Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.597
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 23(6): 916-926, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35618833

RESUMEN

At steady state, the NOD-like receptor (NLR)-containing pyrin domain (PYD) (NLRP)1 inflammasome is maintained in an auto-inhibitory complex by dipeptidyl peptidases 8 and 9 (DPP8 and DPP9) and is activated by pathogen-encoded proteases after infection. Here, we showed that the open reading frame (ORF)45 protein of the Kaposi's sarcoma-associated herpesvirus activated the human NLRP1 (hNLRP1) inflammasome in a non-protease-dependent manner, and we additionally showed that the Linker1 region of hNLRP1, situated between the PYD and NACHT domains, was required for the auto-inhibition and non-protease-dependent activation of hNLRP1. At steady state, the interaction between Linker1 and the UPA subdomain silenced the activation of hNLRP1 in auto-inhibitory complexes either containing DPP9 or not in a manner independent of DPP9. ORF45 binding to Linker1 displaced UPA from the Linker1-UPA complex and induced the release of the C-terminal domain of hNLRP1 for inflammasome assembly. The ORF45-dependent activation of the NLRP1 inflammasome was conserved in primates but was not observed for murine NLRP1b inflammasomes.


Asunto(s)
Herpesvirus Humano 8 , Inflamasomas , Proteínas Virales/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Herpesvirus Humano 8/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Proteínas NLR/química , Proteínas NLR/metabolismo
2.
Cell ; 178(6): 1277-1279, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474369

RESUMEN

The oncogenic gammaherpesvirus Kaposi sarcoma-associated herpesvirus (KSHV) is globally widespread; infection rates are as high as 80% in parts of sub-Saharan Africa. In this issue of Cell, Gong et al. (2019) describe the high-resolution structure of a critical component of the KSHV virion-the portal vertex.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Cápside , Proteínas de la Cápside , ADN , Humanos
3.
Cell ; 178(6): 1329-1343.e12, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447177

RESUMEN

Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.


Asunto(s)
Proteínas de la Cápside/química , Cápside/metabolismo , Empaquetamiento del ADN , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiología , Sarcoma de Kaposi/virología , Ensamble de Virus , Microscopía por Crioelectrón/métodos , ADN Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares
4.
Nat Methods ; 21(3): 488-500, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361019

RESUMEN

Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts.


Asunto(s)
Herpesvirus Humano 8 , Manihot , Sarcoma de Kaposi , Sarcoma de Kaposi/metabolismo , Proteínas Virales/metabolismo , Manihot/metabolismo , Latencia del Virus , Herpesvirus Humano 8/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(42): e2403217121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378089

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a viral G protein-coupled receptor, KSHV-GPCR, that contributes to KSHV immune evasion and pathogenesis of Kaposi's sarcoma. KSHV-GPCR shares a high similarity with CXC chemokine receptors CXCR2 and can be activated by selected chemokine ligands. Like other herpesvirus-encoded GPCRs, KSHV-GPCR is characterized by its constitutive activity by coupling to various G proteins. We investigated the structural basis of ligand-dependent and constitutive activation of KSHV-GPCR, obtaining high-resolution cryo-EM structures of KSHV-GPCR-Gi complexes with and without the bound CXCL1 chemokine. Analysis of the apo-KSHV-GPCR-Gi structure (2.81 Å) unraveled the involvement of extracellular loop 2 in constitutive activation of the receptor. In comparison, the CXCL1-bound KSHV-GPCR-Gi structure (3.01 Å) showed a two-site binding mode and provided detailed information of CXCL1 binding to a chemokine receptor. The dual activation mechanism employed by KSHV-GPCR represents an evolutionary adaptation for immune evasion and contributes to the pathogenesis of Kaposi's sarcoma. Together with results from functional assays that confirmed the structural models, these findings may help to develop therapeutic strategies for KSHV infection.


Asunto(s)
Quimiocina CXCL1 , Herpesvirus Humano 8 , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/genética , Quimiocina CXCL1/metabolismo , Humanos , Proteínas Virales/metabolismo , Proteínas Virales/química , Microscopía por Crioelectrón , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Modelos Moleculares , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Receptores de Quimiocina
6.
PLoS Pathog ; 20(1): e1011907, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38232124

RESUMEN

Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Nucleares , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Latencia del Virus/genética , Antígenos Virales/genética , Antígenos Virales/metabolismo , Expresión Génica , Regulación Viral de la Expresión Génica , Replicación Viral
7.
PLoS Pathog ; 20(1): e1011943, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38215174

RESUMEN

Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Sarcoma de Kaposi , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Transactivadores/genética , Herpesvirus Humano 8/genética , Replicación Viral , Regulación Viral de la Expresión Génica , Activación Viral , Proteasas Ubiquitina-Específicas/metabolismo
8.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626263

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.


Asunto(s)
Aparato de Golgi , Herpesvirus Humano 8 , Lipoilación , Proteínas Virales , Virión , Replicación Viral , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Humanos , Virión/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación Viral/fisiología , Células HEK293
9.
PLoS Pathog ; 20(9): e1012535, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39255317

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.


Asunto(s)
Ciclo Celular , Proliferación Celular , Herpesvirus Humano 8 , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiología , Metilación , Antígenos Virales/metabolismo , Antígenos Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ciclina D2/metabolismo , Células HEK293 , Replicación Viral/fisiología , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Proteínas Nucleares
10.
PLoS Pathog ; 20(7): e1012338, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39008527

RESUMEN

Recently published near full-length KSHV genomes from a Cameroon Kaposi sarcoma case-control study showed strong evidence of viral recombination and mixed infections, but no sequence variations associated with disease. Using the same methodology, an additional 102 KSHV genomes from 76 individuals with KSHV-associated diseases have been sequenced. Diagnoses comprise all KSHV-associated diseases (KAD): Kaposi sarcoma (KS), primary effusion lymphoma (PEL), KSHV-associated large cell lymphoma (KSHV-LCL), a type of multicentric Castleman disease (KSHV-MCD), and KSHV inflammatory cytokine syndrome (KICS). Participants originated from 22 different countries, providing the opportunity to obtain new near full-length sequences of a wide diversity of KSHV genomes. These include near full-length sequence of genomes with KSHV K1 subtypes A, B, C, and F as well as subtype E, for which no full sequence was previously available. High levels of recombination were observed. Fourteen individuals (18%) showed evidence of infection with multiple KSHV variants (from two to four unique genomes). Twenty-six comparisons of sequences, obtained from various sampling sites including PBMC, tissue biopsies, oral fluids, and effusions in the same participants, identified near complete genome conservation between different biological compartments. Polymorphisms were identified in coding and non-coding regions, including indels in the K3 and K15 genes and sequence inversions here reported for the first time. One such polymorphism in KSHV ORF46, specific to the KSHV K1 subtype E2, encoded a mutation in the leucine loop extension of the uracil DNA glycosylase that results in alteration of biochemical functions of this protein. This confirms that KSHV sequence variations can have functional consequences warranting further investigation. This study represents the largest and most diverse analysis of KSHV genome sequences to date among individuals with KAD and provides important new information on global KSHV genomics.


Asunto(s)
Genoma Viral , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto , Polimorfismo Genético , Anciano , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/virología , Etnicidad/genética , Enfermedad de Castleman/virología , Enfermedad de Castleman/genética , Filogenia
11.
PLoS Pathog ; 20(1): e1011881, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190392

RESUMEN

In people living with HIV, Kaposi Sarcoma (KS), a vascular neoplasm caused by KS herpesvirus (KSHV/HHV-8), remains one of the most common malignancies worldwide. Individuals living with HIV, receiving otherwise effective antiretroviral therapy, may present with extensive disease requiring chemotherapy. Hence, new therapeutic approaches are needed. The Wilms' tumor 1 (WT1) protein is overexpressed and associated with poor prognosis in several hematologic and solid malignancies and has shown promise as an immunotherapeutic target. We found that WT1 was overexpressed in >90% of a total 333 KS biopsies, as determined by immunohistochemistry and image analysis. Our largest cohort from ACTG, consisting of 294 cases was further analyzed demonstrating higher WT1 expression was associated with more advanced histopathologic subtypes. There was a positive correlation between the proportion of infected cells within KS tissues, assessed by expression of the KSHV-encoded latency-associated nuclear antigen (LANA), and WT1 positivity. Areas with high WT1 expression showed sparse T-cell infiltrates, consistent with an immune evasive tumor microenvironment. We show that major oncogenic isoforms of WT1 are overexpressed in primary KS tissue and observed WT1 upregulation upon de novo infection of endothelial cells with KSHV. KSHV latent viral FLICE-inhibitory protein (vFLIP) upregulated total and major isoforms of WT1, but upregulation was not seen after expression of mutant vFLIP that is unable to bind IKKÆ´ and induce NFκB. siRNA targeting of WT1 in latent KSHV infection resulted in decreased total cell number and pAKT, BCL2 and LANA protein expression. Finally, we show that ESK-1, a T cell receptor-like monoclonal antibody that recognizes WT1 peptides presented on MHC HLA-A0201, demonstrates increased binding to endothelial cells after KSHV infection or induction of vFLIP expression. We propose that oncogenic isoforms of WT1 are upregulated by KSHV to promote tumorigenesis and immunotherapy directed against WT1 may be an approach for KS treatment.


Asunto(s)
Infecciones por VIH , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Células Endoteliales/metabolismo , Infecciones por VIH/metabolismo , Isoformas de Proteínas/metabolismo , Microambiente Tumoral
12.
PLoS Pathog ; 20(8): e1012081, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39186813

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent infection in the host by encoding a vast network of proteins that aid immune evasion. One of these targeted innate immunity pathways is the cGAS-STING pathway, which inhibits the reactivation of KSHV from latency. Previously, we identified multiple cGAS/STING inhibitors encoded by KSHV, suggesting that the counteractions of this pathway by viral proteins are critical for maintaining a successful KSHV life cycle. However, the detailed mechanisms of how these viral proteins block innate immunity and facilitate KSHV lytic replication remain largely unknown. In this study, we report that ORF48, a previously identified negative regulator of the cGAS/STING pathway, is required for optimal KSHV lytic replication. We used both siRNA and deletion-based systems to evaluate the importance of intact ORF48 in the KSHV lytic cycle. In both systems, loss of ORF48 resulted in defects in lytic gene transcription, lytic protein expression, viral genome replication and infectious virion production. ORF48 genome deletion caused more robust and global repression of the KSHV transcriptome, possibly due to the disruption of RTA promoter activity. Mechanistically, overexpressed ORF48 was found to colocalize and interact with endogenous STING in HEK293 cells. Endogenous ORF48 and STING interactions were also detected in reactivated iSLK.219 cells. Compared with the control cell line, HUVEC cells stably expressing ORF48 exhibited repressed STING-dependent innate immune signaling upon ISD or diABZI treatment. However, the loss of ORF48 in our iSLK-based lytic system failed to induce IFNß production, suggesting a redundant role of ORF48 on STING signaling during the KSHV lytic phase. Thus, ORF48 is required for optimal KSHV lytic replication through additional mechanisms that need to be further explored.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Virales , Replicación Viral , Herpesvirus Humano 8/fisiología , Humanos , Replicación Viral/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Inmunidad Innata , Células HEK293 , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Regulación Viral de la Expresión Génica , Latencia del Virus/fisiología , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología
13.
PLoS Pathog ; 20(2): e1012023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381773

RESUMEN

Protein-level immunodominance patterns against Kaposi sarcoma-associated herpesvirus (KSHV), the aetiologic agent of Kaposi sarcoma (KS), have been revealed from serological probing of whole protein arrays, however, the epitopes that underlie these patterns have not been defined. We recently demonstrated the utility of phage display in high-resolution linear epitope mapping of the KSHV latency-associated nuclear antigen (LANA/ORF73). Here, a VirScan phage immunoprecipitation and sequencing approach, employing a library of 1,988 KSHV proteome-derived peptides, was used to quantify the breadth and magnitude of responses of 59 sub-Saharan African KS patients and 22 KSHV-infected asymptomatic individuals (ASY), and ultimately to support an application of machine-learning-based predictive modeling using the peptide-level responses. Comparing anti-KSHV antibody repertoire revealed that magnitude, not breadth, increased in KS. The most targeted epitopes in both KS and ASY were in the immunodominant proteins, notably, K8.129-56 and ORF65140-168, in addition to LANA. Finally, using unbiased machine-learning-based predictive models, reactivity to a subset of 25 discriminative peptides was demonstrated to successfully classify KS patients from asymptomatic individuals. Our study provides the highest resolution mapping of antigenicity across the entire KSHV proteome to date, which is vital to discern mechanisms of viral pathogenesis, to define prognostic biomarkers, and to design effective vaccine and therapeutic strategies. Future studies will investigate the diagnostic, prognostic, and therapeutic potential of the 25 discriminative peptides.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/metabolismo , Proteoma/metabolismo , Antígenos Virales , Proteínas Nucleares/metabolismo , Infecciones por Herpesviridae/complicaciones , Péptidos/metabolismo , Epítopos/metabolismo
14.
PLoS Pathog ; 20(3): e1012082, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470932

RESUMEN

Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.


Asunto(s)
Ferroptosis , Herpesvirus Humano 8 , Neoplasias , Sarcoma de Kaposi , Sirtuina 3 , Ratas , Animales , Herpesvirus Humano 8/genética , Sirtuina 3/genética , Sirtuina 3/metabolismo , Transformación Celular Neoplásica , Proteínas Virales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Blood ; 144(14): 1496-1507, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38941593

RESUMEN

ABSTRACT: Kaposi sarcoma herpesvirus (KSHV)-associated diseases include Kaposi sarcoma (KS), primary effusion lymphoma (PEL), KSHV-associated multicentric Castleman disease (MCD), and KS inflammatory cytokine syndrome (KICS). PEL, MCD, and KICS are associated with elevated circulating inflammatory cytokines. However, activation of the inflammasome, which generates interleukin-1ß (IL-1ß) and IL-18 via active caspase-1/4/5, has not been evaluated in patients with KSHV-associated diseases (KADs). Herein we report that patients with HIV and ≥1 KAD present with higher plasma levels of IL-18 and increased caspase-1/4/5 activity in circulating monocytes compared with HIV-negative healthy volunteers (HVs) or people with HIV (PWH) without KAD. Within KAD subtypes, KICS and MCD shared enhanced caspase-1/4/5 activity and IL-18 production compared with HVs and PWH, whereas patients with PEL showed remarkably high levels of inflammasome complex formation (known as apoptosis-associated speck-like protein containing a caspase recruitment domain). Moreover, caspase-1/4/5 activity and IL-18 plasma levels correlated with KSHV viral load, indicating KSHV-driven inflammasome activation in KAD. Accordingly, factors released by cells latently infected with KSHV triggered inflammasome activation and cytokine production in bystander monocytes in vitro. Finally, both supervised and unsupervised analyses with inflammasome measurements and other inflammatory biomarkers demonstrate a unique inflammatory profile in patients with PEL, MCD, and KICS as compared with KS. Our data indicate that detrimental inflammation in patients with KAD is at least partially driven by KSHV-induced inflammasome activation in monocytes, thus offering novel approaches to diagnose and treat these complex disorders. These trials were registered at www.ClinicalTrials.gov as #NCT01419561, NCT00092222, NCT00006518, and NCT02147405.


Asunto(s)
Enfermedad de Castleman , Herpesvirus Humano 8 , Inflamasomas , Sarcoma de Kaposi , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Caspasas/metabolismo , Enfermedad de Castleman/virología , Enfermedad de Castleman/inmunología , Enfermedad de Castleman/sangre , Herpesvirus Humano 8/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/virología , Infecciones por VIH/sangre , Inflamasomas/metabolismo , Inflamasomas/inmunología , Interleucina-18/sangre , Interleucina-18/metabolismo , Linfoma de Efusión Primaria/virología , Linfoma de Efusión Primaria/inmunología , Monocitos/metabolismo , Monocitos/inmunología , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/inmunología , Sarcoma de Kaposi/sangre
16.
Mol Cell ; 71(4): 637-648.e5, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30118682

RESUMEN

Although macrophages are armed with potent antibacterial functions, Mycobacterium tuberculosis (Mtb) replicates inside these innate immune cells. Determinants of macrophage intrinsic bacterial control, and the Mtb strategies to overcome them, are poorly understood. To further study these processes, we used an affinity tag purification mass spectrometry (AP-MS) approach to identify 187 Mtb-human protein-protein interactions (PPIs) involving 34 secreted Mtb proteins. This interaction map revealed two factors involved in Mtb pathogenesis-the secreted Mtb protein, LpqN, and its binding partner, the human ubiquitin ligase CBL. We discovered that an lpqN Mtb mutant is attenuated in macrophages, but growth is restored when CBL is removed. Conversely, Cbl-/- macrophages are resistant to viral infection, indicating that CBL regulates cell-intrinsic polarization between antibacterial and antiviral immunity. Collectively, these findings illustrate the utility of this Mtb-human PPI map for developing a deeper understanding of the intricate interactions between Mtb and its host.


Asunto(s)
Proteínas Bacterianas/genética , VIH/genética , Interacciones Huésped-Patógeno , Mycobacterium tuberculosis/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/inmunología , Línea Celular Tumoral , Chlamydia trachomatis/genética , Chlamydia trachomatis/inmunología , Regulación de la Expresión Génica , VIH/inmunología , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/inmunología , Humanos , Linfocitos/microbiología , Linfocitos/virología , Macrófagos/microbiología , Macrófagos/virología , Ratones , Mycobacterium tuberculosis/inmunología , Cultivo Primario de Células , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-cbl/deficiencia , Proteínas Proto-Oncogénicas c-cbl/inmunología , Células RAW 264.7 , Transducción de Señal , Factores de Virulencia/inmunología
17.
Semin Immunol ; 60: 101652, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-36162228

RESUMEN

The two γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are each associated with more than 1% of all tumors in humans. While EBV establishes persistent infection in nearly all adult individuals, KSHV benefits from this widespread EBV prevalence for its own persistence. Interestingly, EBV infection expands early differentiated NKG2A+KIR- NK cells that protect against lytic EBV infection, while KSHV co-infection drives accumulation of poorly functional CD56-CD16+ NK cells. Thus persistent γ-herpesvirus infections are sculptors of human NK cell repertoires and the respectively stimulated NK cell subsets should be considered for immunotherapies of EBV and KSHV associated malignancies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Neoplasias , Adulto , Humanos , Herpesvirus Humano 4/fisiología , Herpesvirus Humano 8/fisiología , Células Asesinas Naturales
18.
Nucleic Acids Res ; 52(4): 1814-1829, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38180827

RESUMEN

To establish lifelong, latent infection, herpesviruses circularize their linear, double-stranded, DNA genomes through an unknown mechanism. Kaposi's sarcoma (KS) herpesvirus (KSHV), a gamma herpesvirus, is tightly linked with KS, primary effusion lymphoma, and multicentric Castleman's disease. KSHV persists in latently infected cells as a multi-copy, extrachromosomal episome. Here, we show the KSHV genome rapidly circularizes following infection, and viral protein expression is unnecessary for this process. The DNA damage response (DDR) kinases, ATM and DNA-PKcs, each exert roles, and absence of both severely compromises circularization and latency. These deficiencies were rescued by expression of ATM and DNA-PKcs, but not catalytically inactive mutants. In contrast, γH2AX did not function in KSHV circularization. The linear viral genomic ends resemble a DNA double strand break, and non-homologous DNA end joining (NHEJ) and homologous recombination (HR) reporters indicate both NHEJ and HR contribute to KSHV circularization. Last, we show, similar to KSHV, ATM and DNA-PKcs have roles in circularization of the alpha herpesvirus, herpes simplex virus-1 (HSV-1), while γH2AX does not. Therefore, the DDR mediates KSHV and HSV-1 circularization. This strategy may serve as a general herpesvirus mechanism to initiate latency, and its disruption may provide new opportunities for prevention of herpesvirus disease.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/genética , Latencia del Virus/genética , ADN , Reparación del ADN
19.
Nucleic Acids Res ; 52(13): 7720-7739, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38922687

RESUMEN

Kaposi's sarcoma-associated herpesvirus is the etiologic agent of Kaposi's sarcoma and two B-cell malignancies. Recent advancements in sequencing technologies have led to high resolution transcriptomes for several human herpesviruses that densely encode genes on both strands. However, for KSHV progress remained limited due to the overall low percentage of KSHV transcripts, even during lytic replication. To address this challenge, we have developed a target enrichment method to increase the KSHV-specific reads for both short- and long-read sequencing platforms. Furthermore, we combined this approach with the Transcriptome Resolution through Integration of Multi-platform Data (TRIMD) pipeline developed previously to annotate transcript structures. TRIMD first builds a scaffold based on long-read sequencing and validates each transcript feature with supporting evidence from Illumina RNA-Seq and deepCAGE sequencing data. Our stringent innovative approach identified 994 unique KSHV transcripts, thus providing the first high-density KSHV lytic transcriptome. We describe a plethora of novel coding and non-coding KSHV transcript isoforms with alternative untranslated regions, splice junctions and open-reading frames, thus providing deeper insights on gene expression regulation of KSHV. Interestingly, as described for Epstein-Barr virus, we identified transcription start sites that augment long-range transcription and may increase the number of latency-associated genes potentially expressed in KS tumors.


Asunto(s)
Empalme Alternativo , Herpesvirus Humano 8 , Transcriptoma , Herpesvirus Humano 8/genética , Humanos , Transcriptoma/genética , Transcripción Genética , Regulación Viral de la Expresión Génica , Sistemas de Lectura Abierta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/genética , ARN Viral/genética , ARN Viral/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(27): e2300204120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364111

RESUMEN

Inflammasomes are one kind of important innate immune defense against viral and bacterial infections. Several inflammasome-forming sensors detect molecular patterns of invading pathogens and then trigger inflammasome activation and/or pyroptosis in infected cells, and viruses employ unique strategies to hijack or subvert inflammasome activation. Infection with herpesviruses induces the activation of diverse inflammasomes, including AIM2 and IFI16 inflammasomes; however, how Kaposi's sarcoma-associated herpesvirus (KSHV) counteracts inflammasome activation largely remains unclear. Here, we reveal that the KSHV ORF37-encoded SOX protein suppresses AIM2 inflammasome activation independent of its viral DNA exonuclease activity and host mRNA turnover. SOX interacts with the AIM2 HIN domain through the C-terminal Motif VII region and disrupts AIM2:dsDNA polymerization and ASC recruitment and oligomerization. The Y443A or F444A mutation of SOX abolishes the inhibition of AIM2 inflammasome without disrupting SOX nuclease activity, and a short SOX peptide is capable of inhibiting AIM2 inflammasome activation; consequently, infection with SOX-null, Y443A, or F444A Bac16 recombinant viruses results in robust inflammasome activation, suppressed lytic replication, and increased pyroptosis in human lymphatic endothelial cells in an AIM2-dependent manner. These results reveal that KSHV SOX suppresses AIM2 inflammasome activation to promote KSHV lytic replication and inhibit pyroptosis, representing a unique mechanism for evasion of inflammasome activation during KSHV lytic cycle.


Asunto(s)
Herpesvirus Humano 8 , Inflamasomas , Replicación Viral , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Endoteliales , Herpesvirus Humano 8/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Replicación Viral/fisiología , Piroptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA