Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
J Virol ; 98(6): e0025024, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38742875

RESUMEN

Equine herpesvirus type 1 (EHV-1) is a contagious respiratory pathogen that infects the mucosa of the upper respiratory tract (URT). Mucosal immune responses at the URT provide the first line of defense against EHV-1 and are crucial for orchestrating immunity. To define host-pathogen interactions, we characterized B-cell responses, antibody isotype functions, and EHV-1 replication of susceptible (non-immune) and clinically protected (immune) horses after experimental EHV-1 infection. Nasal secretion and nasal wash samples were collected and used for the isolation of DNA, RNA, and mucosal antibodies. Shedding of infectious virus, EHV-1 copy numbers, viral RNA expression, and host B-cell activation in the URT were compared based on host immune status. Mucosal EHV-1-specific antibody responses were associated with EHV-1 shedding and viral RNA transcription. Finally, mucosal immunoglobulin G (IgG) and IgA isotypes were purified and tested for neutralizing capabilities. IgG1 and IgG4/7 neutralized EHV-1, while IgG3/5, IgG6, and IgA did not. Immune horses secreted high amounts of mucosal EHV-1-specific IgG4/7 antibodies and quickly upregulated B-cell pathway genes, while EHV-1 was undetected by virus isolation and PCR. RNA transcription analysis reinforced incomplete viral replication in immune horses. In contrast, complete viral replication with high viral copy numbers and shedding of infectious viruses was characteristic for non-immune horses, together with low or absent EHV-1-specific neutralizing antibodies during viral replication. These data confirm that pre-existing mucosal IgG1 and IgG4/7 and rapid B-cell activation upon EHV-1 infection are essential for virus neutralization, regulation of viral replication, and mucosal immunity against EHV-1.IMPORTANCEEquine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion storms, and neurologic outbreaks known as equine herpes myeloencephalopathy (EHM). EHV-1 is transmitted with respiratory secretions by nose-to-nose contact or via fomites. The virus initially infects the epithelium of the upper respiratory tract (URT). Host-pathogen interactions and mucosal immunity at the viral entry site provide the first line of defense against the EHV-1. Robust mucosal immunity can be essential in protecting against EHV-1 and to reduce EHM outbreaks. It has previously been shown that immune horses do not establish cell-associated viremia, the prerequisite for EHM. Here, we demonstrate how mucosal antibodies can prevent the replication of EHV-1 at the epithelium of the URT and, thereby, the progression of the virus to the peripheral blood. The findings improve the mechanistic understanding of mucosal immunity against EHV-1 and can support the development of enhanced diagnostic tools, vaccines against EHM, and the management of EHV-1 outbreaks.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Inmunoglobulina G , Replicación Viral , Animales , Herpesvirus Équido 1/inmunología , Caballos , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/inmunología , Inmunoglobulina G/inmunología , Inmunidad Mucosa , Esparcimiento de Virus/inmunología , Linfocitos B/inmunología , Linfocitos B/virología , Interacciones Huésped-Patógeno/inmunología
2.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767608

RESUMEN

Herpesviruses establish a well-adapted balance with their host's immune system. Despite this co-evolutionary balance, infections can lead to severe disease including neurological disorders in their natural host. In horses, equine herpesvirus 1 (EHV-1) causes respiratory disease, abortions, neonatal foal death and myeloencephalopathy (EHM) in ~10 % of acute infections worldwide. Many aspects of EHM pathogenesis and protection from EHM are still poorly understood. However, it has been shown that the incidence of EHM increases to >70 % in female horses >20 years of age. In this study we used old mares as an experimental equine EHV-1 model of EHM to identify host-specific factors contributing to EHM. Following experimental infection with the neuropathogenic strain EHV-1 Ab4, old mares and yearling horses were studied for 21 days post-infection. Nasal viral shedding and cell-associated viremia were assessed by quantitative PCR. Cytokine/chemokine responses were evaluated in nasal secretions and cerebrospinal fluid (CSF) by Luminex assay and in whole blood by quantitative real-time PCR. EHV-1-specific IgG sub-isotype responses were measured by ELISA. All young horses developed respiratory disease and a bi-phasic fever post-infection, but only 1/9 horses exhibited ataxia. In contrast, respiratory disease was absent in old mares, but all old mares developed EHM that resulted in euthanasia in 6/9 old mares. Old mares also presented significantly decreased nasal viral shedding but higher viremia coinciding with a single fever peak at the onset of viremia. According to clinical disease manifestation, horses were sorted into an EHM group (nine old horses and one young horse) and a non-EHM group (eight young horses) for assessment of host immune responses. Non-EHM horses showed an early upregulation of IFN-α (nasal secretions), IRF7/IRF9, IL-1ß, CXCL10 and TBET (blood) in addition to an IFN-γ upregulation during viremia (blood). In contrast, IFN-α levels in nasal secretions of EHM horses were low and peak levels of IRF7, IRF9, CXCL10 and TGF-ß (blood) coincided with viremia. Moreover, EHM horses showed significantly higher IL-10 levels in nasal secretions, peripheral blood mononuclear cells and CSF and higher serum IgG3/5 antibody titres compared to non-EHM horses. These results suggest that protection from EHM depends on timely induction of type 1 IFN and upregulation cytokines and chemokines that are representative of cellular immunity. In contrast, induction of regulatory or TH-2 type immunity appeared to correlate with an increased risk for EHM. It is likely that future vaccine development for protection from EHM must target shifting this 'at-risk' immunophenotype.


Asunto(s)
Citocinas , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Animales , Caballos , Herpesvirus Équido 1/inmunología , Femenino , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Citocinas/sangre , Citocinas/inmunología , Anticuerpos Antivirales/sangre , Esparcimiento de Virus , Viremia/inmunología , Viremia/veterinaria , Inmunoglobulina G/sangre
3.
J Gen Virol ; 102(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33528354

RESUMEN

Equine herpesvirus type 1 (EHV-1) is an emerging pathogen that causes encephalomyelitis in horses and non-equid species. Several aspects of the immune response in the central nervous system (CNS), mainly regarding the role of inflammatory mediators during EHV-1 encephalitis, remain unknown. Moreover, understanding the mechanisms underlying extensive neuropathology induced by viruses would be helpful to establish therapeutic strategies. Therefore, we aimed to evaluate some aspects of the innate immune response during highly neurovirulent EHV-1 infection. C57BL/6 mice infected intranasally with A4/72 and A9/92 EHV-1 strains developed a fulminant neurological disease at 3 days post-inoculation with high viral titres in the brain. These mice developed severe encephalitis with infiltration of monocytes and CD8+ T cells to the brain. The inflammatory infiltrate followed the detection of the chemokines CCL2, CCL3, CCL4, CCL5, CXCL2, CXCL9 and CXCL-10 in the brain. Notably, the levels of CCL3, CCL4, CCL5 and CXCL9 were higher in A4/72-infected mice, which presented higher numbers of inflammatory cells within the CNS. Pro-inflammatory cytokines, such as interleukins (ILs) IL-1α, IL-1ß, IL-6, IL-12ß, and tumour necrosis factor (TNF), were also detected in the CNS, and Toll-like receptor (TLR) TLR2, TLR3 and TLR9 genes were also upregulated within the brain of EHV-1-infected mice. However, no expression of interferon-γ (IFN-γ) and IL-12α, which are important for controlling the replication of other herpesviruses, was detected in EHV-1-infected mice. The results show that the activated innate immune mechanisms could not prevent EHV-1 replication within the CNS, but most likely contributed to the extensive neuropathology. The mouse model of viral encephalitis proposed here will also be useful to study the mechanisms underlying extensive neuropathology.


Asunto(s)
Encéfalo/inmunología , Encefalitis Viral/inmunología , Infecciones por Herpesviridae/inmunología , Herpesvirus Équido 1/inmunología , Herpesvirus Équido 1/patogenicidad , Animales , Encéfalo/metabolismo , Encéfalo/virología , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis Viral/virología , Infecciones por Herpesviridae/virología , Inmunidad Innata , Leucocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Toll-Like/genética , Regulación hacia Arriba , Carga Viral
4.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462575

RESUMEN

Equine herpesvirus type 1 (EHV-1) outbreaks continue to occur despite widely used vaccination. Therefore, development of EHV-1 vaccines providing improved immunity and protection is ongoing. Here, an open reading frame 2 deletion mutant of the neuropathogenic EHV-1 strain Ab4 (Ab4ΔORF2) was tested as a vaccine candidate. Three groups of horses (n = 8 each) were infected intranasally with Ab4ΔORF2 or the parent Ab4 virus or were kept as noninfected controls. Horses infected with Ab4ΔORF2 had reduced fever and nasal virus shedding compared to those infected with Ab4 but mounted similar adaptive immunity dominated by antibody responses. Nine months after the initial infection, all horses were challenged intranasally with Ab4. Previously noninfected horses (control/Ab4) displayed clinical signs, shed large amounts of virus, and developed cell-associated viremia. In contrast, 5/8 or 3/8 horses previously infected with Ab4ΔORF2 or Ab4, respectively, were fully protected from challenge infection as indicated by the absence of fever, clinical disease, nasal virus shedding, and viremia. All of these outcomes were significantly reduced in the remaining, partially protected 3/8 (Ab4ΔORF2/Ab4) and 5/8 (Ab4/Ab4) horses. Protected horses had EHV-1-specific IgG4/7 antibodies prior to challenge infection, and intranasal antibodies increased rapidly postchallenge. Intranasal inflammatory markers were not detectable in protected horses but quickly increased in control/Ab4 horses during the first week after infection. Overall, our data suggest that preexisting nasal IgG4/7 antibodies neutralize EHV-1, prevent viral entry, and thereby protect from disease, viral shedding, and cell-associated viremia. In conclusion, improved protection from challenge infection emphasizes further evaluation of Ab4ΔORF2 as a vaccine candidate.IMPORTANCE Nasal equine herpesvirus type 1 (EHV-1) shedding is essential for virus transmission during outbreaks. Cell-associated viremia is a prerequisite for the most severe disease outcomes, abortion and equine herpesvirus myeloencephalopathy (EHM). Thus, protection from viremia is considered essential for preventing EHM. Ab4ΔORF2 vaccination prevented EHV-1 challenge virus replication in the upper respiratory tract in fully protected horses. Consequently, these neither shed virus nor developed cell-associated viremia. Protection from virus shedding and viremia during challenge infection in combination with reduced virulence at the time of vaccination emphasizes ORF2 deletion as a promising modification for generating an improved EHV-1 vaccine. During this challenge infection, full protection was linked to preexisting local and systemic EHV-1-specific antibodies combined with rapidly increasing intranasal IgG4/7 antibodies and lack of nasal type I interferon and chemokine induction. These host immune parameters may constitute markers of protection against EHV-1 and be utilized as indicators for improved vaccine development and informed vaccination strategies.


Asunto(s)
Herpesvirus Équido 1/genética , Herpesvirus Équido 1/inmunología , Vacunas contra Herpesvirus/inmunología , Enfermedades de los Caballos/virología , Administración Intranasal/métodos , Animales , Anticuerpos Antivirales , Femenino , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/metabolismo , Caballos , Masculino , Mucosa Nasal/virología , Sistemas de Lectura Abierta , Rhadinovirus/inmunología , Vacunación/veterinaria , Viremia/inmunología , Virulencia , Esparcimiento de Virus/inmunología
5.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651370

RESUMEN

Equine herpesvirus 1 (EHV1) replicates in the respiratory epithelium and disseminates through the body via a cell-associated viremia in leukocytes, despite the presence of neutralizing antibodies. "Hijacked" leukocytes, previously identified as monocytic cells and T lymphocytes, transmit EHV1 to endothelial cells of the endometrium or central nervous system, causing reproductive (abortigenic variants) or neurological (neurological variants) disorders. In the present study, we questioned the potential route of EHV1 infection of T lymphocytes and how EHV1 misuses T lymphocytes as a vehicle to reach the endothelium of the target organs in the absence or presence of immune surveillance. Viral replication was evaluated in activated and quiescent primary T lymphocytes, and the results demonstrated increased infection of activated versus quiescent, CD4+ versus CD8+, and blood- versus lymph node-derived T cells. Moreover, primarily infected respiratory epithelial cells and circulating monocytic cells efficiently transferred virions to T lymphocytes in the presence of neutralizing antibodies. Albeit T-lymphocytes express all classes of viral proteins early in infection, the expression of viral glycoproteins on their cell surface was restricted. In addition, the release of viral progeny was hampered, resulting in the accumulation of viral nucleocapsids in the T cell nucleus. During contact of infected T lymphocytes with endothelial cells, a late viral protein(s) orchestrates T cell polarization and synapse formation, followed by anterograde dynein-mediated transport and transfer of viral progeny to the engaged cell. This represents a sophisticated but efficient immune evasion strategy to allow transfer of progeny virus from T lymphocytes to adjacent target cells. These results demonstrate that T lymphocytes are susceptible to EHV1 infection and that cell-cell contact transmits infectious virus to and from T lymphocytes.IMPORTANCE Equine herpesvirus 1 (EHV1) is an ancestral alphaherpesvirus that is related to herpes simplex virus 1 and causes respiratory, reproductive, and neurological disorders in Equidae. EHV1 is indisputably a master at exploiting leukocytes to reach its target organs, accordingly evading the host immunity. However, the role of T lymphocytes in cell-associated viremia remains poorly understood. Here we show that activated T lymphocytes efficiently become infected and support viral replication despite the presence of protective immunity. We demonstrate a restricted expression of viral proteins on the surfaces of infected T cells, which prevents immune recognition. In addition, we indicate a hampered release of progeny, which results in the accumulation of nucleocapsids in the T cell nucleus. Upon engagement with the target endothelium, late viral proteins orchestrate viral synapse formation and viral transfer to the contact cell. Our findings have significant implications for the understanding of EHV1 pathogenesis, which is essential for developing innovative therapies to prevent the devastating clinical symptoms of infection.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Herpesvirus Équido 1/inmunología , Enfermedades de los Caballos/inmunología , Caballos/inmunología , Linfocitos T/inmunología , Animales , Células Cultivadas , Células Endoteliales/inmunología , Células Endoteliales/virología , Células Epiteliales/inmunología , Células Epiteliales/virología , Infecciones por Herpesviridae/virología , Enfermedades de los Caballos/virología , Caballos/virología , Evasión Inmune/inmunología , Monocitos/inmunología , Monocitos/virología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , Linfocitos T/virología , Proteínas Virales/inmunología , Viremia/inmunología , Viremia/virología , Replicación Viral/inmunología
6.
J Virol ; 93(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31511388

RESUMEN

Equid herpesvirus 1 (EHV-1) is a viral pathogen of horse populations worldwide spread by the respiratory route and is known for causing outbreaks of neurologic syndromes and abortion storms. Previously, we demonstrated that an EHV-1 strain of the neuropathogenic genotype, T953, downregulates the beta interferon (IFN-ß) response in vitro in equine endothelial cells (EECs) at 12 h postinfection (hpi). In the present study, we explored the molecular correlates of this inhibition as clues toward an understanding of the mechanism. Data from our study revealed that EHV-1 infection of EECs significantly reduced both Toll-like receptor 3 (TLR3) and TLR4 mRNA expression at 6 hpi and 12 hpi. While EHV-1 was able to significantly reduce IRF9 mRNA at both 6 hpi and 12 hpi, the virus significantly reduced IFN regulatory factor 7 (IRF7) mRNA only at 12 hpi. EHV-1 did not alter the cellular level of Janus-activated kinase 1 (JAK1) at any time point. However, EHV-1 reduced the cellular level of expression of tyrosine kinase 2 (TYK2) at 12 hpi. Downstream of JAK1-TYK2 signaling, EHV-1 blocked the phosphorylation and activation of signal transducer and activator of transcription 2 (STAT2) when coincubated with exogenous IFN, at 12 hpi, although not at 3 or 6 hpi. Immunofluorescence staining revealed that the virus prevented the nuclear translocation of STAT2 molecules, confirming the virus-mediated inhibition of STAT2 activation. The pattern of suppression of phosphorylation of STAT2 by EHV-1 implicated viral late gene expression. These data help illuminate how EHV-1 strategically inhibits the host innate immune defense by limiting steps required for type I IFN sensitization and induction.IMPORTANCE To date, no commercial vaccine label has a claim to be fully protective against the diseases caused by equid herpesvirus 1 (EHV-1), especially the neurologic form. The interferon (IFN) system, of which type I IFN is of great importance, still remains a viable immunotherapeutic option against EHV-1 infection. The type I IFN system has been exploited successfully to treat other viral infections, such as chronic hepatitis B and C in humans. The current state of research on how EHV-1 interferes with the protective effect of type I IFN has indicated transient induction of type I IFN production followed by a rapid shutdown in vitro in equine endothelial cells (EECs). The significance of our study is the identification of certain steps in the type I IFN signaling pathway targeted for inhibition by EHV-1. Understanding this pathogen-host relationship is essential for the long-term goal of developing effective immunotherapy against EHV-1.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/virología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/metabolismo , Herpesvirus Équido 1/inmunología , Interferón Tipo I/metabolismo , Animales , Regulación de la Expresión Génica , Hepatitis B Crónica , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/genética , Enfermedades de los Caballos/virología , Caballos , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Janus Quinasa 1/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción STAT2/metabolismo , Transducción de Señal , TYK2 Quinasa/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo
7.
Can Vet J ; 61(5): 517-520, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32355351

RESUMEN

This study aimed to determine if the administration of a modified live equine influenza virus vaccine (FluAvert) to foals would positively impact their health and reduce colonization of their upper airways with equine herpesviruses (EHV) during the weaning period. A single dose of FluAvert was given to 20 healthy foals 7 days prior to being weaned; 20 healthy foals served as unvaccinated controls. Nasal secretions and blood were collected before vaccination, the day of weaning, and weekly thereafter for 3 weeks. Nasal secretions were tested by quantitative polymerase chain reaction (qPCR) for EHV-1, -2, -4 and -5. Whole blood was analyzed for a complete blood cell count and fibrinogen concentration. Physical assessments were made daily. The use of FluAvert was associated with a better clinical outcome. However, the equine influenza virus (EIV) vaccine did not influence selected hematological parameters and kinetics of herpesviruses. The clinical benefit observed in vaccinates may explain the perception that the EIV vaccine induces cross-protection against respiratory agents.


Prévention des infections respiratoires causées par les alpha- et gamma-herpesvirus chez les poulains au sevrage en utilisant un vaccin vivant modifié intra-nasal contre l'influenza. La présente étude visait à déterminer si l'administration d'un vaccin vivant modifié du virus de l'influenza (FluAvert) à des poulains affecterait positivement leur santé et réduirait la colonisation de leurs voies respiratoires supérieures par les herpesvirus équins (EHV) durant la période de sevrage. Une dose unique de FluAvert fut administrée à 20 poulains en santé 7 jours avant le sevrage; 20 poulains en santé ont servi de témoins non-vaccinés. Des sécrétions nasales et du sang furent prélevés avant la vaccination, le jour du sevrage, et de manière hebdomadaire pour les trois semaines suivantes. Les sécrétions nasales furent testées par réaction d'amplification en chaîne par la polymérase quantitative (qPCR) pour EHV-1, -2, -4 et -5. Le sang entier fut analysé pour un dénombrement complet des cellules sanguines et la concentration de fibrinogène. Des examens physiques étaient réalisés quotidiennement. L'utilisation de FluAvert fut associée avec une meilleure issue clinique. Toutefois, le vaccin contre le virus de l'influenza équin (EIV) n'influença pas des paramètres hématologiques sélectionnés et la cinétique des herpesvirus. Les bienfaits cliniques observés chez les chevaux vaccinés pourraient expliquer la perception que le vaccin EIV induit une protection croisée contre des agents infectieux respiratoires.(Traduit par Dr Serge Messier).


Asunto(s)
Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/inmunología , Enfermedades de los Caballos/prevención & control , Vacunas contra la Influenza , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/veterinaria , Animales , Anticuerpos Antivirales , Caballos
8.
J Gen Virol ; 100(11): 1567-1579, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31490114

RESUMEN

The ancestral equine herpesvirus 1 (EHV1), closely related to human herpes viruses, exploits leukocytes to reach its target organs, accordingly evading the immune surveillance system. Circulating EHV1 strains can be divided into abortigenic/neurovirulent, causing reproductive/neurological disorders. Neurovirulent EHV1 more efficiently recruits monocytic CD172a+ cells to the upper respiratory tract (URT), while abortigenic EHV1 tempers monocyte migration. Whether similar results could be expected for T lymphocytes is not known. Therefore, we questioned whether differences in T cell recruitment could be associated with variations in cell tropism between both EHV1 phenotypes, and which viral proteins might be involved. The expression of CXCL9 and CXCL10 was evaluated in abortigenic/neurovirulent EHV1-inoculated primary respiratory epithelial cells (ERECs). The bioactivity of chemokines was tested with a functional migration assay. Replication of neurovirulent EHV1 in the URT resulted in an enhanced expression/bioactivity of CXCL9 and CXCL10, compared to abortigenic EHV1. Interestingly, deletion of glycoprotein 2 resulted in an increased recruitment of both monocytic CD172a+ cells and T lymphocytes to the corresponding EREC supernatants. Our data reveal a novel function of EHV1-gp2, tempering leukocyte migration to the URT, further indicating a sophisticated virus-mediated orchestration of leukocyte recruitment to the URT.


Asunto(s)
Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/virología , Herpesvirus Équido 1/inmunología , Factores Inmunológicos/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Genotipo , Caballos , Monocitos/inmunología , Monocitos/virología , Linfocitos T/inmunología , Linfocitos T/virología , Regulación hacia Arriba , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral
9.
Arch Virol ; 164(5): 1371-1382, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30888564

RESUMEN

Equine herpesvirus 1 (EHV-1) induces serious respiratory infections, viral abortion, neurological signs, and neonatal mortality in horses. Despite the use of vaccines, EHV-1 infection also causes a high annual economic burden to the equine industry. The poor immunogenicity of and protection conferred by EHV-1 vaccines are the major factors responsible for the spread of EHV-1 infection. The present study examined the immunogenicity of a novel DNA vaccine co-expressing FliC, a flagellin protein, in Salmonella abortus equi and the gD protein of EHV-1. Mice and horses were immunized intramuscularly with the vaccine, and mice were challenged with EHV-1. Immunofluorescence and western blotting revealed that FliC and gD can be efficiently expressed in cells. This novel vaccine significantly increased gD-specific antibody and interferon gamma (IFN-γ) levels in immunized mice and horses. Compared with controls, the viral load and morbidity were markedly reduced in FliC-gD-immunized mice after they were challenged with EHV-1. Furthermore, the immunogenicity of FliC-gD in a natural host was tested. Our results indicate that vaccinated mice and horses exhibit increased humoral and improved cellular immune responses.


Asunto(s)
Anticuerpos Antivirales/sangre , Flagelina/inmunología , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/inmunología , Vacunas de ADN/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , Línea Celular , Femenino , Flagelina/genética , Células HEK293 , Infecciones por Herpesviridae/inmunología , Caballos , Humanos , Inmunoglobulina G/sangre , Interferón gamma/sangre , Ratones , Ratones Endogámicos C57BL , Pruebas de Neutralización , Salmonella/inmunología , Receptor Toll-Like 5/metabolismo , Proteínas del Envoltorio Viral/genética , Carga Viral
10.
J Virol ; 91(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28404844

RESUMEN

Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHVXP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals (P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations (P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge (P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4+ T cells and CD8+ T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals.IMPORTANCE A novel virus-vectored VC2-EHV-1-gD vaccine was constructed using the live-attenuated HSV-1 VC2 vaccine strain. This vaccine stimulated strong humoral and cellular immune responses in mice, suggesting that it could protect horses against EHV-1 infection.


Asunto(s)
Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/química , Herpesvirus Équido 1/inmunología , Vacunas contra Herpesvirus/inmunología , Enfermedades de los Caballos/prevención & control , Proteínas del Envoltorio Viral/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/prevención & control , Herpesvirus Équido 1/genética , Vacunas contra Herpesvirus/administración & dosificación , Enfermedades de los Caballos/virología , Caballos , Inmunidad Celular , Inmunidad Humoral , Inmunización , Inyecciones Intramusculares , Ratones , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología
11.
BMC Vet Res ; 14(1): 245, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134896

RESUMEN

BACKGROUND: Equine herpesvirus type 1 (EHV-1) induces respiratory infection, abortion, and neurologic disease with significant impact. Virulence factors contributing to infection and immune evasion are of particular interest. A potential virulence factor of the neuropathogenic EHV-1 strain Ab4 is ORF2. This study on 24 Icelandic horses, 2 to 4 years of age, describes the infection with EHV-1 Ab4, or its deletion mutant devoid of ORF2 (Ab4ΔORF2) compared to non-infected controls (each group n = 8). The horses' clinical presentation, virus shedding, viremia, antibody and cellular immune responses were monitored over 260 days after experimental infection. RESULTS: Infection with Ab4ΔORF2 reduced fever and minimized nasal virus shedding after infection compared to the parent virus strain Ab4, while Ab4ΔORF2 established viremia similar to Ab4. Concurrently with virus shedding, intranasal cytokine and interferon α (IFN-α) production increased in the Ab4 group, while horses infected with Ab4ΔORF2 expressed less IFN-α. The antibody response to EHV-1 was evaluated by a bead-based multiplex assay and was similar in both infected groups, Ab4 and Ab4ΔORF2. EHV-1 specific immunoglobulin (Ig) G1 was induced 8 days after infection (d8 pi) with a peak on d10-12 pi. EHV-1 specific IgG4/7 increased starting on d10 pi, and remained elevated in serum until the end of the study. The intranasal antibody response to EHV-1 was dominated by the same IgG isotypes and remained elevated in both infected groups until d130 pi. In contrast to the distinct antibody response, no induction of EHV-1 specific T-cells was detectable by flow cytometry after ex vivo re-stimulation of peripheral blood mononuclear cells (PBMC) with EHV-1 in any group. The cellular immune response was characterized by increased secretion of IFN-γ and interleukin10 in response to ex vivo re-stimulation of PBMC with EHV-1. This response was present during the time of viremia (d5-10 pi) and was similar in both infected groups, Ab4 and Ab4ΔORF2. CONCLUSIONS: ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa. In contrast, ORF2 does not influence viremia. The immunogenicity of the Ab4ΔORF2 and parent Ab4 viruses are identical. Graphical abstract - Deletion of ORF2 reduces virulence of EHV-1 Ab4. Graphical summary of the main findings of this study: ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa.


Asunto(s)
Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/genética , Herpesvirus Équido 1/patogenicidad , Enfermedades de los Caballos/virología , Proteínas Virales/genética , Factores de Virulencia/genética , Virulencia/genética , Animales , Citocinas/metabolismo , Femenino , Herpesvirus Équido 1/inmunología , Enfermedades de los Caballos/inmunología , Caballos , Leucocitos Mononucleares/virología , Masculino , Mucosa Nasal/virología , Eliminación de Secuencia , Viremia/veterinaria , Esparcimiento de Virus/genética
12.
J Virol ; 90(18): 8090-104, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27356904

RESUMEN

UNLABELLED: Equine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide. The virus causes respiratory disease, abortion, and, in some cases, neurological disease. EHV-1 strain KyA is attenuated in the mouse and equine, whereas wild-type strain RacL11 induces severe inflammation of the lung, causing infected mice to succumb at 4 to 6 days postinfection. Our previous results showed that KyA immunization protected CBA mice from pathogenic RacL11 challenge at 2 and 4 weeks postimmunization and that KyA infection elicited protective humoral and cell-mediated immune responses. To investigate the protective mechanisms of innate immune responses to KyA, KyA-immunized mice were challenged with RacL11 at various times postvaccination. KyA immunization protected mice from RacL11 challenge at 1 to 7 days postimmunization. Immunized mice lost less than 10% of their body weight and rapidly regained weight. Virus titers in the lungs of KyA-immunized mice were 1,000-fold lower at 2 days post-RacL11 challenge than virus titers in the lungs of nonimmunized mice, indicating accelerated virus clearance. Affymetrix microarray analysis revealed that gamma interferon (IFN-γ) and 16 antiviral interferon-stimulated genes (ISGs) were upregulated 3.1- to 48.2-fold at 8 h postchallenge in the lungs of RacL11-challenged mice that had been immunized with KyA. Murine IFN-γ inhibited EHV-1 infection of murine alveolar macrophages and protected mice against lethal EHV-1 challenge, suggesting that IFN-γ expression is important in mediating the protection elicited by KyA immunization. These results suggest that EHV-1 KyA may be used as a live attenuated EHV-1 vaccine as well as a prophylactic agent in horses. IMPORTANCE: Viral infection of cells initiates a signal cascade of events that ultimately attempts to limit viral replication and prevent infection through the expression of host antiviral proteins. In this study, we show that EHV-1 KyA immunization effectively protected CBA mice from pathogenic RacL11 challenge at 1 to 7 days postvaccination and increased the expression of IFN-γ and 16 antiviral interferon-stimulated genes (ISGs). The administration of IFN-γ blocked EHV-1 replication in murine alveolar macrophages and mouse lungs and protected mice from lethal challenge. To our knowledge, this is the first report of an attenuated EHV-1 vaccine that protects the animal at 1 to 7 days postimmunization by innate immune responses. Our findings suggested that IFN-γ serves as a novel prophylactic agent and may offer new strategies for the development of anti-EHV-1 agents in the equine.


Asunto(s)
Infecciones por Herpesviridae/prevención & control , Herpesvirus Équido 1/inmunología , Inmunidad Innata , Vacunas Virales/inmunología , Animales , Peso Corporal , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Infecciones por Herpesviridae/virología , Pulmón/virología , Ratones Endogámicos CBA , Análisis por Micromatrices , Factores de Tiempo , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Carga Viral , Vacunas Virales/administración & dosificación
13.
J Gen Virol ; 97(3): 733-746, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26684016

RESUMEN

Equid herpesvirus 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. Cells from the myeloid lineage (CD172a+) are one of the main target cells of EHV-1 during primary infection. Recently, we showed that EHV-1 restricts and delays its replication in CD172a+ cells as part of an immune-evasive strategy to disseminate to target organs. Here, we hypothesize that a low efficiency of EHV-1 binding to and entry in CD172a+ cells is responsible for this restriction. Thus, we characterized EHV-1 binding and entry into CD172a+ cells, and showed that EHV-1 only bound to 15-20 % of CD172a+ cells compared with 70 % of RK-13 control cells. Enzymic removal of heparan sulphate did not reduce EHV-1 infection, suggesting that EHV-1 does not use heparan sulphate to bind and enter CD172a+ cells. In contrast, we found that treatment of cells with neuraminidase (NA) reduced infection by 85-100 % compared with untreated cells, whilst NA treatment of virus had no effect on infection. This shows that sialic acid residues present on CD172a+ cells are essential in the initiation of EHV-1 infection. We found that αVß3 integrins are involved in the post-binding stage of CD172a+ cell infection. Using pharmacological inhibitors, we showed that EHV-1 does not enter CD172a+ cells via a clathrin- or caveolae-dependent endocytic pathway, nor by macropinocytosis, but requires cholesterol, tyrosine kinase, actin, dynamin and endosomal acidification, pointing towards a phagocytic mechanism. Overall, these results show that the narrow tropism of EHV-1 amongst CD172a+ cells is determined by the presence of specific cellular receptors.


Asunto(s)
Antígenos de Diferenciación/inmunología , Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/fisiología , Enfermedades de los Caballos/virología , Monocitos/virología , Internalización del Virus , Animales , Antígenos de Diferenciación/genética , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/genética , Herpesvirus Équido 1/inmunología , Enfermedades de los Caballos/inmunología , Caballos , Interacciones Huésped-Patógeno , Monocitos/inmunología
14.
J Virol ; 89(12): 6251-63, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25833055

RESUMEN

UNLABELLED: Herpesviruses have evolved an array of strategies to counteract antigen presentation by major histocompatibility complex class I (MHC-I). Previously, we identified pUL56 of equine herpesvirus 1 (EHV-1) as one major determinant of the downregulation of cell surface MHC-I (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554-3563, 2012, http://dx.doi.org/10.1128/JVI.06994-11; T. Huang, M. J. Lehmann, A. Said, G. Ma, and N. Osterrieder, J. Virol. 88:12802-12815, 2014, http://dx.doi.org/10.1128/JVI.02079-14). Since pUL56 was able to exert its function only in the context of virus infection, we hypothesized that pUL56 cooperates with another viral protein. Here, we generated and screened a series of EHV-1 single-gene deletion mutants and found that the pUL43 orthologue was required for downregulation of cell surface MHC-I expression at the same time of infection as when pUL56 exerts its function. We demonstrate that the absence of pUL43 was not deleterious to virus growth and that expression of pUL43 was detectable from 2 h postinfection (p.i.) but decreased after 8 h p.i. due to lysosomal degradation. pUL43 localized within Golgi vesicles and required a unique hydrophilic N-terminal domain to function properly. Finally, coexpression of pUL43 and pUL56 in transfected cells reduced the cell surface expression of MHC-I. This process was dependent on PPxY motifs present in pUL56, suggesting that late domains are required for pUL43- and pUL56-dependent sorting of MHC class I for lysosomal degradation. IMPORTANCE: We describe here that the poorly characterized herpesviral protein pUL43 is involved in downregulation of cell surface MHC-I. pUL43 is an early protein and degraded in lysosomes. pUL43 resides in the Golgi vesicles and needs an intact N terminus to induce MHC-I downregulation in infected cells. Importantly, pUL43 and pUL56 cooperate to reduce MHC-I expression on the surface of transfected cells. Our results suggest a model for MHC-I downregulation in which late domains in pUL56 are required for the rerouting of vesicles containing MHC-I, pUL56, and pUL43 to the lysosomal compartment.


Asunto(s)
Regulación hacia Abajo , Herpesvirus Équido 1/inmunología , Herpesvirus Équido 1/fisiología , Antígenos de Histocompatibilidad Clase I/biosíntesis , Interacciones Huésped-Patógeno , Evasión Inmune , Proteínas Virales/metabolismo , Animales , Células Cultivadas , Eliminación de Gen , Herpesvirus Équido 1/genética , Caballos , Proteínas Virales/genética
15.
Immunogenetics ; 67(11-12): 675-89, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26399241

RESUMEN

Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif.


Asunto(s)
Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Herpesvirus Équido 1/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Linfocitos T Citotóxicos/inmunología , Alelos , Animales , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Enfermedades de los Caballos/genética , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Humanos , Leucocitos Mononucleares , Ratones , Unión Proteica , Proteoma/inmunología , Linfocitos T Citotóxicos/metabolismo , Espectrometría de Masas en Tándem
16.
J Virol ; 88(21): 12802-15, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25165105

RESUMEN

UNLABELLED: Equine herpesvirus type 1 (EHV-1) downregulates cell surface expression of major histocompatibility complex class I (MHC-I) in infected cells. We have previously shown that pUL56 encoded by the EHV-1 ORF1 gene regulates the process (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554-3563, 2012, doi:http://dx.doi.org/10.1128/JVI.06994-11). Here, we report that cell surface MHC-I in EHV-1-infected cells is internalized and degraded in the lysosomal compartment in a pUL56-dependent fashion. pUL56-induced MHC-I endocytosis required dynamin and tyrosine kinase but was independent of clathrin and caveolin-1, the main constituents of the clathrin- and raft/caveola-mediated endocytosis pathways, respectively. Downregulation of cell surface MHC-I was significantly inhibited by the ubiquitin-activating enzyme E1 inhibitor PYR41, indicating that ubiquitination is essential for the process. Finally, we show that downregulation is not specific for MHC-I and that other molecules, including CD46 and CD63, are also removed from the cell surface in a pUL56-dependent fashion. IMPORTANCE: We show that alphaherpesvirus induces MHC-I downregulation through endocytosis, which is mediated by pUL56. The dynamin-dependent endocytic pathway is responsible for MHC-I internalization in infected cells. Furthermore, we discovered that this endocytic process can be disrupted by the inhibiting ubiquitin-activating E1 enzyme, which is indispensable for ubiquitination. Finally, pUL56 action extends to a number of cell surface molecules that are significant for host immunity. Therefore, the protein may exert a more general immunomodulatory effect.


Asunto(s)
Dinaminas/metabolismo , Endocitosis , Herpesvirus Équido 1/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Interacciones Huésped-Patógeno , Evasión Inmune , Proteínas Virales/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Fibroblastos/inmunología , Fibroblastos/virología , Caballos , Humanos
17.
J Gen Virol ; 95(Pt 8): 1783-1789, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24836672

RESUMEN

Cytotoxic T-lymphocytes (CTLs) are associated with protective immunity against disease caused by equid herpesvirus type 1 (EHV-1). However, the EHV-1 target proteins for CTLs are poorly defined. This limits the development of vaccine candidates designed to stimulate strong CTL immunity. Here, classical CTL assays using lymphocytes from horses of three defined MHC class I types that experienced natural infection with EHV-1 and a modified vaccinia virus construct containing an EHV-1 gene encoding the immediate-early (IE) protein are reported. Horses homozygous for the equine leukocyte antigen (ELA)-A2 haplotype, but not the ELA-A5 haplotype, produced MHC-restricted CTL responses against the IE protein. Previously, horses homozygous for the ELA-A3 haplotype also mounted CTL responses against the IE protein. Both haplotypes are common in major horse breeds, including the Thoroughbred. Thus, the IE protein is an attractive candidate molecule for future studies of T-cell immunity to EHV-1 in the horse.


Asunto(s)
Herpesvirus Équido 1/inmunología , Proteínas Inmediatas-Precoces/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Pruebas Inmunológicas de Citotoxicidad , Caballos
18.
PLoS One ; 19(7): e0301987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995916

RESUMEN

Equid alphaherpesviruses 1 (EHV-1) and 4 (EHV-4) are closely related and both endemic in horses worldwide. Both viruses replicate in the upper respiratory tract, but EHV-1 may additionally lead to abortion and equine herpesvirus myeloencephalopathy (EHM). We focused on antibody responses in horses against the receptor-binding glycoprotein D of EHV-1 (gD1), which shares a 77% amino acid identity with its counterpart in EHV-4 (gD4). Both antigens give rise to cross-reacting antibodies, including neutralizing antibodies. However, immunity against EHV-4 is not considered protective against EHM. While a diagnostic ELISA to discriminate between EHV-1 and EHV-4 infections is available based on type-specific fragments of glycoprotein G (gG1 and gG4, respectively), the type-specific antibody reaction against gD1 has not yet been sufficiently addressed. Starting from the N-terminus of gD1, we developed luciferase immunoprecipitation system (LIPS) assays, using gD1-fragments of increasing size as antigens, i.e. gD1_83 (comprising the first 83 amino acids), gD1_160, gD1_180, and gD1_402 (the full-length molecule). These assays were then used to analyse panels of horse sera from Switzerland (n = 60) and Iceland (n = 50), the latter of which is considered EHV-1 free. We detected only one true negative horse serum from Iceland, whereas all other sera in both panels were seropositive for both gG4 (ELISA) and gD1 (LIPS against gD1_402). In contrast, seropositivity against gG1 was rather rare (35% Swiss sera; 14% Icelandic sera). Therefore, a high percentage of antibodies against gD1 could be attributed to cross-reaction and due to EHV-4 infections. In contrast, the gD1_83 fragment was able to identify sera with type-specific antibodies against gD1. Interestingly, those sera stemmed almost exclusively from vaccinated horses. Although it is uncertain that the N-terminal epitopes of gD1 addressed in this communication are linked to better protection, we suggest that in future vaccine developments, type-common antigens should be avoided, while a broad range of type-specific antigens should be favored.


Asunto(s)
Anticuerpos Antivirales , Herpesvirus Équido 1 , Enfermedades de los Caballos , Proteínas del Envoltorio Viral , Animales , Caballos/inmunología , Herpesvirus Équido 1/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Proteínas del Envoltorio Viral/inmunología , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/prevención & control , Herpesvirus Équido 4/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Reacciones Cruzadas/inmunología , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Dominios Proteicos/inmunología
19.
Front Immunol ; 15: 1408510, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021566

RESUMEN

Equid alphaherpesvirus 1 (EqAHV1) is a viral pathogen known to cause respiratory disease, neurologic syndromes, and abortion storms in horses. Currently, there are no vaccines that provide complete protection against EqAHV1. Marker vaccines and the differentiation of infected and vaccinated animals (DIVA) strategy are effective for preventing and controlling outbreaks but have not been used for the prevention of EqAHV1 infection. Glycoprotein 2 (gp2), located on the envelope of viruses (EqAHV1), exhibits high antigenicity and functions as a molecular marker for DIVA. In this study, a series of EqAHV1 mutants with deletion of gp2 along with other virulence genes (TK, UL24/TK, gI/gE) were engineered. The mutant viruses were studied in vitro and then in an in vivo experiment using Golden Syrian hamsters to assess the extent of viral attenuation and the immune response elicited by the mutant viruses in comparison to the wild-type (WT) virus. Compared with the WT strain, the YM2019 Δgp2, ΔTK/gp2, and ΔUL24/TK/gp2 strains exhibited reduced growth in RK-13 cells, while the ΔgI/gE/gp2 strain exhibited significantly impaired proliferation. The YM2019 Δgp2 strain induced clinical signs and mortality in hamsters. In contrast, the YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 variants displayed diminished pathogenicity, causing no observable clinical signs or fatalities. Immunization with nasal vaccines containing YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 elicited a robust immune response in hamsters. In particular, compared with the vaccine containing the ΔTK/gp2 strain, the vaccine containing the ΔUL24/TK/gp2 strain demonstrated enhanced immune protection upon challenge with the WT virus. Furthermore, an ELISA for gp2 was established and refined to accurately differentiate between infected and vaccinated animals. These results confirm that the ΔUL24/TK/gp2 strain is a safe and effective live attenuated vaccine candidate for controlling EqAHV1 infection.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Équido 1 , Vacunas Atenuadas , Animales , Vacunas Atenuadas/inmunología , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/inmunología , Herpesvirus Équido 1/genética , Caballos , Mesocricetus , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Cricetinae , Enfermedades de los Caballos/prevención & control , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Vacunas Virales/inmunología , Vacunas Virales/genética , Línea Celular , Mutación
20.
J Virol ; 86(7): 3554-63, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22278226

RESUMEN

Major histocompatibility complex class I (MHC-I) molecules play an important role in host immunity to infection by presenting antigenic peptides to cytotoxic T lymphocytes (CTLs), which recognize and destroy virus-infected cells. Members of the Herpesviridae have developed multiple mechanisms to avoid CTL recognition by virtue of downregulation of MHC-I on the cell surface. We report here on an immunomodulatory protein involved in this process, pUL56, which is encoded by ORF1 of equine herpesvirus type 1 (EHV-1), an alphaherpesvirus. We show that EHV-1 pUL56 is a phosphorylated early protein which is expressed as different forms and predominantly localizes to Golgi membranes. In addition, the transmembrane (TM) domain of the type II membrane protein was shown to be indispensable for correct subcellular localization and a proper function. pUL56 by itself is not functional with respect to interference with MHC-I and likely needs another unidentified viral protein(s) to perform this action. Surprisingly, pUL49.5, an inhibitor of the transporter associated with antigen processing (TAP) and encoded by EHV-1 and related viruses, appeared not to be required for pUL56-induced early MHC-I downmodulation in infected cells. In conclusion, our data identify a new immunomodulatory protein, pUL56, involved in MHC-I downregulation which is unable to perform its function outside the context of viral infection.


Asunto(s)
Regulación hacia Abajo , Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Enfermedades de los Caballos/genética , Proteínas Virales/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/inmunología , Herpesvirus Équido 1/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Enfermedades de los Caballos/inmunología , Caballos , Humanos , Datos de Secuencia Molecular , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA