed to the weak electrostatic interaction between the protein and GO active sites in the bionanocomposite. All adsorption isotherm models (Langmuir, Freundlich, Sips) used gave suitable adjustments to the equilibrium experimental data and the kinetic models applied. The maximum adsorption capacity predicted by the Langmuir isotherm was ∼400 mgCytoC gadsorbent,dry-1, and the adsorption thermodynamics indicated a physisorption process. Tests were performed to evaluate the co-adsorption in batch, and the composite was effective in adsorbing Cyto C in solution with bovine serum albumin (BSA) and L-phenylalanine. Fixed bed tests were performed, and although protein adsorption onto nanoparticles can be challenging, the Cyto C adsorbed could be successfully recovered after desorption. Overall, the GO-based hydrogel was an effective method for cytochrome C adsorption, exhibiting a notorious potential for applications in protein separation processes.


Asunto(s)
Grafito , Hemoproteínas , Citocromos c , Agua , Grafito/química , Hidrogeles , Adsorción , Concentración de Iones de Hidrógeno , Cinética
18.
Inorg Chem ; 63(21): 9907-9918, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38754069

RESUMEN

Nitrobindins (Nbs) are all-ß-barrel heme proteins present along the evolutionary ladder. They display a highly solvent-exposed ferric heme group with the iron atom being coordinated by the proximal His residue and a water molecule at the distal position. Ferric nitrobindins (Nb(III)) play a role in the conversion of toxic peroxynitrite (ONOO-) to harmless nitrate, with the value of the second-order rate constant being similar to those of most heme proteins. The value of the second-order rate constant of Nbs increases as the pH decreases; this suggests that Nb(III) preferentially reacts with peroxynitrous acid (ONOOH), although ONOO- is more nucleophilic. In this work, we shed light on the molecular basis of the ONOO- and ONOOH reactivity of ferric Mycobacterium tuberculosis Nb (Mt-Nb(III)) by dissecting the ligand migration toward the active site, the water molecule release, and the ligand binding process by computer simulations. Classical molecular dynamics simulations were performed by employing a steered molecular dynamics approach and the Jarzynski equality to obtain ligand migration free energy profiles for both ONOO- and ONOOH. Our results indicate that ONOO- and ONOOH migration is almost unhindered, consistent with the exposed metal center of Mt-Nb(III). To further analyze the ligand binding process, we computed potential energy profiles for the displacement of the Fe(III)-coordinated water molecule using a hybrid QM/MM scheme at the DFT level and a nudged elastic band approach. These results indicate that ONOO- exhibits a much larger barrier for ligand displacement than ONOOH, suggesting that water displacement is assisted by protonation of the leaving group by the incoming ONOOH.


Asunto(s)
Simulación de Dinámica Molecular , Mycobacterium tuberculosis , Ácido Peroxinitroso , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Mycobacterium tuberculosis/química , Hemoproteínas/química , Hemoproteínas/metabolismo , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Termodinámica
19.
Chem Rev ; 122(14): 12370-12426, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35404575

RESUMEN

Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.


Asunto(s)
Hemoproteínas , Porfirinas , Hemo/química , Hemoproteínas/metabolismo , Peróxido de Hidrógeno , Hierro/química , Oxidación-Reducción , Oxígeno/química , Peróxidos , Porfirinas/química
20.
Phys Chem Chem Phys ; 26(2): 695-712, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38053511

RESUMEN

To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.


Asunto(s)
Hemoproteínas , Anaerobiosis , Filogenia , Hemoproteínas/metabolismo , Hemo/metabolismo , Escherichia coli/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA