Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(9): e1012477, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226323

RESUMEN

The most commonly used animal models for evaluating the efficacy of HSV-2 candidate vaccines are mice and guinea pigs. While numerous HSV-2 vaccine candidates have been tested in these animals and were effective in reducing disease and mortality, these results did not predict the effectiveness of the vaccines in human trials. Infection of rhesus macaques rarely results in lesions or HSV-2 specific antibody responses. In seeking an animal model that better recapitulates human disease and that might be more predictive of the efficacy of prophylactic vaccines than mice and guinea pigs, we evaluated Cebus apella (C. apella), a New World primate, in an HSV-2 genital infection model. Infectious HSV-2 was cultured from vaginal swabs from all 4 animals for 9-14 days after intravaginal inoculation of HSV-2 seronegative monkeys. Two of 4 monkeys had vesicular lesions in the vagina or vulva. No neurological symptoms were noted. Recurrent lesions and HSV-2 DNA shedding after acute disease resolved was infrequent. UV irradiation of the genital area did not induce recurrent genital lesions or virus shedding. All 4 monkeys developed HSV-2 neutralizing antibodies as well as virus-specific CD4 and CD8 T cell responses. Reinfection of animals 15 to 19 months after primary infection did not result in lesions; animals had reduced virus shedding and a shorter duration of shedding compared with that during primary infection, suggesting that primary infection induced protective immunity. Primary fibroblasts from C. apella monkeys supported the growth of HSV-2 in vitro; in contrast, HSV-2 did not replicate above the titer of the input inoculum in fibroblasts from rhesus macaques. These observations suggest that the C. apella monkey has potential to serve as a model for evaluating the efficacy of prophylactic vaccines, antivirals, or monoclonal antibodies to HSV-2.


Asunto(s)
Modelos Animales de Enfermedad , Herpes Genital , Herpesvirus Humano 2 , Seroconversión , Esparcimiento de Virus , Animales , Herpes Genital/inmunología , Herpes Genital/virología , Femenino , Herpesvirus Humano 2/inmunología , Esparcimiento de Virus/inmunología , Anticuerpos Antivirales/inmunología , Vagina/virología , Vagina/inmunología , Vagina/patología , Macaca mulatta
2.
J Virol ; 98(5): e0159623, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38587378

RESUMEN

Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.


Asunto(s)
Quimiocina CXCL11 , Herpes Genital , Herpesvirus Humano 2 , Ribonucleótido Reductasas , Animales , Femenino , Cobayas , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL11/inmunología , Quimiocina CXCL11/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/inmunología , Ganglios Espinales/virología , Herpes Genital/inmunología , Herpes Genital/prevención & control , Herpesvirus Humano 2/inmunología , Células T de Memoria/inmunología , Ribonucleótido Reductasas/metabolismo , Vacunación , Vagina/virología , Vagina/inmunología
3.
J Immunol ; 208(1): 63-73, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34880107

RESUMEN

Very little knowledge exists on virus-specific host cell intrinsic mechanisms that prevent hyperproliferation of primary HSV type 2 (HSV-2) genital infections. In this study, we provide evidence that the Nemo-related protein, optineurin (OPTN), plays a key role in restricting HSV-2 infection both in vitro and in vivo. Contrary to previous reports regarding the proviral role of OPTN during Sendai virus infection, we demonstrate that lack of OPTN in cells causes enhanced virus production. OPTN deficiency negatively affects the host autophagy response and results in a marked reduction of CCL5 induction. OPTN knockout (OPTN-/-) mice display exacerbated genital disease and dysregulated T cell frequencies in infected tissues and lymph nodes. A human transcriptomic profile dataset provides further credence that a strong positive correlation exists between CCL5 upregulation and OPTN expression during HSV-2 genital infection. Our findings underscore a previously unknown OPTN/CCL5 nexus that restricts hyperproliferative spread of primary HSV-2 infection, which may constitute an intrinsic host defense mechanism against herpesviruses in general.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Herpes Genital/inmunología , Herpesvirus Humano 2/fisiología , Proteínas de Transporte de Membrana/metabolismo , Animales , Antígenos Virales/inmunología , Autofagia , Proteínas de Ciclo Celular/genética , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Inmunidad Innata , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/inmunología , ARN Interferente Pequeño/genética , Replicación Viral
4.
Sex Transm Infect ; 98(1): 44-49, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33436506

RESUMEN

ObjectivesThe southeastern US is a domestic epicentre for incident HIV with high prevalence of herpes simplex virus (HSV) coinfection. We estimated the incidence rates (IR) of symptomatic herpetic anogenital ulcer disease (HAUD) and assessed its associations with demographic and clinical characteristics, specifically with immunological markers using median, nadir and trajectory CD4 counts. METHODS: Electronic medical records (EMR) of over 7000 people living with HIV (PLWH) attending one of the leading HIV clinics in the southeastern US between 2006 and 2018 were reviewed and analysed. IR of HSV-related HAUD were estimated per 10 000 person years. Joinpoint regressions were performed to examine temporal changes in the trends of IR. All IR and trends were stratified by gender and race. Six CD4 trajectory groups were constructed using the group-based trajectory modelling. Multivariable logistic models were conducted to assess the associations of CD4 counts (nadir, median CD4 and newly defined CD4 trajectory), separately with HAUD. RESULTS: Of the 4484 PLWH eligible individuals (3429 men, 1031 women and 24 transgender), we observed 425 patients with HSV-related HAUD. The mean log10viral load was higher in HAUD than HAUD-free groups, whereas the median nadir CD4 count (cells/uL) was higher in the non-cases than the case groups (p<0.05). HAUD were more frequent in women than men. Median CD4 (<200 cell/uL) was associated with HAUD (OR=2.1), but there were no significant associations with nadir CD4. Significant associations with declining and sustained low CD4 counts trajectory patterns were observed with HAUD. CONCLUSIONS: There were significant differences between men and women with incident HAUD among PLWH. EMR-based studies can provide innovative trajectory models that can potentially be helpful in guiding screening and clinical care of HAUD among high-risk PLWH.


Asunto(s)
Registros Electrónicos de Salud/estadística & datos numéricos , Fisura Anal/virología , Genitales/virología , Herpes Genital/epidemiología , Adulto , Recuento de Linfocito CD4/estadística & datos numéricos , Coinfección/epidemiología , Coinfección/virología , Femenino , Herpes Genital/inmunología , Humanos , Masculino , Persona de Mediana Edad , Simplexvirus/genética , Simplexvirus/inmunología , Simplexvirus/patogenicidad , Sudeste de Estados Unidos/epidemiología , Carga Viral
5.
J Immunol ; 205(5): 1281-1292, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32699158

RESUMEN

Type I IFNs play an important role in innate immunity against viral infections by inducing the expression of IFN-stimulated genes (ISGs), which encode effectors with various antiviral functions. We and others previously reported that HSV type 2 (HSV-2) inhibits the synthesis of type I IFNs, but how HSV-2 suppresses IFN-mediated signaling is less understood. In the current study, after the demonstration of HSV-2 replication resistance to IFN-ß treatment in human epithelial cells, we reveal that HSV-2 and the viral protein ICP22 significantly decrease the expression of ISG54 at both mRNA and protein levels. Likewise, us1 del HSV-2 (ICP22-deficient HSV-2) replication is more sensitive to IFN-ß treatment, indicating that ICP22 is a vital viral protein responsible for the inhibition of type I IFN-mediated signaling. In addition, overexpression of HSV-2 ICP22 inhibits the expression of STAT1, STAT2, and IFN regulatory factor 9 (IRF9), resulting in the blockade of ISG factor 3 (ISGF3) nuclear translocation, and mechanistically, this is due to ICP22-induced ubiquitination of STAT1, STAT2, and IRF9. HSV-2 ICP22 appears to interact with STAT1, STAT2, IRF9, and several other ubiquitinated proteins. Following further biochemical study, we show that HSV-2 ICP22 functions as an E3 ubiquitin protein ligase to induce the formation of polyubiquitin chains. Taken together, we demonstrate that HSV-2 interferes with type I IFN-mediated signaling by degrading the proteins of ISGF3, and we identify HSV-2 ICP22 as a novel E3 ubiquitin protein ligase to induce the degradation of ISGF3. Findings in this study highlight a new mechanism by which HSV-2 circumvents the host antiviral responses through a viral E3 ubiquitin protein ligase.


Asunto(s)
Herpes Genital/inmunología , Herpesvirus Humano 2/inmunología , Proteínas Inmediatas-Precoces/inmunología , Interferón beta/inmunología , Transducción de Señal/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Proteínas Virales/inmunología , Antivirales/inmunología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Herpesvirus Humano 1/inmunología , Humanos , Inmunidad Innata/inmunología , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT2/inmunología , Ubiquitinación/inmunología
6.
J Immunol ; 204(7): 1703-1707, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122994

RESUMEN

The presence of tissue-resident memory T cells at barrier tissues is critical for long-lasting protective immune responses. Previous work has shown that tissue-resident memory T cells can be established by "pulling" virus-specific effector T cells from circulation to the genital mucosa via topical vaginal application of chemokines in mice. Once established, these cells protect hosts against genital herpes infection. We recently showed that vaginal application of aminoglycoside antibiotics induces robust activation of the IFN signaling pathway, including upregulation of chemokine expression within the tissue in mice. In this study, we show that a single topical application of neomycin, an inexpensive and vaginally nontoxic antibiotic, is sufficient to pull CD8 T cells to the vaginal mucosa and provide protection against genital herpes infection in mice.


Asunto(s)
Aminoglicósidos/inmunología , Vacunas Virales/inmunología , Administración Tópica , Animales , Antibacterianos/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocinas/inmunología , Femenino , Herpes Genital/inmunología , Herpes Genital/virología , Memoria Inmunológica/inmunología , Interferones/inmunología , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/inmunología , Membrana Mucosa/virología , Neomicina/inmunología , Transducción de Señal/inmunología , Regulación hacia Arriba/inmunología , Vagina/inmunología , Vagina/virología
7.
Nature ; 533(7604): 552-6, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225131

RESUMEN

Circulating antibodies can access most tissues to mediate surveillance and elimination of invading pathogens. Immunoprivileged tissues such as the brain and the peripheral nervous system are shielded from plasma proteins by the blood-brain barrier and blood-nerve barrier, respectively. Yet, circulating antibodies must somehow gain access to these tissues to mediate their antimicrobial functions. Here we examine the mechanism by which antibodies gain access to neuronal tissues to control infection. Using a mouse model of genital herpes infection, we demonstrate that both antibodies and CD4 T cells are required to protect the host after immunization at a distal site. We show that memory CD4 T cells migrate to the dorsal root ganglia and spinal cord in response to infection with herpes simplex virus type 2. Once inside these neuronal tissues, CD4 T cells secrete interferon-γ and mediate local increase in vascular permeability, enabling antibody access for viral control. A similar requirement for CD4 T cells for antibody access to the brain is observed after intranasal challenge with vesicular stomatitis virus. Our results reveal a previously unappreciated role of CD4 T cells in mobilizing antibodies to the peripheral sites of infection where they help to limit viral spread.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Sistema Nervioso/inmunología , Animales , Linfocitos B/inmunología , Transporte Biológico , Barrera Hematoencefálica/fisiología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Permeabilidad Capilar/inmunología , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/inmunología , Herpes Genital/inmunología , Herpes Genital/virología , Herpesvirus Humano 2/inmunología , Antígenos de Histocompatibilidad Clase I , Memoria Inmunológica/inmunología , Integrina alfa4/metabolismo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Ratones , Tejido Nervioso/inmunología , Neuronas/inmunología , Nariz/virología , Receptores Fc , Médula Espinal/inmunología , Vesiculovirus/inmunología
8.
Immunol Rev ; 285(1): 113-133, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30129205

RESUMEN

Herpes simplex virus-2 infection is characterized by frequent episodic shedding in the genital tract. Expansion in HSV-2 viral load early during episodes is extremely rapid. However, the virus invariably peaks within 18 hours and is eliminated nearly as quickly. A critical feature of HSV-2 shedding episodes is their heterogeneity. Some episodes peak at 108 HSV DNA copies, last for weeks due to frequent viral re-expansion, and lead to painful ulcers, while others only reach 103 HSV DNA copies and are eliminated within hours and without symptoms. Within single micro-environments of infection, tissue-resident CD8+ T cells (TRM ) appear to contain infection within a few days. Here, we review components of TRM biology relevant to immune surveillance between HSV-2 shedding episodes and containment of infection upon detection of HSV-2 cognate antigen. We then describe the use of mathematical models to correlate large spatial gradients in TRM density with the heterogeneity of observed shedding within a single person. We describe how models have been leveraged for clinical trial simulation, as well as future plans to model the interactions of multiple cellular subtypes within mucosa, predict the mechanism of action of therapeutic vaccines, and describe the dynamics of 3-dimensional infection environment during the natural evolution of an HSV-2 lesion.


Asunto(s)
Herpes Genital/inmunología , Vacunas contra el Virus del Herpes Simple/inmunología , Herpesvirus Humano 2/fisiología , Linfocitos T Reguladores/inmunología , Carga Viral , Animales , Antígenos CD8/metabolismo , Microambiente Celular , Humanos , Activación de Linfocitos , Análisis de la Célula Individual , Activación Viral
9.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33028713

RESUMEN

Antigen (Ag)-specific immune responses to chronic infections, such as herpes simplex virus type 2 (HSV-2) in HIV/HSV-coinfected persons, may sustain HIV tissue reservoirs by promoting T-cell proliferation but are poorly studied in women on antiretroviral therapy (ART). Mixed anogenital swabs and cervical secretions were self-collected by nine HIV/HSV-2-coinfected women during ART for 28 days to establish subclinical HSV DNA shedding rates and detection of HIV RNA by real-time PCR. Typical herpes lesion site biopsy (TLSB) and cervical biopsy specimens were collected at the end of the daily sampling period. Nucleic acids (NA) isolated from biopsy specimens had HIV quantified and HIV envC2-V5 single-genome amplification (SGA) and T-cell receptor (TCR) repertoires assessed. Women had a median CD4 count of 537 cells/µl (IQR: 483 to 741) at enrollment and HIV plasma viral loads of <40 copies/ml. HSV DNA was detected on 12% of days (IQR: 2 to 25%) from anogenital specimens. Frequent subclinical HSV DNA shedding was associated with increased HIV DNA tissue concentrations and increased divergence from the most recent common ancestor (MRCA), an indicator of HIV replication. Distinct predominant TCR clones were detected in cervical and TLSB specimens in a woman with frequent HSV DNA shedding, with mixing of minor variants between her tissues. In contrast, more limited TCR repertoire mixing was observed in two women with less frequent subclinical HSV DNA shedding. Subclinical HSV shedding in HIV/HSV-coinfected women during ART may sustain HIV tissue reservoirs via Ag exposure or HIV replication. This study provides evidence supporting further study of interventions targeting suppression of Ag-specific immune responses as a component of HIV cure strategies.IMPORTANCE Persons with HIV infection are frequently coinfected with chronic herpesviruses, which periodically replicate and produce viable herpes virions, particularly in anogenital and cervical tissues. Persistent protein expression results in proliferation of CD8+ and CD4+ T cells, and the latter could potentially expand and sustain HIV tissue reservoirs. We found HSV genital shedding rates were positively correlated with HIV DNA concentrations and HIV divergence from ancestral sequences in tissues. Our work suggests that immune responses to common coinfections, such as herpesviruses, may sustain HIV tissue reservoirs during suppressive ART, suggesting future cure strategies should study interventions to suppress replication or reactivation of chronic herpes infections.


Asunto(s)
Antirretrovirales/uso terapéutico , Coinfección/virología , VIH/fisiología , Herpesvirus Humano 2/fisiología , Esparcimiento de Virus , Linfocitos T CD4-Positivos/inmunología , Coinfección/tratamiento farmacológico , Coinfección/inmunología , ADN Viral/genética , ADN Viral/metabolismo , Femenino , Variación Genética , Genitales Femeninos/inmunología , Genitales Femeninos/virología , VIH/clasificación , VIH/efectos de los fármacos , VIH/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Herpes Genital/tratamiento farmacológico , Herpes Genital/inmunología , Herpes Genital/virología , Herpesvirus Humano 2/genética , Humanos , Persona de Mediana Edad , Filogenia , Receptores de Antígenos de Linfocitos T/inmunología , Replicación Viral
10.
Sex Transm Infect ; 97(7): 490-500, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34088792

RESUMEN

OBJECTIVE: To characterise epidemiology of herpes simplex virus type 2 (HSV-2) in Latin America and the Caribbean. METHODS: HSV-2 reports were systematically reviewed and synthesised, and findings were reported following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Meta-analyses and metaregressions were conducted. FINDING: 102 relevant reports were identified including 13 overall incidence measures, 163 overall (and 402 stratified) seroprevalence measures, and 7 and 10 proportions of virus detection in genital ulcer disease and in genital herpes, respectively. Pooled mean seroprevalence was 20.6% (95% CI 18.7% to 22.5%) in general populations, 33.3% (95% CI 26.0% to 41.0%) in intermediate-risk populations, 74.8% (95% CI 70.6% to 78.8%) in female sex workers, and 54.6% (95% CI 47.4% to 61.7%) in male sex workers, men who have sex with men and transgender people. In general populations, seroprevalence increased from 9.6% (95% CI 7.1% to 12.4%) in those aged <20 years to 17.9% (95% CI 13.6% to 22.5%) in those aged 20-30, 27.6% (95% CI 21.4% to 34.2%) in those aged 30-40 and 38.4% (95% CI 32.8% to 44.2%) in those aged >40. Compared with women, men had lower seroprevalence with an adjusted risk ratio (ARR) of 0.68 (95% CI 0.60 to 0.76). Seroprevalence declined by 2% per year over the last three decades (ARR of 0.98, 95% CI 0.97 to 0.99). Pooled mean proportions of HSV-2 detection in GUD and genital herpes were 41.4% (95% CI 18.9% to 67.0%) and 91.1% (95% CI 82.7% to 97.2%), respectively. CONCLUSIONS: One in five adults is HSV-2 infected, a higher level than other world regions, but seroprevalence is declining. Despite this decline, HSV-2 persists as the aetiological cause of nearly half of GUD cases and almost all of genital herpes cases.


Asunto(s)
Herpes Genital/epidemiología , Herpesvirus Humano 2/inmunología , Región del Caribe/epidemiología , Femenino , Herpes Genital/inmunología , Herpesvirus Humano 2/patogenicidad , Homosexualidad Masculina/estadística & datos numéricos , Humanos , América Latina/epidemiología , Masculino , Oportunidad Relativa , Análisis de Regresión , Factores de Riesgo , Estudios Seroepidemiológicos , Trabajadores Sexuales/estadística & datos numéricos , Conducta Sexual
11.
J Immunol ; 203(10): 2655-2664, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578266

RESUMEN

HSV-2 is a neurotropic virus that causes a persistent, lifelong infection that increases risk for other sexually transmitted infections. The vaginal epithelium is the first line of defense against HSV-2 and coordinates the immune response through the secretion of immune mediators, including the proinflammatory cytokine IL-36γ. Previously, we showed that IL-36γ treatment promoted transient polymorphonuclear cell infiltration to the vaginal cavity and protected against lethal HSV-2 challenge. In this report, we reveal that IL-36γ specifically induces transient neutrophil infiltration but does not impact monocyte and macrophage recruitment. Using IL-36γ-/- mice in a lethal HSV-2 challenge model, we show that neutrophil counts are significantly reduced at 1 and 2 d postinfection and that KC-mediated mature neutrophil recruitment is impaired in IL-36γ-/- mice. Additionally, IL-36γ-/- mice develop genital disease more rapidly, have significantly reduced survival time, and exhibit an increased incidence of hind limb paralysis that is linked to productive HSV-2 infection in the brain stem. IL-36γ-/- mice also exhibit a significant delay in clearance of the virus from the vaginal epithelium and a more rapid spread of HSV-2 to the spinal cord, bladder, and colon. We further show that the decreased survival time and increased virus spread observed in IL-36γ-/- mice are not neutrophil-dependent, suggesting that IL-36γ may function to limit HSV-2 spread in the nervous system. Ultimately, we demonstrate that IL-36γ is a key regulator of neutrophil recruitment in the vaginal microenvironment and may function to limit HSV-2 neuroinvasion.


Asunto(s)
Herpes Genital/inmunología , Herpesvirus Humano 2/inmunología , Interleucina-1/farmacología , Fármacos Neuroprotectores/farmacología , Infiltración Neutrófila/efectos de los fármacos , Vagina/inmunología , Animales , Modelos Animales de Enfermedad , Epitelio/inmunología , Epitelio/virología , Femenino , Técnicas de Inactivación de Genes , Herpes Genital/virología , Inmunidad Innata , Interleucina-1/genética , Recuento de Leucocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Vagina/virología
12.
J Neuroinflammation ; 17(1): 371, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287823

RESUMEN

BACKGROUND: Genetics have provided hints on potential molecular pathways involved in neurodegenerative diseases (NDD). However, the number of cases caused exclusively by genetic alterations is low, suggesting an important contribution of environmental factors to NDDs. Among these factors, viruses like herpes simplex viruses (HSV-2), capable of establishing lifelong infections within the nervous system (NS), are being proposed to have a role in NDDs. Despite promising data, there is a significant lack of knowledge on this and an urgent need for more research. METHODS: We have set up a mouse model to study HSV latency and its associated neuroinflammation in the spinal cord. The goal of this model was to observe neuroinflammatory changes caused by HSV latent infections, and if those changes were similar to alterations observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients. RESULTS: In infected spinal cords, we have observed a strong leukocyte infiltration and a severe alteration of microglia close to motor neurons. We have also analyzed ALS-related proteins: we have not found changes in TDP-43 and Fus in neurons, but interestingly, we have found decreased protein levels of C9orf72, of which coding gene is severely altered in some familial forms of ALS and is critical for microglia homeostasis. CONCLUSIONS: Latent infection of HSV in the spinal cord showed altered microglia and leukocyte infiltration. These inflammatory features resembled to those observed in the spinal cord of ALS patients. No changes mimicking ALS neuropathology, such as TDP-43 cytoplasmic inclusions, were found in infected spinal cords, but a decrease in protein levels of C9orf72 was observed. Then, further studies should be required to determine whether HSV-2 has a role in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/metabolismo , Herpes Genital/metabolismo , Herpesvirus Humano 2/aislamiento & purificación , Infección Latente/metabolismo , Médula Espinal/metabolismo , Esclerosis Amiotrófica Lateral/inmunología , Animales , Proteína C9orf72/análisis , Modelos Animales de Enfermedad , Femenino , Herpes Genital/inmunología , Herpes Genital/patología , Herpesvirus Humano 2/inmunología , Infección Latente/inmunología , Infección Latente/patología , Ratones , Ratones Endogámicos BALB C , Médula Espinal/patología , Médula Espinal/virología , Vagina/inmunología , Vagina/metabolismo , Vagina/patología , Vagina/virología
13.
J Virol ; 93(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30787156

RESUMEN

Reactivation of herpes simplex virus 2 (HSV-2) from latency causes viral shedding that develops into recurrent genital lesions. The immune mechanisms of protection against recurrent genital herpes remain to be fully elucidated. In this preclinical study, we investigated the protective therapeutic efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed HSV-2 envelope and tegument proteins. These viral protein antigens (Ags) were rationally selected for their ability to recall strong CD4+ and CD8+ T-cell responses from naturally "protected" asymptomatic individuals, who, despite being infected, never develop any recurrent herpetic disease. Out of the eight HSV-2 proteins, the envelope glycoprotein D (gD), the tegument protein VP22 (encoded by the UL49 gene), and ribonucleotide reductase subunit 2 protein (RR2; encoded by the UL40 gene) produced significant protection against recurrent genital herpes. The RR2 protein, delivered either intramuscularly or intravaginally with CpG and alum adjuvants, (i) boosted the highest neutralizing antibodies, which appear to cross-react with both gB and gD, and (ii) enhanced the numbers of functional gamma interferon (IFN-γ)-producing CRTAM+ CFSE+ CD4+ and CRTAM+ CFSE+ CD8+ TRM cells, which express low levels of PD-1 and TIM-3 exhaustion markers and were localized to healed sites of the vaginal mucocutaneous (VM) tissues. The strong B- and T-cell immunogenicity of the RR2 protein was associated with a significant decrease in virus shedding and a reduction in both the severity and frequency of recurrent genital herpes lesions. In vivo depletion of either CD4+ or CD8+ T cells significantly abrogated the protection. Taken together, these preclinical results provide new insights into the immune mechanisms of protection against recurrent genital herpes and promote the tegument RR2 protein as a viable candidate Ag to be incorporated in future genital herpes therapeutic mucosal vaccines.IMPORTANCE Recurrent genital herpes is one of the most common sexually transmitted diseases, with a global prevalence of HSV-2 infection predicted to be over 536 million worldwide. Despite the availability of many intervention strategies, such as sexual behavior education, barrier methods, and the costly antiviral drug treatments, eliminating or at least reducing recurrent genital herpes remains a challenge. Currently, no FDA-approved therapeutic vaccines are available. In this preclinical study, we investigated the immunogenicity and protective efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed herpes envelope and tegument proteins. We discovered that similar to the dl5-29 vaccine, based on a replication-defective HSV-2 mutant virus, which has been recently tested in clinical trials, the RR2 protein-based subunit vaccine elicited a significant reduction in virus shedding and a decrease in both the severity and frequency of recurrent genital herpes sores. This protection correlated with an increase in numbers of functional tissue-resident IFN-γ+ CRTAM+ CFSE+ CD4+ and IFN-γ+ CRTAM+ CFSE+ CD8+ TRM cells that infiltrate healed sites of the vaginal tissues. Our study sheds new light on the role of TRM cells in protection against recurrent genital herpes and promotes the RR2-based subunit therapeutic vaccine to be tested in the clinic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Herpes Genital/prevención & control , Herpesvirus Humano 2/inmunología , Vacunas contra Herpesvirus/farmacología , Inmunización Secundaria , Ribonucleótido Reductasas/farmacología , Adulto , Anciano , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Femenino , Cobayas , Herpes Genital/inmunología , Herpes Genital/patología , Vacunas contra Herpesvirus/inmunología , Humanos , Inmunidad Mucosa/efectos de los fármacos , Masculino , Persona de Mediana Edad , Ribonucleótido Reductasas/inmunología
14.
J Immunol ; 201(5): 1522-1535, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045971

RESUMEN

Tissue-resident CD8+ T cells (Trm) can rapidly eliminate virally infected cells, but their heterogeneous spatial distribution may leave gaps in protection within tissues. Although Trm patrol prior sites of viral replication, murine studies suggest they do not redistribute to adjacent uninfected sites to provide wider protection. We perform mathematical modeling of HSV-2 shedding in Homo sapiens and predict that infection does not induce enough Trm in many genital tract regions to eliminate shedding; a strict spatial distribution pattern of mucosal CD8+ T cell density is maintained throughout chronic infection, and trafficking of Trm across wide genital tract areas is unlikely. These predictions are confirmed with spatial analysis of CD8+ T cell distribution in histopathologic specimens from human genital biopsies. Further simulations predict that the key mechanistic correlate of protection following therapeutic HSV-2 vaccination would be an increase in total Trm rather than spatial reassortment of these cells. The fixed spatial structure of Trm induced by HSV-2 is sufficient for rapid elimination of infected cells but only in a portion of genital tract microregions.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Herpes Genital/inmunología , Herpesvirus Humano 2/inmunología , Memoria Inmunológica , Modelos Inmunológicos , Esparcimiento de Virus/inmunología , Animales , Linfocitos T CD8-positivos/patología , Enfermedad Crónica , Herpes Genital/patología , Humanos , Ratones
15.
J Immunol ; 200(8): 2915-2926, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29549178

RESUMEN

Circulating conventional memory CD8+ T cells (i.e., the CD8+ effector memory T [TEM] cell and CD8+ central memory T [TCM] cell subsets) and the noncirculating CD8+ tissue-resident memory T (TRM) cell subset play a critical role in mucosal immunity. Mucosal chemokines, including the recently discovered CXCL17, are also important in mucosal immunity because they are homeostatically expressed in mucosal tissues. However, whether the CXCL17 chemokine contributes to the mobilization of memory CD8+ T cell subsets to access infected mucosal tissues remains to be elucidated. In this study, we report that after intravaginal HSV type 1 infection of B6 mice, we detected high expression levels of CXCL17 and increased numbers of CD44highCD62LlowCD8+ TEM and CD103highCD8+ TRM cells expressing CXCR8, the cognate receptor of CXCL17, in the vaginal mucosa (VM) of mice with reduced genital herpes infection and disease. In contrast to wild-type B6 mice, the CXCL17-/- mice developed 1) fewer CXCR8+CD8+ TEM and TRM cells associated with more virus replication in the VM and more latency established in dorsal root ganglia, and 2) reduced numbers and frequencies of functional CD8+ T cells in the VM. These findings suggest that the CXCL17/CXCR8 chemokine pathway plays a crucial role in mucosal vaginal immunity by promoting the mobilization of functional protective CD8+ TEM and CD8+ TRM cells, within this site of acute and recurrent herpes infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimiocinas CXC/inmunología , Herpes Genital/inmunología , Inmunidad Mucosa/inmunología , Vagina/inmunología , Animales , Quimiotaxis de Leucocito/inmunología , Femenino , Memoria Inmunológica/inmunología , Ratones , Subgrupos de Linfocitos T/inmunología
16.
J Infect Dis ; 220(6): 990-1000, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31058977

RESUMEN

BACKGROUND: Herpes simplex virus 2 (HSV2) causes genital herpes in >400 million persons worldwide. METHODS: We conducted a randomized, double-blinded, placebo-controlled trial of a replication-defective HSV2 vaccine, HSV529. Twenty adults were enrolled in each of 3 serogroups of individuals: those negative for both HSV1 and HSV2 (HSV1-/HSV2-), those positive or negative for HSV1 and positive for HSV2 (HSV1±/HSV2+), and those positive for HSV1 and negative for HSV2 (HSV1+/HSV2-). Sixty participants received vaccine or placebo at 0, 1, and 6 months. The primary end point was the frequency of solicited local and systemic reactions to vaccination. RESULTS: Eighty-nine percent of vaccinees experienced mild-to-moderate solicited injection site reactions, compared with 47% of placebo recipients (95% confidence interval [CI], 12.9%-67.6%; P = .006). Sixty-four percent of vaccinees experienced systemic reactions, compared with 53% of placebo recipients (95% CI, -17.9% to 40.2%; P = .44). Seventy-eight percent of HSV1-/HSV2- vaccine recipients had a ≥4-fold increase in neutralizing antibody titer after 3 doses of vaccine, whereas none of the participants in the other serogroups had such responses. HSV2-specific CD4+ T-cell responses were detected in 36%, 46%, and 27% of HSV1-/HSV2-, HSV1±/HSV2+, and HSV1+/HSV2- participants, respectively, 1 month after the third dose of vaccine, and CD8+ T-cell responses were detected in 14%, 8%, and 18% of participants, respectively. CONCLUSIONS: HSV529 vaccine was safe and elicited neutralizing antibody and modest CD4+ T-cell responses in HSV-seronegative vaccinees. CLINICAL TRIALS REGISTRATION: NCT01915212.


Asunto(s)
Herpes Genital/prevención & control , Herpes Simple/prevención & control , Herpesvirus Humano 2/inmunología , Vacunación , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Método Doble Ciego , Femenino , Herpes Genital/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Humanos , Masculino , Pruebas de Neutralización , Vacunas Virales/uso terapéutico , Adulto Joven
17.
J Infect Dis ; 220(5): 852-861, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31111902

RESUMEN

BACKGROUND: Mechanisms linking herpes simplex virus type 2 (HSV-2) with human immunodeficiency virus (HIV) are not fully defined. We tested the hypothesis that HSV-2 and HIV dual infection is associated with cervicovaginal inflammation and/or vaginal dysbiosis. METHODS: Genital tract samples were obtained weekly over a 12-week period from 30 women seropositive (+) for HIV and HSV-2 and 15 women each who were seropositive for one or seronegative (-) for both viruses. Immune mediators, antimicrobial activity, and microbial composition and diversity were compared. RESULTS: Significant differences in the concentrations of interferon-γ (P = .002), tumor necrosis factor-α (P = .03), human beta defensin 1 (P = .001), secretory leukocyte protease inhibitor (P = .01), and lysozyme (P = .03) were observed across the 4 groups (Kruskal-Wallis). There were also significant differences in vaginal microbial alpha diversity (Simpson index) (P = .0046). Specifically, when comparing HIV-1+/HSV-2+ to HIV-1-/HSV-2- women, a decrease in Lactobacillus crispatus and increase in diverse anaerobes was observed. The number of genital HSV outbreaks was greater in HIV+ versus HIV- women (39 versus 12) (P = .04), but there were no significant differences when comparing outbreak to non-outbreak visits. CONCLUSIONS: Increased microbial diversity and cervicovaginal inflammation in HIV and HSV-2 dually infected women may adversely impact genital health and, in the absence of antiretroviral therapy, facilitate HIV shedding.


Asunto(s)
Genitales Femeninos/microbiología , Infecciones por VIH/complicaciones , Herpes Genital/inmunología , Herpesvirus Humano 2/inmunología , Inmunidad Mucosa/inmunología , Microbiota/fisiología , Vagina/microbiología , Adulto , Antiinfecciosos/farmacología , Coinfección/virología , Disbiosis , Femenino , Herpes Genital/epidemiología , Herpes Genital/virología , Humanos , Interferón gamma , Lactobacillus , Persona de Mediana Edad , Muramidasa , Inhibidor Secretorio de Peptidasas Leucocitarias , Factor de Necrosis Tumoral alfa , Vagina/virología , Esparcimiento de Virus , beta-Defensinas
18.
J Virol ; 92(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29437976

RESUMEN

There is an urgent need for chemical-free and biological-free safe adjuvants to enhance the immunogenicity of vaccines against widespread viral pathogens, such as herpes simplex virus 2 (HSV-2), that infect a large proportion of the world human population. In the present study, we investigated the safety, immunogenicity, and protective efficacy of a laser adjuvant-assisted peptide (LAP) vaccine in the B6 mouse model of genital herpes. This LAP vaccine and its laser-free peptide (LFP) vaccine analog contain the immunodominant HSV-2 glycoprotein B CD8+ T cell epitope (HSV-gB498-505) covalently linked with the promiscuous glycoprotein D CD4+ T helper cell epitope (HSV-gD49-89). Prior to intradermal delivery of the LAP vaccine, the lower-flank shaved skin of B6 or CD11c/eYFP transgenic mice received a topical skin treatment with 5% imiquimod cream and then was exposed for 60 s to a laser, using the FDA-approved nonablative diode. Compared to the LFP vaccine, the LAP vaccine (i) triggered mobilization of dendritic cells (DCs) in the skin, which formed small spots along the laser-treated areas, (ii) induced phenotypic and functional maturation of DCs, (iii) stimulated long-lasting HSV-specific effector memory CD8+ T cells (TEM cells) and tissue-resident CD8+ T cells (TRM cells) locally in the vaginal mucocutaneous tissues (VM), and (iv) induced protective immunity against genital herpes infection and disease. As an alternative to currently used conventional adjuvants, the chemical- and biological-free laser adjuvant offers a well-tolerated, simple-to-produce method to enhance mass vaccination for widespread viral infections.IMPORTANCE Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world population. There is an urgent need for chemical-free and biological-free safe adjuvants that would advance mass vaccination against the widespread herpes infections. The present study demonstrates that immunization with a laser-assisted herpes peptide vaccine triggered skin mobilization of dendritic cells (DCs) that stimulated strong and long-lasting HSV-specific effector memory CD8+ T cells (TEM cells) and tissue-resident CD8+ T cells (TRM cells) locally in the vaginal mucocutaneous tissues. The induced local CD8+ T cell response was associated with protection against genital herpes infection and disease. These results draw attention to chemical- and biological-free laser adjuvants as alternatives to currently used conventional adjuvants to enhance mass vaccination for widespread viral infections, such as those caused by HSV-1 and HSV-2.


Asunto(s)
Adyuvantes Inmunológicos , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Herpesvirus Humano 2/inmunología , Vacunas contra Herpesvirus/inmunología , Rayos Láser , Péptidos/inmunología , Piel/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Linfocitos T CD8-positivos/patología , Células Dendríticas/patología , Herpes Genital/inmunología , Herpes Genital/patología , Herpes Genital/prevención & control , Memoria Inmunológica/efectos de los fármacos , Memoria Inmunológica/efectos de la radiación , Ratones , Ratones Transgénicos , Piel/patología , Piel/virología
19.
PLoS Comput Biol ; 14(4): e1006129, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29698393

RESUMEN

Patients with Herpes Simplex Virus-2 (HSV-2) infection face a significantly higher risk of contracting HIV-1. This is thought to be due to herpetic lesions serving as entry points for HIV-1 and tissue-resident CD4+ T cell counts increasing during HSV-2 lesional events. We have created a stochastic and spatial mathematical model describing the dynamics of HSV-2 infection and immune response in the genital mucosa. Using our model, we first study the dynamics of a developing HSV-2 lesion. We then use our model to quantify the risk of infection with HIV-1 following sexual exposure in HSV-2 positive women. Untreated, we find that HSV-2 infected women are up to 8.6 times more likely to acquire HIV-1 than healthy patients. However, when including the effects of the HSV-2 antiviral drug, pritelivir, the risk of HIV-1 infection is predicted to decrease by up to 35%, depending on drug dosage. We estimate the relative importance of decreased tissue damage versus decreased CD4+ cell presence in determining the effectiveness of pritelivir in reducing HIV-1 infection. Our results suggest that clinical trials should be performed to evaluate the effectiveness of pritelivir or similar agents in preventing HIV-1 infection in HSV-2 positive women.


Asunto(s)
Antivirales/farmacología , Infecciones por VIH/prevención & control , VIH-1 , Herpes Genital/complicaciones , Herpes Genital/tratamiento farmacológico , Modelos Biológicos , Linfocitos T CD4-Positivos/inmunología , Biología Computacional , Simulación por Computador , Femenino , Genitales Femeninos/inmunología , Genitales Femeninos/virología , Infecciones por VIH/inmunología , Herpes Genital/inmunología , Herpesvirus Humano 2 , Humanos , Inmunidad Mucosa , Piridinas/farmacología , Factores de Riesgo , Conducta Sexual , Procesos Estocásticos , Sulfonamidas , Tiazoles/farmacología
20.
J Immunol ; 199(8): 2613-2617, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28893956

RESUMEN

IFN-γ-inducible protein 16 (IFI16) is an immunological DNA sensor proposed to act in the cyclic GMP-AMP synthase-stimulator of IFN genes pathway. Because mice do not have a clear ortholog of IFI16, this system is not suitable for genetic studies of IFI16. In this study, we have compared the dependency on IFI16, cyclic GMP-AMP synthase, and stimulator of IFN genes for type I IFN induction by a panel of pathogenic bacteria and DNA viruses. The IFN response induced by HSV-2 was particularly dependent on IFI16. In a cohort of patients with genital herpes and healthy controls, the minor G allele of the IFI16 single nucleotide polymorphism rs2276404 was associated with resistance to infection. Furthermore, the combination of this allele with the C allele of rs1417806 was significantly overrepresented in uninfected individuals. Cells from individuals with the protective GC haplotype expressed higher levels of IFI16 and induced more IFN-ß upon HSV-2 infection. These data provide genetic evidence for a role for IFI16 in protection against genital herpes.


Asunto(s)
Genotipo , Herpes Genital/inmunología , Herpesvirus Humano 2/inmunología , Interferón beta/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/genética , Adulto , Anciano , Animales , Línea Celular , Estudios de Cohortes , ADN Viral/inmunología , Frecuencia de los Genes , Estudios de Asociación Genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Polimorfismo de Nucleótido Simple , Regulación hacia Arriba , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA